contrib: keygen-html for generating keys in the browser
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This commit is contained in:
		
							parent
							
								
									30cf5eb883
								
							
						
					
					
						commit
						bee819f289
					
				
					 4 changed files with 1020 additions and 0 deletions
				
			
		
							
								
								
									
										19
									
								
								contrib/keygen-html/README
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								contrib/keygen-html/README
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,19 @@
 | 
				
			||||||
 | 
					WireGuard Key Generation in JavaScript
 | 
				
			||||||
 | 
					======================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Various people believe in JavaScript crypto, unfortunately. This small
 | 
				
			||||||
 | 
					example helps them fuel their poor taste.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					It's possible to generate WireGuard keys (and thus configurations) in the
 | 
				
			||||||
 | 
					browser. The webpage here simulates talking to a server to exchange keys
 | 
				
			||||||
 | 
					and then generates a configuration file for the user to download.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Bugs
 | 
				
			||||||
 | 
					----
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Who knows how emscripten actually compiles this and whether or not it
 | 
				
			||||||
 | 
					introduces interesting side-channel attacks.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Secrets aren't zerored after use. Maybe you can get around this with
 | 
				
			||||||
 | 
					some tricks taking advantage of browser allocator behavior and different
 | 
				
			||||||
 | 
					processes, but it seems pretty hard.
 | 
				
			||||||
							
								
								
									
										16
									
								
								contrib/keygen-html/curve25519_generate.js
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								contrib/keygen-html/curve25519_generate.js
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										71
									
								
								contrib/keygen-html/keygen.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								contrib/keygen-html/keygen.html
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,71 @@
 | 
				
			||||||
 | 
					<script src="curve25519_generate.js"></script>
 | 
				
			||||||
 | 
					<script>
 | 
				
			||||||
 | 
					// License: GPLv2
 | 
				
			||||||
 | 
					function generateWireguardKeypair()
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						var privateKey = Module._malloc(32);
 | 
				
			||||||
 | 
						var publicKey = Module._malloc(32);
 | 
				
			||||||
 | 
						Module._curve25519_generate_private(privateKey);
 | 
				
			||||||
 | 
						Module._curve25519_generate_public(publicKey, privateKey);
 | 
				
			||||||
 | 
						var privateBase64 = Module._malloc(45);
 | 
				
			||||||
 | 
						var publicBase64 = Module._malloc(45);
 | 
				
			||||||
 | 
						Module._key_to_base64(privateBase64, privateKey);
 | 
				
			||||||
 | 
						Module._key_to_base64(publicBase64, publicKey);
 | 
				
			||||||
 | 
						Module._free(privateKey);
 | 
				
			||||||
 | 
						Module._free(publicKey);
 | 
				
			||||||
 | 
						var keypair = {
 | 
				
			||||||
 | 
							publicKey: Module.Pointer_stringify(publicBase64),
 | 
				
			||||||
 | 
							privateKey: Module.Pointer_stringify(privateBase64)
 | 
				
			||||||
 | 
						};
 | 
				
			||||||
 | 
						Module._free(privateBase64);
 | 
				
			||||||
 | 
						Module._free(publicBase64);
 | 
				
			||||||
 | 
						return keypair;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function sendPubkeyToServer(pubkey, username, password)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						alert("Sending " + username + ":" + password + " to server for new pubkey " + pubkey + "...");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						// send info to server
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						var serverResponse = {
 | 
				
			||||||
 | 
							publicKey: "6spHEFoJrp9pijbxjJoS6fHjZaAWQqtdFFO/OtpVe3w=",
 | 
				
			||||||
 | 
							allowedIPs: [ "0.0.0.0/0", "::/0" ],
 | 
				
			||||||
 | 
							endpoint: "demo.wireguard.com:63321",
 | 
				
			||||||
 | 
							address: [ "192.168.18.42/32", "fd08:1234:1111::77/128" ],
 | 
				
			||||||
 | 
							dns: [ "8.8.8.8", "8.8.4.4" ]
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						return serverResponse;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					function downloadNewConfiguration()
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						var keypair = generateWireguardKeypair();
 | 
				
			||||||
 | 
						var serverResponse = sendPubkeyToServer(keypair.publicKey, "zx2c4", "supersecretpassword");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						var config = [];
 | 
				
			||||||
 | 
						config.push("[Interface]");
 | 
				
			||||||
 | 
						config.push("PrivateKey = " + keypair.privateKey);
 | 
				
			||||||
 | 
						config.push("Address = " + serverResponse.address.join(", "));
 | 
				
			||||||
 | 
						config.push("DNS = " + serverResponse.dns.join(", "));
 | 
				
			||||||
 | 
						config.push("");
 | 
				
			||||||
 | 
						config.push("[Peer]");
 | 
				
			||||||
 | 
						config.push("PublicKey = " + serverResponse.publicKey);
 | 
				
			||||||
 | 
						config.push("AllowedIPs = " + serverResponse.allowedIPs.join(", "));
 | 
				
			||||||
 | 
						config.push("Endpoint = " + serverResponse.endpoint);
 | 
				
			||||||
 | 
						config.push("");
 | 
				
			||||||
 | 
						config = config.join("\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						var blob = new Blob([config], { type: "text/plain" });
 | 
				
			||||||
 | 
						var a = document.createElement("a");
 | 
				
			||||||
 | 
						a.download = "demo0.conf";
 | 
				
			||||||
 | 
						a.href = URL.createObjectURL(blob);
 | 
				
			||||||
 | 
						a.style.display = "none";
 | 
				
			||||||
 | 
						document.body.appendChild(a);
 | 
				
			||||||
 | 
						a.click();
 | 
				
			||||||
 | 
						document.body.removeChild(a);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					</script>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<a href="javascript:downloadNewConfiguration()">Download a WireGuard configuration file</a>
 | 
				
			||||||
							
								
								
									
										914
									
								
								contrib/keygen-html/src/curve25519_generate.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										914
									
								
								contrib/keygen-html/src/curve25519_generate.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,914 @@
 | 
				
			||||||
 | 
					/* License: GPLv2 */
 | 
				
			||||||
 | 
					/* Build with emcc -O3 --memory-init-file 0 -o curve25519_generate.js curve25519_generate.c */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#include <emscripten.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					typedef unsigned long long uint64_t;
 | 
				
			||||||
 | 
					typedef long long int64_t;
 | 
				
			||||||
 | 
					typedef int int32_t;
 | 
				
			||||||
 | 
					typedef unsigned int uint32_t;
 | 
				
			||||||
 | 
					typedef unsigned char uint8_t;
 | 
				
			||||||
 | 
					typedef int64_t limb;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Field element representation:
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * Field elements are written as an array of signed, 64-bit limbs, least
 | 
				
			||||||
 | 
					 * significant first. The value of the field element is:
 | 
				
			||||||
 | 
					 *   x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * i.e. the limbs are 26, 25, 26, 25, ... bits wide.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Sum two numbers: output += in */
 | 
				
			||||||
 | 
					static void fsum(limb *output, const limb *in)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						unsigned int i;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < 10; i += 2) {
 | 
				
			||||||
 | 
							output[0 + i] = output[0 + i] + in[0 + i];
 | 
				
			||||||
 | 
							output[1 + i] = output[1 + i] + in[1 + i];
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Find the difference of two numbers: output = in - output
 | 
				
			||||||
 | 
					 * (note the order of the arguments!).
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void fdifference(limb *output, const limb *in)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						unsigned int i;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < 10; ++i) {
 | 
				
			||||||
 | 
							output[i] = in[i] - output[i];
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Multiply a number by a scalar: output = in * scalar */
 | 
				
			||||||
 | 
					static void fscalar_product(limb *output, const limb *in, const limb scalar)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						unsigned int i;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < 10; ++i) {
 | 
				
			||||||
 | 
							output[i] = in[i] * scalar;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Multiply two numbers: output = in2 * in
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * output must be distinct to both inputs. The inputs are reduced coefficient
 | 
				
			||||||
 | 
					 * form, the output is not.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * output[x] <= 14 * the largest product of the input limbs.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void fproduct(limb *output, const limb *in2, const limb *in)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						output[0] =	   ((limb) ((int32_t) in2[0])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[1] =	   ((limb) ((int32_t) in2[0])) * ((int32_t) in[1]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[1])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[2] =  2 *  ((limb) ((int32_t) in2[1])) * ((int32_t) in[1]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[3] =	   ((limb) ((int32_t) in2[1])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[1]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[3])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[4] =	   ((limb) ((int32_t) in2[2])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in2[1])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[3])) * ((int32_t) in[1])) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[5] =	   ((limb) ((int32_t) in2[2])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[3])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[1])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[1]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[5])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[6] =  2 * (((limb) ((int32_t) in2[3])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[1])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[5])) * ((int32_t) in[1])) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[7] =	   ((limb) ((int32_t) in2[3])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[5])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[1])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[1]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[7])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[8] =	   ((limb) ((int32_t) in2[4])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in2[3])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[5])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[1])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[7])) * ((int32_t) in[1])) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[9] =	   ((limb) ((int32_t) in2[4])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[5])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[3])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[7])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[1])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[1]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[0])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[10] = 2 * (((limb) ((int32_t) in2[5])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[3])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[7])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[1])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[1])) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[2]);
 | 
				
			||||||
 | 
						output[11] =	  ((limb) ((int32_t) in2[5])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[7])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[3])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[2])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[2]);
 | 
				
			||||||
 | 
						output[12] =	  ((limb) ((int32_t) in2[6])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in2[5])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[7])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[3])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[3])) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[4]);
 | 
				
			||||||
 | 
						output[13] =	  ((limb) ((int32_t) in2[6])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[7])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[5])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[4])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[4]);
 | 
				
			||||||
 | 
						output[14] = 2 * (((limb) ((int32_t) in2[7])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[5])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[5])) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[6]);
 | 
				
			||||||
 | 
						output[15] =	  ((limb) ((int32_t) in2[7])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[8])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[6])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[6]);
 | 
				
			||||||
 | 
						output[16] =	  ((limb) ((int32_t) in2[8])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in2[7])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[7]));
 | 
				
			||||||
 | 
						output[17] =	  ((limb) ((int32_t) in2[8])) * ((int32_t) in[9]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in2[9])) * ((int32_t) in[8]);
 | 
				
			||||||
 | 
						output[18] = 2 *  ((limb) ((int32_t) in2[9])) * ((int32_t) in[9]);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry: |output[i]| < 14*2^54
 | 
				
			||||||
 | 
					 * On exit: |output[0..8]| < 280*2^54
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void freduce_degree(limb *output)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						/* Each of these shifts and adds ends up multiplying the value by 19.
 | 
				
			||||||
 | 
						 *
 | 
				
			||||||
 | 
						 * For output[0..8], the absolute entry value is < 14*2^54 and we add, at
 | 
				
			||||||
 | 
						 * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
						output[8] += output[18] << 4;
 | 
				
			||||||
 | 
						output[8] += output[18] << 1;
 | 
				
			||||||
 | 
						output[8] += output[18];
 | 
				
			||||||
 | 
						output[7] += output[17] << 4;
 | 
				
			||||||
 | 
						output[7] += output[17] << 1;
 | 
				
			||||||
 | 
						output[7] += output[17];
 | 
				
			||||||
 | 
						output[6] += output[16] << 4;
 | 
				
			||||||
 | 
						output[6] += output[16] << 1;
 | 
				
			||||||
 | 
						output[6] += output[16];
 | 
				
			||||||
 | 
						output[5] += output[15] << 4;
 | 
				
			||||||
 | 
						output[5] += output[15] << 1;
 | 
				
			||||||
 | 
						output[5] += output[15];
 | 
				
			||||||
 | 
						output[4] += output[14] << 4;
 | 
				
			||||||
 | 
						output[4] += output[14] << 1;
 | 
				
			||||||
 | 
						output[4] += output[14];
 | 
				
			||||||
 | 
						output[3] += output[13] << 4;
 | 
				
			||||||
 | 
						output[3] += output[13] << 1;
 | 
				
			||||||
 | 
						output[3] += output[13];
 | 
				
			||||||
 | 
						output[2] += output[12] << 4;
 | 
				
			||||||
 | 
						output[2] += output[12] << 1;
 | 
				
			||||||
 | 
						output[2] += output[12];
 | 
				
			||||||
 | 
						output[1] += output[11] << 4;
 | 
				
			||||||
 | 
						output[1] += output[11] << 1;
 | 
				
			||||||
 | 
						output[1] += output[11];
 | 
				
			||||||
 | 
						output[0] += output[10] << 4;
 | 
				
			||||||
 | 
						output[0] += output[10] << 1;
 | 
				
			||||||
 | 
						output[0] += output[10];
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#if (-1 & 3) != 3
 | 
				
			||||||
 | 
					#error "This code only works on a two's complement system"
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* return v / 2^26, using only shifts and adds.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry: v can take any value.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static inline limb div_by_2_26(const limb v)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						/* High word of v; no shift needed. */
 | 
				
			||||||
 | 
						const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
 | 
				
			||||||
 | 
						/* Set to all 1s if v was negative; else set to 0s. */
 | 
				
			||||||
 | 
						const int32_t sign = ((int32_t) highword) >> 31;
 | 
				
			||||||
 | 
						/* Set to 0x3ffffff if v was negative; else set to 0. */
 | 
				
			||||||
 | 
						const int32_t roundoff = ((uint32_t) sign) >> 6;
 | 
				
			||||||
 | 
						/* Should return v / (1<<26) */
 | 
				
			||||||
 | 
						return (v + roundoff) >> 26;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* return v / (2^25), using only shifts and adds.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry: v can take any value.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static inline limb div_by_2_25(const limb v)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						/* High word of v; no shift needed*/
 | 
				
			||||||
 | 
						const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
 | 
				
			||||||
 | 
						/* Set to all 1s if v was negative; else set to 0s. */
 | 
				
			||||||
 | 
						const int32_t sign = ((int32_t) highword) >> 31;
 | 
				
			||||||
 | 
						/* Set to 0x1ffffff if v was negative; else set to 0. */
 | 
				
			||||||
 | 
						const int32_t roundoff = ((uint32_t) sign) >> 7;
 | 
				
			||||||
 | 
						/* Should return v / (1<<25) */
 | 
				
			||||||
 | 
						return (v + roundoff) >> 25;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Reduce all coefficients of the short form input so that |x| < 2^26.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry: |output[i]| < 280*2^54
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void freduce_coefficients(limb *output)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						unsigned int i;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						output[10] = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < 10; i += 2) {
 | 
				
			||||||
 | 
							limb over = div_by_2_26(output[i]);
 | 
				
			||||||
 | 
							/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
 | 
				
			||||||
 | 
							 * most, 280*2^28 in the first iteration of this loop. This is added to the
 | 
				
			||||||
 | 
							 * next limb and we can approximate the resulting bound of that limb by
 | 
				
			||||||
 | 
							 * 281*2^54.
 | 
				
			||||||
 | 
							 */
 | 
				
			||||||
 | 
							output[i] -= over << 26;
 | 
				
			||||||
 | 
							output[i+1] += over;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
 | 
				
			||||||
 | 
							 * 281*2^29. When this is added to the next limb, the resulting bound can
 | 
				
			||||||
 | 
							 * be approximated as 281*2^54.
 | 
				
			||||||
 | 
							 *
 | 
				
			||||||
 | 
							 * For subsequent iterations of the loop, 281*2^54 remains a conservative
 | 
				
			||||||
 | 
							 * bound and no overflow occurs.
 | 
				
			||||||
 | 
							 */
 | 
				
			||||||
 | 
							over = div_by_2_25(output[i+1]);
 | 
				
			||||||
 | 
							output[i+1] -= over << 25;
 | 
				
			||||||
 | 
							output[i+2] += over;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
 | 
				
			||||||
 | 
						output[0] += output[10] << 4;
 | 
				
			||||||
 | 
						output[0] += output[10] << 1;
 | 
				
			||||||
 | 
						output[0] += output[10];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						output[10] = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
 | 
				
			||||||
 | 
						 * So |over| will be no more than 2^16.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
						{
 | 
				
			||||||
 | 
							limb over = div_by_2_26(output[0]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							output[0] -= over << 26;
 | 
				
			||||||
 | 
							output[1] += over;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
 | 
				
			||||||
 | 
						 * bound on |output[1]| is sufficient to meet our needs.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* A helpful wrapper around fproduct: output = in * in2.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * output must be distinct to both inputs. The output is reduced degree
 | 
				
			||||||
 | 
					 * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void fmul(limb *output, const limb *in, const limb *in2)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						limb t[19];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						fproduct(t, in, in2);
 | 
				
			||||||
 | 
						/* |t[i]| < 14*2^54 */
 | 
				
			||||||
 | 
						freduce_degree(t);
 | 
				
			||||||
 | 
						freduce_coefficients(t);
 | 
				
			||||||
 | 
						/* |t[i]| < 2^26 */
 | 
				
			||||||
 | 
						__builtin_memcpy(output, t, sizeof(limb) * 10);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Square a number: output = in**2
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * output must be distinct from the input. The inputs are reduced coefficient
 | 
				
			||||||
 | 
					 * form, the output is not.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * output[x] <= 14 * the largest product of the input limbs.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void fsquare_inner(limb *output, const limb *in)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						output[0] =	   ((limb) ((int32_t) in[0])) * ((int32_t) in[0]);
 | 
				
			||||||
 | 
						output[1] =  2 *  ((limb) ((int32_t) in[0])) * ((int32_t) in[1]);
 | 
				
			||||||
 | 
						output[2] =  2 * (((limb) ((int32_t) in[1])) * ((int32_t) in[1]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[0])) * ((int32_t) in[2]));
 | 
				
			||||||
 | 
						output[3] =  2 * (((limb) ((int32_t) in[1])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[0])) * ((int32_t) in[3]));
 | 
				
			||||||
 | 
						output[4] =	   ((limb) ((int32_t) in[2])) * ((int32_t) in[2]) +
 | 
				
			||||||
 | 
										   4 *  ((limb) ((int32_t) in[1])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
										   2 *  ((limb) ((int32_t) in[0])) * ((int32_t) in[4]);
 | 
				
			||||||
 | 
						output[5] =  2 * (((limb) ((int32_t) in[2])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[1])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[0])) * ((int32_t) in[5]));
 | 
				
			||||||
 | 
						output[6] =  2 * (((limb) ((int32_t) in[3])) * ((int32_t) in[3]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[2])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[0])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
										   2 *  ((limb) ((int32_t) in[1])) * ((int32_t) in[5]));
 | 
				
			||||||
 | 
						output[7] =  2 * (((limb) ((int32_t) in[3])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[2])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[1])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[0])) * ((int32_t) in[7]));
 | 
				
			||||||
 | 
						output[8] =	   ((limb) ((int32_t) in[4])) * ((int32_t) in[4]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in[2])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[0])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in[1])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[3])) * ((int32_t) in[5])));
 | 
				
			||||||
 | 
						output[9] =  2 * (((limb) ((int32_t) in[4])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[3])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[2])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[1])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[0])) * ((int32_t) in[9]));
 | 
				
			||||||
 | 
						output[10] = 2 * (((limb) ((int32_t) in[5])) * ((int32_t) in[5]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[4])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[2])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in[3])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[1])) * ((int32_t) in[9])));
 | 
				
			||||||
 | 
						output[11] = 2 * (((limb) ((int32_t) in[5])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[4])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[3])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[2])) * ((int32_t) in[9]));
 | 
				
			||||||
 | 
						output[12] =	  ((limb) ((int32_t) in[6])) * ((int32_t) in[6]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in[4])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
										   2 * (((limb) ((int32_t) in[5])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[3])) * ((int32_t) in[9])));
 | 
				
			||||||
 | 
						output[13] = 2 * (((limb) ((int32_t) in[6])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[5])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[4])) * ((int32_t) in[9]));
 | 
				
			||||||
 | 
						output[14] = 2 * (((limb) ((int32_t) in[7])) * ((int32_t) in[7]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[6])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
										   2 *  ((limb) ((int32_t) in[5])) * ((int32_t) in[9]));
 | 
				
			||||||
 | 
						output[15] = 2 * (((limb) ((int32_t) in[7])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
											((limb) ((int32_t) in[6])) * ((int32_t) in[9]));
 | 
				
			||||||
 | 
						output[16] =	  ((limb) ((int32_t) in[8])) * ((int32_t) in[8]) +
 | 
				
			||||||
 | 
										   4 *  ((limb) ((int32_t) in[7])) * ((int32_t) in[9]);
 | 
				
			||||||
 | 
						output[17] = 2 *  ((limb) ((int32_t) in[8])) * ((int32_t) in[9]);
 | 
				
			||||||
 | 
						output[18] = 2 *  ((limb) ((int32_t) in[9])) * ((int32_t) in[9]);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* fsquare sets output = in^2.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry: The |in| argument is in reduced coefficients form and |in[i]| <
 | 
				
			||||||
 | 
					 * 2^27.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On exit: The |output| argument is in reduced coefficients form (indeed, one
 | 
				
			||||||
 | 
					 * need only provide storage for 10 limbs) and |out[i]| < 2^26.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void fsquare(limb *output, const limb *in)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						limb t[19];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						fsquare_inner(t, in);
 | 
				
			||||||
 | 
						/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
 | 
				
			||||||
 | 
						 * 2^(27+27) and fsquare_inner adds together, at most, 14 of those
 | 
				
			||||||
 | 
						 * products.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
						freduce_degree(t);
 | 
				
			||||||
 | 
						freduce_coefficients(t);
 | 
				
			||||||
 | 
						/* |t[i]| < 2^26 */
 | 
				
			||||||
 | 
						__builtin_memcpy(output, t, sizeof(limb) * 10);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Take a little-endian, 32-byte number and expand it into polynomial form */
 | 
				
			||||||
 | 
					static void fexpand(limb *output, const uint8_t *input)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					#define F(n, start, shift, mask) \
 | 
				
			||||||
 | 
						output[n] = ((((limb) input[start + 0]) | \
 | 
				
			||||||
 | 
								  ((limb) input[start + 1]) << 8 | \
 | 
				
			||||||
 | 
								  ((limb) input[start + 2]) << 16 | \
 | 
				
			||||||
 | 
								  ((limb) input[start + 3]) << 24) >> shift) & mask;
 | 
				
			||||||
 | 
						F(0, 0, 0, 0x3ffffff);
 | 
				
			||||||
 | 
						F(1, 3, 2, 0x1ffffff);
 | 
				
			||||||
 | 
						F(2, 6, 3, 0x3ffffff);
 | 
				
			||||||
 | 
						F(3, 9, 5, 0x1ffffff);
 | 
				
			||||||
 | 
						F(4, 12, 6, 0x3ffffff);
 | 
				
			||||||
 | 
						F(5, 16, 0, 0x1ffffff);
 | 
				
			||||||
 | 
						F(6, 19, 1, 0x3ffffff);
 | 
				
			||||||
 | 
						F(7, 22, 3, 0x1ffffff);
 | 
				
			||||||
 | 
						F(8, 25, 4, 0x3ffffff);
 | 
				
			||||||
 | 
						F(9, 28, 6, 0x1ffffff);
 | 
				
			||||||
 | 
					#undef F
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#if (-32 >> 1) != -16
 | 
				
			||||||
 | 
					#error "This code only works when >> does sign-extension on negative numbers"
 | 
				
			||||||
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* int32_t_eq returns 0xffffffff iff a == b and zero otherwise. */
 | 
				
			||||||
 | 
					static int32_t int32_t_eq(int32_t a, int32_t b)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						a = ~(a ^ b);
 | 
				
			||||||
 | 
						a &= a << 16;
 | 
				
			||||||
 | 
						a &= a << 8;
 | 
				
			||||||
 | 
						a &= a << 4;
 | 
				
			||||||
 | 
						a &= a << 2;
 | 
				
			||||||
 | 
						a &= a << 1;
 | 
				
			||||||
 | 
						return a >> 31;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* int32_t_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
 | 
				
			||||||
 | 
					 * both non-negative.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static int32_t int32_t_gte(int32_t a, int32_t b)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						a -= b;
 | 
				
			||||||
 | 
						/* a >= 0 iff a >= b. */
 | 
				
			||||||
 | 
						return ~(a >> 31);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Take a fully reduced polynomial form number and contract it into a
 | 
				
			||||||
 | 
					 * little-endian, 32-byte array.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry: |input_limbs[i]| < 2^26
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void fcontract(uint8_t *output, limb *input_limbs)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						int i;
 | 
				
			||||||
 | 
						int j;
 | 
				
			||||||
 | 
						int32_t input[10];
 | 
				
			||||||
 | 
						int32_t mask;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* |input_limbs[i]| < 2^26, so it's valid to convert to an int32_t. */
 | 
				
			||||||
 | 
						for (i = 0; i < 10; i++) {
 | 
				
			||||||
 | 
							input[i] = input_limbs[i];
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (j = 0; j < 2; ++j) {
 | 
				
			||||||
 | 
							for (i = 0; i < 9; ++i) {
 | 
				
			||||||
 | 
								if ((i & 1) == 1) {
 | 
				
			||||||
 | 
									/* This calculation is a time-invariant way to make input[i]
 | 
				
			||||||
 | 
									 * non-negative by borrowing from the next-larger limb.
 | 
				
			||||||
 | 
									 */
 | 
				
			||||||
 | 
									const int32_t mask = input[i] >> 31;
 | 
				
			||||||
 | 
									const int32_t carry = -((input[i] & mask) >> 25);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
									input[i] = input[i] + (carry << 25);
 | 
				
			||||||
 | 
									input[i+1] = input[i+1] - carry;
 | 
				
			||||||
 | 
								} else {
 | 
				
			||||||
 | 
									const int32_t mask = input[i] >> 31;
 | 
				
			||||||
 | 
									const int32_t carry = -((input[i] & mask) >> 26);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
									input[i] = input[i] + (carry << 26);
 | 
				
			||||||
 | 
									input[i+1] = input[i+1] - carry;
 | 
				
			||||||
 | 
								}
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							/* There's no greater limb for input[9] to borrow from, but we can multiply
 | 
				
			||||||
 | 
							 * by 19 and borrow from input[0], which is valid mod 2^255-19.
 | 
				
			||||||
 | 
							 */
 | 
				
			||||||
 | 
							{
 | 
				
			||||||
 | 
								const int32_t mask = input[9] >> 31;
 | 
				
			||||||
 | 
								const int32_t carry = -((input[9] & mask) >> 25);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								input[9] = input[9] + (carry << 25);
 | 
				
			||||||
 | 
								input[0] = input[0] - (carry * 19);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							/* After the first iteration, input[1..9] are non-negative and fit within
 | 
				
			||||||
 | 
							 * 25 or 26 bits, depending on position. However, input[0] may be
 | 
				
			||||||
 | 
							 * negative.
 | 
				
			||||||
 | 
							 */
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* The first borrow-propagation pass above ended with every limb
 | 
				
			||||||
 | 
							 except (possibly) input[0] non-negative.
 | 
				
			||||||
 | 
							 If input[0] was negative after the first pass, then it was because of a
 | 
				
			||||||
 | 
							 carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
 | 
				
			||||||
 | 
							 one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
 | 
				
			||||||
 | 
							 In the second pass, each limb is decreased by at most one. Thus the second
 | 
				
			||||||
 | 
							 borrow-propagation pass could only have wrapped around to decrease
 | 
				
			||||||
 | 
							 input[0] again if the first pass left input[0] negative *and* input[1]
 | 
				
			||||||
 | 
							 through input[9] were all zero.  In that case, input[1] is now 2^25 - 1,
 | 
				
			||||||
 | 
							 and this last borrow-propagation step will leave input[1] non-negative. */
 | 
				
			||||||
 | 
						{
 | 
				
			||||||
 | 
							const int32_t mask = input[0] >> 31;
 | 
				
			||||||
 | 
							const int32_t carry = -((input[0] & mask) >> 26);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							input[0] = input[0] + (carry << 26);
 | 
				
			||||||
 | 
							input[1] = input[1] - carry;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* All input[i] are now non-negative. However, there might be values between
 | 
				
			||||||
 | 
						 * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
						for (j = 0; j < 2; j++) {
 | 
				
			||||||
 | 
							for (i = 0; i < 9; i++) {
 | 
				
			||||||
 | 
								if ((i & 1) == 1) {
 | 
				
			||||||
 | 
									const int32_t carry = input[i] >> 25;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
									input[i] &= 0x1ffffff;
 | 
				
			||||||
 | 
									input[i+1] += carry;
 | 
				
			||||||
 | 
								} else {
 | 
				
			||||||
 | 
									const int32_t carry = input[i] >> 26;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
									input[i] &= 0x3ffffff;
 | 
				
			||||||
 | 
									input[i+1] += carry;
 | 
				
			||||||
 | 
								}
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							{
 | 
				
			||||||
 | 
								const int32_t carry = input[9] >> 25;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								input[9] &= 0x1ffffff;
 | 
				
			||||||
 | 
								input[0] += 19*carry;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* If the first carry-chain pass, just above, ended up with a carry from
 | 
				
			||||||
 | 
						 * input[9], and that caused input[0] to be out-of-bounds, then input[0] was
 | 
				
			||||||
 | 
						 * < 2^26 + 2*19, because the carry was, at most, two.
 | 
				
			||||||
 | 
						 *
 | 
				
			||||||
 | 
						 * If the second pass carried from input[9] again then input[0] is < 2*19 and
 | 
				
			||||||
 | 
						 * the input[9] -> input[0] carry didn't push input[0] out of bounds.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* It still remains the case that input might be between 2^255-19 and 2^255.
 | 
				
			||||||
 | 
						 * In this case, input[1..9] must take their maximum value and input[0] must
 | 
				
			||||||
 | 
						 * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
						mask = int32_t_gte(input[0], 0x3ffffed);
 | 
				
			||||||
 | 
						for (i = 1; i < 10; i++) {
 | 
				
			||||||
 | 
							if ((i & 1) == 1) {
 | 
				
			||||||
 | 
								mask &= int32_t_eq(input[i], 0x1ffffff);
 | 
				
			||||||
 | 
							} else {
 | 
				
			||||||
 | 
								mask &= int32_t_eq(input[i], 0x3ffffff);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
 | 
				
			||||||
 | 
						 * this conditionally subtracts 2^255-19.
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
						input[0] -= mask & 0x3ffffed;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 1; i < 10; i++) {
 | 
				
			||||||
 | 
							if ((i & 1) == 1) {
 | 
				
			||||||
 | 
								input[i] -= mask & 0x1ffffff;
 | 
				
			||||||
 | 
							} else {
 | 
				
			||||||
 | 
								input[i] -= mask & 0x3ffffff;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						input[1] <<= 2;
 | 
				
			||||||
 | 
						input[2] <<= 3;
 | 
				
			||||||
 | 
						input[3] <<= 5;
 | 
				
			||||||
 | 
						input[4] <<= 6;
 | 
				
			||||||
 | 
						input[6] <<= 1;
 | 
				
			||||||
 | 
						input[7] <<= 3;
 | 
				
			||||||
 | 
						input[8] <<= 4;
 | 
				
			||||||
 | 
						input[9] <<= 6;
 | 
				
			||||||
 | 
					#define F(i, s) \
 | 
				
			||||||
 | 
						output[s+0] |=  input[i] & 0xff; \
 | 
				
			||||||
 | 
						output[s+1]  = (input[i] >> 8) & 0xff; \
 | 
				
			||||||
 | 
						output[s+2]  = (input[i] >> 16) & 0xff; \
 | 
				
			||||||
 | 
						output[s+3]  = (input[i] >> 24) & 0xff;
 | 
				
			||||||
 | 
						output[0] = 0;
 | 
				
			||||||
 | 
						output[16] = 0;
 | 
				
			||||||
 | 
						F(0, 0);
 | 
				
			||||||
 | 
						F(1, 3);
 | 
				
			||||||
 | 
						F(2, 6);
 | 
				
			||||||
 | 
						F(3, 9);
 | 
				
			||||||
 | 
						F(4, 12);
 | 
				
			||||||
 | 
						F(5, 16);
 | 
				
			||||||
 | 
						F(6, 19);
 | 
				
			||||||
 | 
						F(7, 22);
 | 
				
			||||||
 | 
						F(8, 25);
 | 
				
			||||||
 | 
						F(9, 28);
 | 
				
			||||||
 | 
					#undef F
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Input: Q, Q', Q-Q'
 | 
				
			||||||
 | 
					 * Output: 2Q, Q+Q'
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 *   x2 z3: long form
 | 
				
			||||||
 | 
					 *   x3 z3: long form
 | 
				
			||||||
 | 
					 *   x z: short form, destroyed
 | 
				
			||||||
 | 
					 *   xprime zprime: short form, destroyed
 | 
				
			||||||
 | 
					 *   qmqp: short form, preserved
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * On entry and exit, the absolute value of the limbs of all inputs and outputs
 | 
				
			||||||
 | 
					 * are < 2^26.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void fmonty(limb *x2, limb *z2,  /* output 2Q */
 | 
				
			||||||
 | 
							   limb *x3, limb *z3,  /* output Q + Q' */
 | 
				
			||||||
 | 
							   limb *x, limb *z,	/* input Q */
 | 
				
			||||||
 | 
							   limb *xprime, limb *zprime,  /* input Q' */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							   const limb *qmqp /* input Q - Q' */)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
 | 
				
			||||||
 | 
									zzprime[19], zzzprime[19], xxxprime[19];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						__builtin_memcpy(origx, x, 10 * sizeof(limb));
 | 
				
			||||||
 | 
						fsum(x, z);
 | 
				
			||||||
 | 
						/* |x[i]| < 2^27 */
 | 
				
			||||||
 | 
						fdifference(z, origx);  /* does x - z */
 | 
				
			||||||
 | 
						/* |z[i]| < 2^27 */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						__builtin_memcpy(origxprime, xprime, sizeof(limb) * 10);
 | 
				
			||||||
 | 
						fsum(xprime, zprime);
 | 
				
			||||||
 | 
						/* |xprime[i]| < 2^27 */
 | 
				
			||||||
 | 
						fdifference(zprime, origxprime);
 | 
				
			||||||
 | 
						/* |zprime[i]| < 2^27 */
 | 
				
			||||||
 | 
						fproduct(xxprime, xprime, z);
 | 
				
			||||||
 | 
						/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
 | 
				
			||||||
 | 
						 * 2^(27+27) and fproduct adds together, at most, 14 of those products.
 | 
				
			||||||
 | 
						 * (Approximating that to 2^58 doesn't work out.)
 | 
				
			||||||
 | 
						 */
 | 
				
			||||||
 | 
						fproduct(zzprime, x, zprime);
 | 
				
			||||||
 | 
						/* |zzprime[i]| < 14*2^54 */
 | 
				
			||||||
 | 
						freduce_degree(xxprime);
 | 
				
			||||||
 | 
						freduce_coefficients(xxprime);
 | 
				
			||||||
 | 
						/* |xxprime[i]| < 2^26 */
 | 
				
			||||||
 | 
						freduce_degree(zzprime);
 | 
				
			||||||
 | 
						freduce_coefficients(zzprime);
 | 
				
			||||||
 | 
						/* |zzprime[i]| < 2^26 */
 | 
				
			||||||
 | 
						__builtin_memcpy(origxprime, xxprime, sizeof(limb) * 10);
 | 
				
			||||||
 | 
						fsum(xxprime, zzprime);
 | 
				
			||||||
 | 
						/* |xxprime[i]| < 2^27 */
 | 
				
			||||||
 | 
						fdifference(zzprime, origxprime);
 | 
				
			||||||
 | 
						/* |zzprime[i]| < 2^27 */
 | 
				
			||||||
 | 
						fsquare(xxxprime, xxprime);
 | 
				
			||||||
 | 
						/* |xxxprime[i]| < 2^26 */
 | 
				
			||||||
 | 
						fsquare(zzzprime, zzprime);
 | 
				
			||||||
 | 
						/* |zzzprime[i]| < 2^26 */
 | 
				
			||||||
 | 
						fproduct(zzprime, zzzprime, qmqp);
 | 
				
			||||||
 | 
						/* |zzprime[i]| < 14*2^52 */
 | 
				
			||||||
 | 
						freduce_degree(zzprime);
 | 
				
			||||||
 | 
						freduce_coefficients(zzprime);
 | 
				
			||||||
 | 
						/* |zzprime[i]| < 2^26 */
 | 
				
			||||||
 | 
						__builtin_memcpy(x3, xxxprime, sizeof(limb) * 10);
 | 
				
			||||||
 | 
						__builtin_memcpy(z3, zzprime, sizeof(limb) * 10);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						fsquare(xx, x);
 | 
				
			||||||
 | 
						/* |xx[i]| < 2^26 */
 | 
				
			||||||
 | 
						fsquare(zz, z);
 | 
				
			||||||
 | 
						/* |zz[i]| < 2^26 */
 | 
				
			||||||
 | 
						fproduct(x2, xx, zz);
 | 
				
			||||||
 | 
						/* |x2[i]| < 14*2^52 */
 | 
				
			||||||
 | 
						freduce_degree(x2);
 | 
				
			||||||
 | 
						freduce_coefficients(x2);
 | 
				
			||||||
 | 
						/* |x2[i]| < 2^26 */
 | 
				
			||||||
 | 
						fdifference(zz, xx);  // does zz = xx - zz
 | 
				
			||||||
 | 
						/* |zz[i]| < 2^27 */
 | 
				
			||||||
 | 
						__builtin_memset(zzz + 10, 0, sizeof(limb) * 9);
 | 
				
			||||||
 | 
						fscalar_product(zzz, zz, 121665);
 | 
				
			||||||
 | 
						/* |zzz[i]| < 2^(27+17) */
 | 
				
			||||||
 | 
						/* No need to call freduce_degree here:
 | 
				
			||||||
 | 
							 fscalar_product doesn't increase the degree of its input. */
 | 
				
			||||||
 | 
						freduce_coefficients(zzz);
 | 
				
			||||||
 | 
						/* |zzz[i]| < 2^26 */
 | 
				
			||||||
 | 
						fsum(zzz, xx);
 | 
				
			||||||
 | 
						/* |zzz[i]| < 2^27 */
 | 
				
			||||||
 | 
						fproduct(z2, zz, zzz);
 | 
				
			||||||
 | 
						/* |z2[i]| < 14*2^(26+27) */
 | 
				
			||||||
 | 
						freduce_degree(z2);
 | 
				
			||||||
 | 
						freduce_coefficients(z2);
 | 
				
			||||||
 | 
						/* |z2|i| < 2^26 */
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
 | 
				
			||||||
 | 
					 * them unchanged if 'iswap' is 0.  Runs in data-invariant time to avoid
 | 
				
			||||||
 | 
					 * side-channel attacks.
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 * NOTE that this function requires that 'iswap' be 1 or 0; other values give
 | 
				
			||||||
 | 
					 * wrong results.  Also, the two limb arrays must be in reduced-coefficient,
 | 
				
			||||||
 | 
					 * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
 | 
				
			||||||
 | 
					 * and all all values in a[0..9],b[0..9] must have magnitude less than
 | 
				
			||||||
 | 
					 * INT32_MAX.
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void swap_conditional(limb a[static 19], limb b[static 19], limb iswap)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						unsigned int i;
 | 
				
			||||||
 | 
						const int32_t swap = (int32_t) -iswap;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < 10; ++i) {
 | 
				
			||||||
 | 
							const int32_t x = swap & (((int32_t)a[i]) ^ ((int32_t)b[i]));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							a[i] = ((int32_t)a[i]) ^ x;
 | 
				
			||||||
 | 
							b[i] = ((int32_t)b[i]) ^ x;
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Calculates nQ where Q is the x-coordinate of a point on the curve
 | 
				
			||||||
 | 
					 *
 | 
				
			||||||
 | 
					 *   resultx/resultz: the x coordinate of the resulting curve point (short form)
 | 
				
			||||||
 | 
					 *   n: a little endian, 32-byte number
 | 
				
			||||||
 | 
					 *   q: a point of the curve (short form)
 | 
				
			||||||
 | 
					 */
 | 
				
			||||||
 | 
					static void cmult(limb *resultx, limb *resultz, const uint8_t *n, const limb *q)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
 | 
				
			||||||
 | 
						limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
 | 
				
			||||||
 | 
						limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
 | 
				
			||||||
 | 
						limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						unsigned int i, j;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						__builtin_memcpy(nqpqx, q, sizeof(limb) * 10);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < 32; ++i) {
 | 
				
			||||||
 | 
							uint8_t byte = n[31 - i];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							for (j = 0; j < 8; ++j) {
 | 
				
			||||||
 | 
								const limb bit = byte >> 7;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								swap_conditional(nqx, nqpqx, bit);
 | 
				
			||||||
 | 
								swap_conditional(nqz, nqpqz, bit);
 | 
				
			||||||
 | 
								fmonty(nqx2, nqz2,
 | 
				
			||||||
 | 
									   nqpqx2, nqpqz2,
 | 
				
			||||||
 | 
									   nqx, nqz,
 | 
				
			||||||
 | 
									   nqpqx, nqpqz,
 | 
				
			||||||
 | 
									   q);
 | 
				
			||||||
 | 
								swap_conditional(nqx2, nqpqx2, bit);
 | 
				
			||||||
 | 
								swap_conditional(nqz2, nqpqz2, bit);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								t = nqx;
 | 
				
			||||||
 | 
								nqx = nqx2;
 | 
				
			||||||
 | 
								nqx2 = t;
 | 
				
			||||||
 | 
								t = nqz;
 | 
				
			||||||
 | 
								nqz = nqz2;
 | 
				
			||||||
 | 
								nqz2 = t;
 | 
				
			||||||
 | 
								t = nqpqx;
 | 
				
			||||||
 | 
								nqpqx = nqpqx2;
 | 
				
			||||||
 | 
								nqpqx2 = t;
 | 
				
			||||||
 | 
								t = nqpqz;
 | 
				
			||||||
 | 
								nqpqz = nqpqz2;
 | 
				
			||||||
 | 
								nqpqz2 = t;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								byte <<= 1;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						__builtin_memcpy(resultx, nqx, sizeof(limb) * 10);
 | 
				
			||||||
 | 
						__builtin_memcpy(resultz, nqz, sizeof(limb) * 10);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static void crecip(limb *out, const limb *z)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						limb z2[10];
 | 
				
			||||||
 | 
						limb z9[10];
 | 
				
			||||||
 | 
						limb z11[10];
 | 
				
			||||||
 | 
						limb z2_5_0[10];
 | 
				
			||||||
 | 
						limb z2_10_0[10];
 | 
				
			||||||
 | 
						limb z2_20_0[10];
 | 
				
			||||||
 | 
						limb z2_50_0[10];
 | 
				
			||||||
 | 
						limb z2_100_0[10];
 | 
				
			||||||
 | 
						limb t0[10];
 | 
				
			||||||
 | 
						limb t1[10];
 | 
				
			||||||
 | 
						int i;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2 */ fsquare(z2, z);
 | 
				
			||||||
 | 
						/* 4 */ fsquare(t1, z2);
 | 
				
			||||||
 | 
						/* 8 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 9 */ fmul(z9, t0, z);
 | 
				
			||||||
 | 
						/* 11 */ fmul(z11, z9, z2);
 | 
				
			||||||
 | 
						/* 22 */ fsquare(t0, z11);
 | 
				
			||||||
 | 
						/* 2^5 - 2^0 = 31 */ fmul(z2_5_0, t0, z9);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^6 - 2^1 */ fsquare(t0, z2_5_0);
 | 
				
			||||||
 | 
						/* 2^7 - 2^2 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^8 - 2^3 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 2^9 - 2^4 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^10 - 2^5 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 2^10 - 2^0 */ fmul(z2_10_0, t0, z2_5_0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^11 - 2^1 */ fsquare(t0, z2_10_0);
 | 
				
			||||||
 | 
						/* 2^12 - 2^2 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
				
			||||||
 | 
						/* 2^20 - 2^0 */ fmul(z2_20_0, t1, z2_10_0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^21 - 2^1 */ fsquare(t0, z2_20_0);
 | 
				
			||||||
 | 
						/* 2^22 - 2^2 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
				
			||||||
 | 
						/* 2^40 - 2^0 */ fmul(t0, t1, z2_20_0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^41 - 2^1 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^42 - 2^2 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t1, t0); fsquare(t0, t1); }
 | 
				
			||||||
 | 
						/* 2^50 - 2^0 */ fmul(z2_50_0, t0, z2_10_0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^51 - 2^1 */ fsquare(t0, z2_50_0);
 | 
				
			||||||
 | 
						/* 2^52 - 2^2 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
				
			||||||
 | 
						/* 2^100 - 2^0 */ fmul(z2_100_0, t1, z2_50_0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^101 - 2^1 */ fsquare(t1, z2_100_0);
 | 
				
			||||||
 | 
						/* 2^102 - 2^2 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { fsquare(t1, t0); fsquare(t0, t1); }
 | 
				
			||||||
 | 
						/* 2^200 - 2^0 */ fmul(t1, t0, z2_100_0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^201 - 2^1 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 2^202 - 2^2 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
				
			||||||
 | 
						/* 2^250 - 2^0 */ fmul(t0, t1, z2_50_0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						/* 2^251 - 2^1 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^252 - 2^2 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 2^253 - 2^3 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^254 - 2^4 */ fsquare(t0, t1);
 | 
				
			||||||
 | 
						/* 2^255 - 2^5 */ fsquare(t1, t0);
 | 
				
			||||||
 | 
						/* 2^255 - 21 */ fmul(out, t1, z11);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static inline void curve25519_normalize_secret(uint8_t secret[static 32])
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						secret[0] &= 248;
 | 
				
			||||||
 | 
						secret[31] &= 127;
 | 
				
			||||||
 | 
						secret[31] |= 64;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					static inline void curve25519(uint8_t mypublic[static 32], const uint8_t secret[static 32], const uint8_t basepoint[static 32])
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						limb bp[10], x[10], z[11], zmone[10];
 | 
				
			||||||
 | 
						uint8_t e[32];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						__builtin_memcpy(e, secret, 32);
 | 
				
			||||||
 | 
						curve25519_normalize_secret(e);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						fexpand(bp, basepoint);
 | 
				
			||||||
 | 
						cmult(x, z, e, bp);
 | 
				
			||||||
 | 
						crecip(zmone, z);
 | 
				
			||||||
 | 
						fmul(z, x, zmone);
 | 
				
			||||||
 | 
						fcontract(mypublic, z);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					EMSCRIPTEN_KEEPALIVE void curve25519_generate_public(uint8_t public[static 32], const uint8_t private[static 32])
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						static const uint8_t basepoint[32] = { 9 };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						curve25519(public, private, basepoint);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					EMSCRIPTEN_KEEPALIVE void curve25519_generate_private(uint8_t private[static 32])
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						int i;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						EM_ASM({
 | 
				
			||||||
 | 
							/* Same trick as libsodium */
 | 
				
			||||||
 | 
							var getRandomValue = function() {
 | 
				
			||||||
 | 
								var buf = new Uint32Array(1);
 | 
				
			||||||
 | 
								window.crypto.getRandomValues(buf);
 | 
				
			||||||
 | 
								return buf[0] >>> 0;
 | 
				
			||||||
 | 
							};
 | 
				
			||||||
 | 
							Module.getRandomValue = getRandomValue;
 | 
				
			||||||
 | 
						});
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
						for (i = 0; i < 32; ++i)
 | 
				
			||||||
 | 
							private[i] = EM_ASM_INT_V({ return Module.getRandomValue(); });
 | 
				
			||||||
 | 
						curve25519_normalize_secret(private);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static inline void encode_base64(char dest[4], const uint8_t src[3])
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						const uint8_t input[] = { (src[0] >> 2) & 63, ((src[0] << 4) | (src[1] >> 4)) & 63, ((src[1] << 2) | (src[2] >> 6)) & 63, src[2] & 63 };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (unsigned int i = 0; i < 4; ++i)
 | 
				
			||||||
 | 
							dest[i] = input[i] + 'A'
 | 
				
			||||||
 | 
								  + (((25 - input[i]) >> 8) & 6)
 | 
				
			||||||
 | 
								  - (((51 - input[i]) >> 8) & 75)
 | 
				
			||||||
 | 
								  - (((61 - input[i]) >> 8) & 15)
 | 
				
			||||||
 | 
								  + (((62 - input[i]) >> 8) & 3);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					EMSCRIPTEN_KEEPALIVE void key_to_base64(char base64[static 45], const uint8_t key[static 32])
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
						unsigned int i;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for (i = 0; i < 32 / 3; ++i)
 | 
				
			||||||
 | 
							encode_base64(&base64[i * 4], &key[i * 3]);
 | 
				
			||||||
 | 
						encode_base64(&base64[i * 4], (const uint8_t[]){ key[i * 3 + 0], key[i * 3 + 1], 0 });
 | 
				
			||||||
 | 
						base64[45 - 2] = '=';
 | 
				
			||||||
 | 
						base64[45 - 1] = '\0';
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
		Loading…
	
		Reference in a new issue