3822 lines
116 KiB
C
3822 lines
116 KiB
C
|
/***************************************************************************
|
||
|
* _ _ ____ _
|
||
|
* Project ___| | | | _ \| |
|
||
|
* / __| | | | |_) | |
|
||
|
* | (__| |_| | _ <| |___
|
||
|
* \___|\___/|_| \_\_____|
|
||
|
*
|
||
|
* Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al.
|
||
|
*
|
||
|
* This software is licensed as described in the file COPYING, which
|
||
|
* you should have received as part of this distribution. The terms
|
||
|
* are also available at https://curl.se/docs/copyright.html.
|
||
|
*
|
||
|
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
|
||
|
* copies of the Software, and permit persons to whom the Software is
|
||
|
* furnished to do so, under the terms of the COPYING file.
|
||
|
*
|
||
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
||
|
* KIND, either express or implied.
|
||
|
*
|
||
|
* SPDX-License-Identifier: curl
|
||
|
*
|
||
|
***************************************************************************/
|
||
|
|
||
|
#include "curl_setup.h"
|
||
|
|
||
|
#include <curl/curl.h>
|
||
|
|
||
|
#include "urldata.h"
|
||
|
#include "transfer.h"
|
||
|
#include "url.h"
|
||
|
#include "cfilters.h"
|
||
|
#include "connect.h"
|
||
|
#include "progress.h"
|
||
|
#include "easyif.h"
|
||
|
#include "share.h"
|
||
|
#include "psl.h"
|
||
|
#include "multiif.h"
|
||
|
#include "sendf.h"
|
||
|
#include "timeval.h"
|
||
|
#include "http.h"
|
||
|
#include "select.h"
|
||
|
#include "warnless.h"
|
||
|
#include "speedcheck.h"
|
||
|
#include "conncache.h"
|
||
|
#include "multihandle.h"
|
||
|
#include "sigpipe.h"
|
||
|
#include "vtls/vtls.h"
|
||
|
#include "http_proxy.h"
|
||
|
#include "http2.h"
|
||
|
#include "socketpair.h"
|
||
|
#include "socks.h"
|
||
|
/* The last 3 #include files should be in this order */
|
||
|
#include "curl_printf.h"
|
||
|
#include "curl_memory.h"
|
||
|
#include "memdebug.h"
|
||
|
|
||
|
/*
|
||
|
CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97
|
||
|
to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes. Still, every
|
||
|
CURL handle takes 45-50 K memory, therefore this 3K are not significant.
|
||
|
*/
|
||
|
#ifndef CURL_SOCKET_HASH_TABLE_SIZE
|
||
|
#define CURL_SOCKET_HASH_TABLE_SIZE 911
|
||
|
#endif
|
||
|
|
||
|
#ifndef CURL_CONNECTION_HASH_SIZE
|
||
|
#define CURL_CONNECTION_HASH_SIZE 97
|
||
|
#endif
|
||
|
|
||
|
#ifndef CURL_DNS_HASH_SIZE
|
||
|
#define CURL_DNS_HASH_SIZE 71
|
||
|
#endif
|
||
|
|
||
|
#define CURL_MULTI_HANDLE 0x000bab1e
|
||
|
|
||
|
#ifdef DEBUGBUILD
|
||
|
/* On a debug build, we want to fail hard on multi handles that
|
||
|
* are not NULL, but no longer have the MAGIC touch. This gives
|
||
|
* us early warning on things only discovered by valgrind otherwise. */
|
||
|
#define GOOD_MULTI_HANDLE(x) \
|
||
|
(((x) && (x)->magic == CURL_MULTI_HANDLE)? TRUE: \
|
||
|
(DEBUGASSERT(!(x)), FALSE))
|
||
|
#else
|
||
|
#define GOOD_MULTI_HANDLE(x) \
|
||
|
((x) && (x)->magic == CURL_MULTI_HANDLE)
|
||
|
#endif
|
||
|
|
||
|
static CURLMcode singlesocket(struct Curl_multi *multi,
|
||
|
struct Curl_easy *data);
|
||
|
static CURLMcode add_next_timeout(struct curltime now,
|
||
|
struct Curl_multi *multi,
|
||
|
struct Curl_easy *d);
|
||
|
static CURLMcode multi_timeout(struct Curl_multi *multi,
|
||
|
long *timeout_ms);
|
||
|
static void process_pending_handles(struct Curl_multi *multi);
|
||
|
|
||
|
#ifdef DEBUGBUILD
|
||
|
static const char * const multi_statename[]={
|
||
|
"INIT",
|
||
|
"PENDING",
|
||
|
"CONNECT",
|
||
|
"RESOLVING",
|
||
|
"CONNECTING",
|
||
|
"TUNNELING",
|
||
|
"PROTOCONNECT",
|
||
|
"PROTOCONNECTING",
|
||
|
"DO",
|
||
|
"DOING",
|
||
|
"DOING_MORE",
|
||
|
"DID",
|
||
|
"PERFORMING",
|
||
|
"RATELIMITING",
|
||
|
"DONE",
|
||
|
"COMPLETED",
|
||
|
"MSGSENT",
|
||
|
};
|
||
|
#endif
|
||
|
|
||
|
/* function pointer called once when switching TO a state */
|
||
|
typedef void (*init_multistate_func)(struct Curl_easy *data);
|
||
|
|
||
|
/* called in DID state, before PERFORMING state */
|
||
|
static void before_perform(struct Curl_easy *data)
|
||
|
{
|
||
|
data->req.chunk = FALSE;
|
||
|
Curl_pgrsTime(data, TIMER_PRETRANSFER);
|
||
|
}
|
||
|
|
||
|
static void init_completed(struct Curl_easy *data)
|
||
|
{
|
||
|
/* this is a completed transfer */
|
||
|
|
||
|
/* Important: reset the conn pointer so that we don't point to memory
|
||
|
that could be freed anytime */
|
||
|
Curl_detach_connection(data);
|
||
|
Curl_expire_clear(data); /* stop all timers */
|
||
|
}
|
||
|
|
||
|
/* always use this function to change state, to make debugging easier */
|
||
|
static void mstate(struct Curl_easy *data, CURLMstate state
|
||
|
#ifdef DEBUGBUILD
|
||
|
, int lineno
|
||
|
#endif
|
||
|
)
|
||
|
{
|
||
|
CURLMstate oldstate = data->mstate;
|
||
|
static const init_multistate_func finit[MSTATE_LAST] = {
|
||
|
NULL, /* INIT */
|
||
|
NULL, /* PENDING */
|
||
|
Curl_init_CONNECT, /* CONNECT */
|
||
|
NULL, /* RESOLVING */
|
||
|
NULL, /* CONNECTING */
|
||
|
NULL, /* TUNNELING */
|
||
|
NULL, /* PROTOCONNECT */
|
||
|
NULL, /* PROTOCONNECTING */
|
||
|
NULL, /* DO */
|
||
|
NULL, /* DOING */
|
||
|
NULL, /* DOING_MORE */
|
||
|
before_perform, /* DID */
|
||
|
NULL, /* PERFORMING */
|
||
|
NULL, /* RATELIMITING */
|
||
|
NULL, /* DONE */
|
||
|
init_completed, /* COMPLETED */
|
||
|
NULL /* MSGSENT */
|
||
|
};
|
||
|
|
||
|
#if defined(DEBUGBUILD) && defined(CURL_DISABLE_VERBOSE_STRINGS)
|
||
|
(void) lineno;
|
||
|
#endif
|
||
|
|
||
|
if(oldstate == state)
|
||
|
/* don't bother when the new state is the same as the old state */
|
||
|
return;
|
||
|
|
||
|
data->mstate = state;
|
||
|
|
||
|
#if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS)
|
||
|
if(data->mstate >= MSTATE_PENDING &&
|
||
|
data->mstate < MSTATE_COMPLETED) {
|
||
|
infof(data,
|
||
|
"STATE: %s => %s handle %p; line %d",
|
||
|
multi_statename[oldstate], multi_statename[data->mstate],
|
||
|
(void *)data, lineno);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if(state == MSTATE_COMPLETED) {
|
||
|
/* changing to COMPLETED means there's one less easy handle 'alive' */
|
||
|
DEBUGASSERT(data->multi->num_alive > 0);
|
||
|
data->multi->num_alive--;
|
||
|
}
|
||
|
|
||
|
/* if this state has an init-function, run it */
|
||
|
if(finit[state])
|
||
|
finit[state](data);
|
||
|
}
|
||
|
|
||
|
#ifndef DEBUGBUILD
|
||
|
#define multistate(x,y) mstate(x,y)
|
||
|
#else
|
||
|
#define multistate(x,y) mstate(x,y, __LINE__)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* We add one of these structs to the sockhash for each socket
|
||
|
*/
|
||
|
|
||
|
struct Curl_sh_entry {
|
||
|
struct Curl_hash transfers; /* hash of transfers using this socket */
|
||
|
unsigned int action; /* what combined action READ/WRITE this socket waits
|
||
|
for */
|
||
|
unsigned int users; /* number of transfers using this */
|
||
|
void *socketp; /* settable by users with curl_multi_assign() */
|
||
|
unsigned int readers; /* this many transfers want to read */
|
||
|
unsigned int writers; /* this many transfers want to write */
|
||
|
};
|
||
|
|
||
|
/* look up a given socket in the socket hash, skip invalid sockets */
|
||
|
static struct Curl_sh_entry *sh_getentry(struct Curl_hash *sh,
|
||
|
curl_socket_t s)
|
||
|
{
|
||
|
if(s != CURL_SOCKET_BAD) {
|
||
|
/* only look for proper sockets */
|
||
|
return Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t));
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
#define TRHASH_SIZE 13
|
||
|
static size_t trhash(void *key, size_t key_length, size_t slots_num)
|
||
|
{
|
||
|
size_t keyval = (size_t)*(struct Curl_easy **)key;
|
||
|
(void) key_length;
|
||
|
|
||
|
return (keyval % slots_num);
|
||
|
}
|
||
|
|
||
|
static size_t trhash_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
|
||
|
{
|
||
|
(void)k1_len;
|
||
|
(void)k2_len;
|
||
|
|
||
|
return *(struct Curl_easy **)k1 == *(struct Curl_easy **)k2;
|
||
|
}
|
||
|
|
||
|
static void trhash_dtor(void *nada)
|
||
|
{
|
||
|
(void)nada;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The sockhash has its own separate subhash in each entry that need to be
|
||
|
* safely destroyed first.
|
||
|
*/
|
||
|
static void sockhash_destroy(struct Curl_hash *h)
|
||
|
{
|
||
|
struct Curl_hash_iterator iter;
|
||
|
struct Curl_hash_element *he;
|
||
|
|
||
|
DEBUGASSERT(h);
|
||
|
Curl_hash_start_iterate(h, &iter);
|
||
|
he = Curl_hash_next_element(&iter);
|
||
|
while(he) {
|
||
|
struct Curl_sh_entry *sh = (struct Curl_sh_entry *)he->ptr;
|
||
|
Curl_hash_destroy(&sh->transfers);
|
||
|
he = Curl_hash_next_element(&iter);
|
||
|
}
|
||
|
Curl_hash_destroy(h);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* make sure this socket is present in the hash for this handle */
|
||
|
static struct Curl_sh_entry *sh_addentry(struct Curl_hash *sh,
|
||
|
curl_socket_t s)
|
||
|
{
|
||
|
struct Curl_sh_entry *there = sh_getentry(sh, s);
|
||
|
struct Curl_sh_entry *check;
|
||
|
|
||
|
if(there) {
|
||
|
/* it is present, return fine */
|
||
|
return there;
|
||
|
}
|
||
|
|
||
|
/* not present, add it */
|
||
|
check = calloc(1, sizeof(struct Curl_sh_entry));
|
||
|
if(!check)
|
||
|
return NULL; /* major failure */
|
||
|
|
||
|
Curl_hash_init(&check->transfers, TRHASH_SIZE, trhash, trhash_compare,
|
||
|
trhash_dtor);
|
||
|
|
||
|
/* make/add new hash entry */
|
||
|
if(!Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) {
|
||
|
Curl_hash_destroy(&check->transfers);
|
||
|
free(check);
|
||
|
return NULL; /* major failure */
|
||
|
}
|
||
|
|
||
|
return check; /* things are good in sockhash land */
|
||
|
}
|
||
|
|
||
|
|
||
|
/* delete the given socket + handle from the hash */
|
||
|
static void sh_delentry(struct Curl_sh_entry *entry,
|
||
|
struct Curl_hash *sh, curl_socket_t s)
|
||
|
{
|
||
|
Curl_hash_destroy(&entry->transfers);
|
||
|
|
||
|
/* We remove the hash entry. This will end up in a call to
|
||
|
sh_freeentry(). */
|
||
|
Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* free a sockhash entry
|
||
|
*/
|
||
|
static void sh_freeentry(void *freethis)
|
||
|
{
|
||
|
struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis;
|
||
|
|
||
|
free(p);
|
||
|
}
|
||
|
|
||
|
static size_t fd_key_compare(void *k1, size_t k1_len, void *k2, size_t k2_len)
|
||
|
{
|
||
|
(void) k1_len; (void) k2_len;
|
||
|
|
||
|
return (*((curl_socket_t *) k1)) == (*((curl_socket_t *) k2));
|
||
|
}
|
||
|
|
||
|
static size_t hash_fd(void *key, size_t key_length, size_t slots_num)
|
||
|
{
|
||
|
curl_socket_t fd = *((curl_socket_t *) key);
|
||
|
(void) key_length;
|
||
|
|
||
|
return (fd % slots_num);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* sh_init() creates a new socket hash and returns the handle for it.
|
||
|
*
|
||
|
* Quote from README.multi_socket:
|
||
|
*
|
||
|
* "Some tests at 7000 and 9000 connections showed that the socket hash lookup
|
||
|
* is somewhat of a bottle neck. Its current implementation may be a bit too
|
||
|
* limiting. It simply has a fixed-size array, and on each entry in the array
|
||
|
* it has a linked list with entries. So the hash only checks which list to
|
||
|
* scan through. The code I had used so for used a list with merely 7 slots
|
||
|
* (as that is what the DNS hash uses) but with 7000 connections that would
|
||
|
* make an average of 1000 nodes in each list to run through. I upped that to
|
||
|
* 97 slots (I believe a prime is suitable) and noticed a significant speed
|
||
|
* increase. I need to reconsider the hash implementation or use a rather
|
||
|
* large default value like this. At 9000 connections I was still below 10us
|
||
|
* per call."
|
||
|
*
|
||
|
*/
|
||
|
static void sh_init(struct Curl_hash *hash, int hashsize)
|
||
|
{
|
||
|
Curl_hash_init(hash, hashsize, hash_fd, fd_key_compare,
|
||
|
sh_freeentry);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* multi_addmsg()
|
||
|
*
|
||
|
* Called when a transfer is completed. Adds the given msg pointer to
|
||
|
* the list kept in the multi handle.
|
||
|
*/
|
||
|
static void multi_addmsg(struct Curl_multi *multi, struct Curl_message *msg)
|
||
|
{
|
||
|
Curl_llist_insert_next(&multi->msglist, multi->msglist.tail, msg,
|
||
|
&msg->list);
|
||
|
}
|
||
|
|
||
|
struct Curl_multi *Curl_multi_handle(int hashsize, /* socket hash */
|
||
|
int chashsize, /* connection hash */
|
||
|
int dnssize) /* dns hash */
|
||
|
{
|
||
|
struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi));
|
||
|
|
||
|
if(!multi)
|
||
|
return NULL;
|
||
|
|
||
|
multi->magic = CURL_MULTI_HANDLE;
|
||
|
|
||
|
Curl_init_dnscache(&multi->hostcache, dnssize);
|
||
|
|
||
|
sh_init(&multi->sockhash, hashsize);
|
||
|
|
||
|
if(Curl_conncache_init(&multi->conn_cache, chashsize))
|
||
|
goto error;
|
||
|
|
||
|
Curl_llist_init(&multi->msglist, NULL);
|
||
|
Curl_llist_init(&multi->pending, NULL);
|
||
|
Curl_llist_init(&multi->msgsent, NULL);
|
||
|
|
||
|
multi->multiplexing = TRUE;
|
||
|
multi->max_concurrent_streams = 100;
|
||
|
|
||
|
#ifdef USE_WINSOCK
|
||
|
multi->wsa_event = WSACreateEvent();
|
||
|
if(multi->wsa_event == WSA_INVALID_EVENT)
|
||
|
goto error;
|
||
|
#else
|
||
|
#ifdef ENABLE_WAKEUP
|
||
|
if(wakeup_create(multi->wakeup_pair) < 0) {
|
||
|
multi->wakeup_pair[0] = CURL_SOCKET_BAD;
|
||
|
multi->wakeup_pair[1] = CURL_SOCKET_BAD;
|
||
|
}
|
||
|
else if(curlx_nonblock(multi->wakeup_pair[0], TRUE) < 0 ||
|
||
|
curlx_nonblock(multi->wakeup_pair[1], TRUE) < 0) {
|
||
|
wakeup_close(multi->wakeup_pair[0]);
|
||
|
wakeup_close(multi->wakeup_pair[1]);
|
||
|
multi->wakeup_pair[0] = CURL_SOCKET_BAD;
|
||
|
multi->wakeup_pair[1] = CURL_SOCKET_BAD;
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
return multi;
|
||
|
|
||
|
error:
|
||
|
|
||
|
sockhash_destroy(&multi->sockhash);
|
||
|
Curl_hash_destroy(&multi->hostcache);
|
||
|
Curl_conncache_destroy(&multi->conn_cache);
|
||
|
free(multi);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
struct Curl_multi *curl_multi_init(void)
|
||
|
{
|
||
|
return Curl_multi_handle(CURL_SOCKET_HASH_TABLE_SIZE,
|
||
|
CURL_CONNECTION_HASH_SIZE,
|
||
|
CURL_DNS_HASH_SIZE);
|
||
|
}
|
||
|
|
||
|
#if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS)
|
||
|
static void multi_warn_debug(struct Curl_multi *multi, struct Curl_easy *data)
|
||
|
{
|
||
|
if(!multi->warned) {
|
||
|
infof(data, "!!! WARNING !!!");
|
||
|
infof(data, "This is a debug build of libcurl, "
|
||
|
"do not use in production.");
|
||
|
multi->warned = true;
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
#define multi_warn_debug(x,y) Curl_nop_stmt
|
||
|
#endif
|
||
|
|
||
|
/* returns TRUE if the easy handle is supposed to be present in the main link
|
||
|
list */
|
||
|
static bool in_main_list(struct Curl_easy *data)
|
||
|
{
|
||
|
return ((data->mstate != MSTATE_PENDING) &&
|
||
|
(data->mstate != MSTATE_MSGSENT));
|
||
|
}
|
||
|
|
||
|
static void link_easy(struct Curl_multi *multi,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
/* We add the new easy entry last in the list. */
|
||
|
data->next = NULL; /* end of the line */
|
||
|
if(multi->easyp) {
|
||
|
struct Curl_easy *last = multi->easylp;
|
||
|
last->next = data;
|
||
|
data->prev = last;
|
||
|
multi->easylp = data; /* the new last node */
|
||
|
}
|
||
|
else {
|
||
|
/* first node, make prev NULL! */
|
||
|
data->prev = NULL;
|
||
|
multi->easylp = multi->easyp = data; /* both first and last */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* unlink the given easy handle from the linked list of easy handles */
|
||
|
static void unlink_easy(struct Curl_multi *multi,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
/* make the previous node point to our next */
|
||
|
if(data->prev)
|
||
|
data->prev->next = data->next;
|
||
|
else
|
||
|
multi->easyp = data->next; /* point to first node */
|
||
|
|
||
|
/* make our next point to our previous node */
|
||
|
if(data->next)
|
||
|
data->next->prev = data->prev;
|
||
|
else
|
||
|
multi->easylp = data->prev; /* point to last node */
|
||
|
|
||
|
data->prev = data->next = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
CURLMcode curl_multi_add_handle(struct Curl_multi *multi,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
CURLMcode rc;
|
||
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
/* Verify that we got a somewhat good easy handle too */
|
||
|
if(!GOOD_EASY_HANDLE(data))
|
||
|
return CURLM_BAD_EASY_HANDLE;
|
||
|
|
||
|
/* Prevent users from adding same easy handle more than once and prevent
|
||
|
adding to more than one multi stack */
|
||
|
if(data->multi)
|
||
|
return CURLM_ADDED_ALREADY;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
if(multi->dead) {
|
||
|
/* a "dead" handle cannot get added transfers while any existing easy
|
||
|
handles are still alive - but if there are none alive anymore, it is
|
||
|
fine to start over and unmark the "deadness" of this handle */
|
||
|
if(multi->num_alive)
|
||
|
return CURLM_ABORTED_BY_CALLBACK;
|
||
|
multi->dead = FALSE;
|
||
|
}
|
||
|
|
||
|
/* Initialize timeout list for this handle */
|
||
|
Curl_llist_init(&data->state.timeoutlist, NULL);
|
||
|
|
||
|
/*
|
||
|
* No failure allowed in this function beyond this point. And no
|
||
|
* modification of easy nor multi handle allowed before this except for
|
||
|
* potential multi's connection cache growing which won't be undone in this
|
||
|
* function no matter what.
|
||
|
*/
|
||
|
if(data->set.errorbuffer)
|
||
|
data->set.errorbuffer[0] = 0;
|
||
|
|
||
|
/* make the Curl_easy refer back to this multi handle - before Curl_expire()
|
||
|
is called. */
|
||
|
data->multi = multi;
|
||
|
|
||
|
/* Set the timeout for this handle to expire really soon so that it will
|
||
|
be taken care of even when this handle is added in the midst of operation
|
||
|
when only the curl_multi_socket() API is used. During that flow, only
|
||
|
sockets that time-out or have actions will be dealt with. Since this
|
||
|
handle has no action yet, we make sure it times out to get things to
|
||
|
happen. */
|
||
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
||
|
|
||
|
/* A somewhat crude work-around for a little glitch in Curl_update_timer()
|
||
|
that happens if the lastcall time is set to the same time when the handle
|
||
|
is removed as when the next handle is added, as then the check in
|
||
|
Curl_update_timer() that prevents calling the application multiple times
|
||
|
with the same timer info will not trigger and then the new handle's
|
||
|
timeout will not be notified to the app.
|
||
|
|
||
|
The work-around is thus simply to clear the 'lastcall' variable to force
|
||
|
Curl_update_timer() to always trigger a callback to the app when a new
|
||
|
easy handle is added */
|
||
|
memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
|
||
|
|
||
|
rc = Curl_update_timer(multi);
|
||
|
if(rc)
|
||
|
return rc;
|
||
|
|
||
|
/* set the easy handle */
|
||
|
multistate(data, MSTATE_INIT);
|
||
|
|
||
|
/* for multi interface connections, we share DNS cache automatically if the
|
||
|
easy handle's one is currently not set. */
|
||
|
if(!data->dns.hostcache ||
|
||
|
(data->dns.hostcachetype == HCACHE_NONE)) {
|
||
|
data->dns.hostcache = &multi->hostcache;
|
||
|
data->dns.hostcachetype = HCACHE_MULTI;
|
||
|
}
|
||
|
|
||
|
/* Point to the shared or multi handle connection cache */
|
||
|
if(data->share && (data->share->specifier & (1<< CURL_LOCK_DATA_CONNECT)))
|
||
|
data->state.conn_cache = &data->share->conn_cache;
|
||
|
else
|
||
|
data->state.conn_cache = &multi->conn_cache;
|
||
|
data->state.lastconnect_id = -1;
|
||
|
|
||
|
#ifdef USE_LIBPSL
|
||
|
/* Do the same for PSL. */
|
||
|
if(data->share && (data->share->specifier & (1 << CURL_LOCK_DATA_PSL)))
|
||
|
data->psl = &data->share->psl;
|
||
|
else
|
||
|
data->psl = &multi->psl;
|
||
|
#endif
|
||
|
|
||
|
link_easy(multi, data);
|
||
|
|
||
|
/* increase the node-counter */
|
||
|
multi->num_easy++;
|
||
|
|
||
|
/* increase the alive-counter */
|
||
|
multi->num_alive++;
|
||
|
|
||
|
CONNCACHE_LOCK(data);
|
||
|
/* The closure handle only ever has default timeouts set. To improve the
|
||
|
state somewhat we clone the timeouts from each added handle so that the
|
||
|
closure handle always has the same timeouts as the most recently added
|
||
|
easy handle. */
|
||
|
data->state.conn_cache->closure_handle->set.timeout = data->set.timeout;
|
||
|
data->state.conn_cache->closure_handle->set.server_response_timeout =
|
||
|
data->set.server_response_timeout;
|
||
|
data->state.conn_cache->closure_handle->set.no_signal =
|
||
|
data->set.no_signal;
|
||
|
data->id = data->state.conn_cache->next_easy_id++;
|
||
|
if(data->state.conn_cache->next_easy_id <= 0)
|
||
|
data->state.conn_cache->next_easy_id = 0;
|
||
|
CONNCACHE_UNLOCK(data);
|
||
|
|
||
|
multi_warn_debug(multi, data);
|
||
|
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
/* Debug-function, used like this:
|
||
|
*
|
||
|
* Curl_hash_print(&multi->sockhash, debug_print_sock_hash);
|
||
|
*
|
||
|
* Enable the hash print function first by editing hash.c
|
||
|
*/
|
||
|
static void debug_print_sock_hash(void *p)
|
||
|
{
|
||
|
struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p;
|
||
|
|
||
|
fprintf(stderr, " [readers %u][writers %u]",
|
||
|
sh->readers, sh->writers);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static CURLcode multi_done(struct Curl_easy *data,
|
||
|
CURLcode status, /* an error if this is called
|
||
|
after an error was detected */
|
||
|
bool premature)
|
||
|
{
|
||
|
CURLcode result;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
|
||
|
#if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS)
|
||
|
DEBUGF(infof(data, "multi_done[%s]: status: %d prem: %d done: %d",
|
||
|
multi_statename[data->mstate],
|
||
|
(int)status, (int)premature, data->state.done));
|
||
|
#else
|
||
|
DEBUGF(infof(data, "multi_done: status: %d prem: %d done: %d",
|
||
|
(int)status, (int)premature, data->state.done));
|
||
|
#endif
|
||
|
|
||
|
if(data->state.done)
|
||
|
/* Stop if multi_done() has already been called */
|
||
|
return CURLE_OK;
|
||
|
|
||
|
/* Stop the resolver and free its own resources (but not dns_entry yet). */
|
||
|
Curl_resolver_kill(data);
|
||
|
|
||
|
/* Cleanup possible redirect junk */
|
||
|
Curl_safefree(data->req.newurl);
|
||
|
Curl_safefree(data->req.location);
|
||
|
|
||
|
switch(status) {
|
||
|
case CURLE_ABORTED_BY_CALLBACK:
|
||
|
case CURLE_READ_ERROR:
|
||
|
case CURLE_WRITE_ERROR:
|
||
|
/* When we're aborted due to a callback return code it basically have to
|
||
|
be counted as premature as there is trouble ahead if we don't. We have
|
||
|
many callbacks and protocols work differently, we could potentially do
|
||
|
this more fine-grained in the future. */
|
||
|
premature = TRUE;
|
||
|
FALLTHROUGH();
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* this calls the protocol-specific function pointer previously set */
|
||
|
if(conn->handler->done)
|
||
|
result = conn->handler->done(data, status, premature);
|
||
|
else
|
||
|
result = status;
|
||
|
|
||
|
if(CURLE_ABORTED_BY_CALLBACK != result) {
|
||
|
/* avoid this if we already aborted by callback to avoid this calling
|
||
|
another callback */
|
||
|
int rc = Curl_pgrsDone(data);
|
||
|
if(!result && rc)
|
||
|
result = CURLE_ABORTED_BY_CALLBACK;
|
||
|
}
|
||
|
|
||
|
/* Inform connection filters that this transfer is done */
|
||
|
Curl_conn_ev_data_done(data, premature);
|
||
|
|
||
|
process_pending_handles(data->multi); /* connection / multiplex */
|
||
|
|
||
|
Curl_safefree(data->state.ulbuf);
|
||
|
|
||
|
Curl_client_cleanup(data);
|
||
|
|
||
|
CONNCACHE_LOCK(data);
|
||
|
Curl_detach_connection(data);
|
||
|
if(CONN_INUSE(conn)) {
|
||
|
/* Stop if still used. */
|
||
|
CONNCACHE_UNLOCK(data);
|
||
|
DEBUGF(infof(data, "Connection still in use %zu, "
|
||
|
"no more multi_done now!",
|
||
|
conn->easyq.size));
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
data->state.done = TRUE; /* called just now! */
|
||
|
|
||
|
if(conn->dns_entry) {
|
||
|
Curl_resolv_unlock(data, conn->dns_entry); /* done with this */
|
||
|
conn->dns_entry = NULL;
|
||
|
}
|
||
|
Curl_hostcache_prune(data);
|
||
|
|
||
|
/* if data->set.reuse_forbid is TRUE, it means the libcurl client has
|
||
|
forced us to close this connection. This is ignored for requests taking
|
||
|
place in a NTLM/NEGOTIATE authentication handshake
|
||
|
|
||
|
if conn->bits.close is TRUE, it means that the connection should be
|
||
|
closed in spite of all our efforts to be nice, due to protocol
|
||
|
restrictions in our or the server's end
|
||
|
|
||
|
if premature is TRUE, it means this connection was said to be DONE before
|
||
|
the entire request operation is complete and thus we can't know in what
|
||
|
state it is for reusing, so we're forced to close it. In a perfect world
|
||
|
we can add code that keep track of if we really must close it here or not,
|
||
|
but currently we have no such detail knowledge.
|
||
|
*/
|
||
|
|
||
|
data->state.recent_conn_id = conn->connection_id;
|
||
|
if((data->set.reuse_forbid
|
||
|
#if defined(USE_NTLM)
|
||
|
&& !(conn->http_ntlm_state == NTLMSTATE_TYPE2 ||
|
||
|
conn->proxy_ntlm_state == NTLMSTATE_TYPE2)
|
||
|
#endif
|
||
|
#if defined(USE_SPNEGO)
|
||
|
&& !(conn->http_negotiate_state == GSS_AUTHRECV ||
|
||
|
conn->proxy_negotiate_state == GSS_AUTHRECV)
|
||
|
#endif
|
||
|
) || conn->bits.close
|
||
|
|| (premature && !Curl_conn_is_multiplex(conn, FIRSTSOCKET))) {
|
||
|
DEBUGF(infof(data, "multi_done, not reusing connection=%"
|
||
|
CURL_FORMAT_CURL_OFF_T ", forbid=%d"
|
||
|
", close=%d, premature=%d, conn_multiplex=%d",
|
||
|
conn->connection_id,
|
||
|
data->set.reuse_forbid, conn->bits.close, premature,
|
||
|
Curl_conn_is_multiplex(conn, FIRSTSOCKET)));
|
||
|
connclose(conn, "disconnecting");
|
||
|
Curl_conncache_remove_conn(data, conn, FALSE);
|
||
|
CONNCACHE_UNLOCK(data);
|
||
|
Curl_disconnect(data, conn, premature);
|
||
|
}
|
||
|
else {
|
||
|
char buffer[256];
|
||
|
const char *host =
|
||
|
#ifndef CURL_DISABLE_PROXY
|
||
|
conn->bits.socksproxy ?
|
||
|
conn->socks_proxy.host.dispname :
|
||
|
conn->bits.httpproxy ? conn->http_proxy.host.dispname :
|
||
|
#endif
|
||
|
conn->bits.conn_to_host ? conn->conn_to_host.dispname :
|
||
|
conn->host.dispname;
|
||
|
/* create string before returning the connection */
|
||
|
curl_off_t connection_id = conn->connection_id;
|
||
|
msnprintf(buffer, sizeof(buffer),
|
||
|
"Connection #%" CURL_FORMAT_CURL_OFF_T " to host %s left intact",
|
||
|
connection_id, host);
|
||
|
/* the connection is no longer in use by this transfer */
|
||
|
CONNCACHE_UNLOCK(data);
|
||
|
if(Curl_conncache_return_conn(data, conn)) {
|
||
|
/* remember the most recently used connection */
|
||
|
data->state.lastconnect_id = connection_id;
|
||
|
data->state.recent_conn_id = connection_id;
|
||
|
infof(data, "%s", buffer);
|
||
|
}
|
||
|
else
|
||
|
data->state.lastconnect_id = -1;
|
||
|
}
|
||
|
|
||
|
Curl_safefree(data->state.buffer);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static int close_connect_only(struct Curl_easy *data,
|
||
|
struct connectdata *conn, void *param)
|
||
|
{
|
||
|
(void)param;
|
||
|
if(data->state.lastconnect_id != conn->connection_id)
|
||
|
return 0;
|
||
|
|
||
|
if(!conn->connect_only)
|
||
|
return 1;
|
||
|
|
||
|
connclose(conn, "Removing connect-only easy handle");
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_remove_handle(struct Curl_multi *multi,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct Curl_easy *easy = data;
|
||
|
bool premature;
|
||
|
struct Curl_llist_element *e;
|
||
|
CURLMcode rc;
|
||
|
|
||
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
/* Verify that we got a somewhat good easy handle too */
|
||
|
if(!GOOD_EASY_HANDLE(data))
|
||
|
return CURLM_BAD_EASY_HANDLE;
|
||
|
|
||
|
/* Prevent users from trying to remove same easy handle more than once */
|
||
|
if(!data->multi)
|
||
|
return CURLM_OK; /* it is already removed so let's say it is fine! */
|
||
|
|
||
|
/* Prevent users from trying to remove an easy handle from the wrong multi */
|
||
|
if(data->multi != multi)
|
||
|
return CURLM_BAD_EASY_HANDLE;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
premature = (data->mstate < MSTATE_COMPLETED) ? TRUE : FALSE;
|
||
|
|
||
|
/* If the 'state' is not INIT or COMPLETED, we might need to do something
|
||
|
nice to put the easy_handle in a good known state when this returns. */
|
||
|
if(premature) {
|
||
|
/* this handle is "alive" so we need to count down the total number of
|
||
|
alive connections when this is removed */
|
||
|
multi->num_alive--;
|
||
|
}
|
||
|
|
||
|
if(data->conn &&
|
||
|
data->mstate > MSTATE_DO &&
|
||
|
data->mstate < MSTATE_COMPLETED) {
|
||
|
/* Set connection owner so that the DONE function closes it. We can
|
||
|
safely do this here since connection is killed. */
|
||
|
streamclose(data->conn, "Removed with partial response");
|
||
|
}
|
||
|
|
||
|
if(data->conn) {
|
||
|
/* multi_done() clears the association between the easy handle and the
|
||
|
connection.
|
||
|
|
||
|
Note that this ignores the return code simply because there's
|
||
|
nothing really useful to do with it anyway! */
|
||
|
(void)multi_done(data, data->result, premature);
|
||
|
}
|
||
|
|
||
|
/* The timer must be shut down before data->multi is set to NULL, else the
|
||
|
timenode will remain in the splay tree after curl_easy_cleanup is
|
||
|
called. Do it after multi_done() in case that sets another time! */
|
||
|
Curl_expire_clear(data);
|
||
|
|
||
|
if(data->connect_queue.ptr) {
|
||
|
/* the handle is in the pending or msgsent lists, so go ahead and remove
|
||
|
it */
|
||
|
if(data->mstate == MSTATE_PENDING)
|
||
|
Curl_llist_remove(&multi->pending, &data->connect_queue, NULL);
|
||
|
else
|
||
|
Curl_llist_remove(&multi->msgsent, &data->connect_queue, NULL);
|
||
|
}
|
||
|
if(in_main_list(data))
|
||
|
unlink_easy(multi, data);
|
||
|
|
||
|
if(data->dns.hostcachetype == HCACHE_MULTI) {
|
||
|
/* stop using the multi handle's DNS cache, *after* the possible
|
||
|
multi_done() call above */
|
||
|
data->dns.hostcache = NULL;
|
||
|
data->dns.hostcachetype = HCACHE_NONE;
|
||
|
}
|
||
|
|
||
|
Curl_wildcard_dtor(&data->wildcard);
|
||
|
|
||
|
/* change state without using multistate(), only to make singlesocket() do
|
||
|
what we want */
|
||
|
data->mstate = MSTATE_COMPLETED;
|
||
|
|
||
|
/* This ignores the return code even in case of problems because there's
|
||
|
nothing more to do about that, here */
|
||
|
(void)singlesocket(multi, easy); /* to let the application know what sockets
|
||
|
that vanish with this handle */
|
||
|
|
||
|
/* Remove the association between the connection and the handle */
|
||
|
Curl_detach_connection(data);
|
||
|
|
||
|
if(data->set.connect_only && !data->multi_easy) {
|
||
|
/* This removes a handle that was part the multi interface that used
|
||
|
CONNECT_ONLY, that connection is now left alive but since this handle
|
||
|
has bits.close set nothing can use that transfer anymore and it is
|
||
|
forbidden from reuse. And this easy handle cannot find the connection
|
||
|
anymore once removed from the multi handle
|
||
|
|
||
|
Better close the connection here, at once.
|
||
|
*/
|
||
|
struct connectdata *c;
|
||
|
curl_socket_t s;
|
||
|
s = Curl_getconnectinfo(data, &c);
|
||
|
if((s != CURL_SOCKET_BAD) && c) {
|
||
|
Curl_conncache_remove_conn(data, c, TRUE);
|
||
|
Curl_disconnect(data, c, TRUE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(data->state.lastconnect_id != -1) {
|
||
|
/* Mark any connect-only connection for closure */
|
||
|
Curl_conncache_foreach(data, data->state.conn_cache,
|
||
|
NULL, close_connect_only);
|
||
|
}
|
||
|
|
||
|
#ifdef USE_LIBPSL
|
||
|
/* Remove the PSL association. */
|
||
|
if(data->psl == &multi->psl)
|
||
|
data->psl = NULL;
|
||
|
#endif
|
||
|
|
||
|
/* as this was using a shared connection cache we clear the pointer to that
|
||
|
since we're not part of that multi handle anymore */
|
||
|
data->state.conn_cache = NULL;
|
||
|
|
||
|
data->multi = NULL; /* clear the association to this multi handle */
|
||
|
|
||
|
/* make sure there's no pending message in the queue sent from this easy
|
||
|
handle */
|
||
|
for(e = multi->msglist.head; e; e = e->next) {
|
||
|
struct Curl_message *msg = e->ptr;
|
||
|
|
||
|
if(msg->extmsg.easy_handle == easy) {
|
||
|
Curl_llist_remove(&multi->msglist, e, NULL);
|
||
|
/* there can only be one from this specific handle */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* NOTE NOTE NOTE
|
||
|
We do not touch the easy handle here! */
|
||
|
multi->num_easy--; /* one less to care about now */
|
||
|
|
||
|
process_pending_handles(multi);
|
||
|
|
||
|
rc = Curl_update_timer(multi);
|
||
|
if(rc)
|
||
|
return rc;
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
/* Return TRUE if the application asked for multiplexing */
|
||
|
bool Curl_multiplex_wanted(const struct Curl_multi *multi)
|
||
|
{
|
||
|
return (multi && (multi->multiplexing));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Curl_detach_connection() removes the given transfer from the connection.
|
||
|
*
|
||
|
* This is the only function that should clear data->conn. This will
|
||
|
* occasionally be called with the data->conn pointer already cleared.
|
||
|
*/
|
||
|
void Curl_detach_connection(struct Curl_easy *data)
|
||
|
{
|
||
|
struct connectdata *conn = data->conn;
|
||
|
if(conn) {
|
||
|
Curl_conn_ev_data_detach(conn, data);
|
||
|
Curl_llist_remove(&conn->easyq, &data->conn_queue, NULL);
|
||
|
}
|
||
|
data->conn = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Curl_attach_connection() attaches this transfer to this connection.
|
||
|
*
|
||
|
* This is the only function that should assign data->conn
|
||
|
*/
|
||
|
void Curl_attach_connection(struct Curl_easy *data,
|
||
|
struct connectdata *conn)
|
||
|
{
|
||
|
DEBUGASSERT(!data->conn);
|
||
|
DEBUGASSERT(conn);
|
||
|
data->conn = conn;
|
||
|
Curl_llist_insert_next(&conn->easyq, conn->easyq.tail, data,
|
||
|
&data->conn_queue);
|
||
|
if(conn->handler && conn->handler->attach)
|
||
|
conn->handler->attach(data, conn);
|
||
|
Curl_conn_ev_data_attach(conn, data);
|
||
|
}
|
||
|
|
||
|
static int connecting_getsock(struct Curl_easy *data, curl_socket_t *socks)
|
||
|
{
|
||
|
struct connectdata *conn = data->conn;
|
||
|
(void)socks;
|
||
|
/* Not using `conn->sockfd` as `Curl_setup_transfer()` initializes
|
||
|
* that *after* the connect. */
|
||
|
if(conn && conn->sock[FIRSTSOCKET] != CURL_SOCKET_BAD) {
|
||
|
/* Default is to wait to something from the server */
|
||
|
socks[0] = conn->sock[FIRSTSOCKET];
|
||
|
return GETSOCK_READSOCK(0);
|
||
|
}
|
||
|
return GETSOCK_BLANK;
|
||
|
}
|
||
|
|
||
|
static int protocol_getsock(struct Curl_easy *data, curl_socket_t *socks)
|
||
|
{
|
||
|
struct connectdata *conn = data->conn;
|
||
|
if(conn && conn->handler->proto_getsock)
|
||
|
return conn->handler->proto_getsock(data, conn, socks);
|
||
|
else if(conn && conn->sockfd != CURL_SOCKET_BAD) {
|
||
|
/* Default is to wait to something from the server */
|
||
|
socks[0] = conn->sockfd;
|
||
|
return GETSOCK_READSOCK(0);
|
||
|
}
|
||
|
return GETSOCK_BLANK;
|
||
|
}
|
||
|
|
||
|
static int domore_getsock(struct Curl_easy *data, curl_socket_t *socks)
|
||
|
{
|
||
|
struct connectdata *conn = data->conn;
|
||
|
if(conn && conn->handler->domore_getsock)
|
||
|
return conn->handler->domore_getsock(data, conn, socks);
|
||
|
else if(conn && conn->sockfd != CURL_SOCKET_BAD) {
|
||
|
/* Default is that we want to send something to the server */
|
||
|
socks[0] = conn->sockfd;
|
||
|
return GETSOCK_WRITESOCK(0);
|
||
|
}
|
||
|
return GETSOCK_BLANK;
|
||
|
}
|
||
|
|
||
|
static int doing_getsock(struct Curl_easy *data, curl_socket_t *socks)
|
||
|
{
|
||
|
struct connectdata *conn = data->conn;
|
||
|
if(conn && conn->handler->doing_getsock)
|
||
|
return conn->handler->doing_getsock(data, conn, socks);
|
||
|
else if(conn && conn->sockfd != CURL_SOCKET_BAD) {
|
||
|
/* Default is that we want to send something to the server */
|
||
|
socks[0] = conn->sockfd;
|
||
|
return GETSOCK_WRITESOCK(0);
|
||
|
}
|
||
|
return GETSOCK_BLANK;
|
||
|
}
|
||
|
|
||
|
static int perform_getsock(struct Curl_easy *data, curl_socket_t *sock)
|
||
|
{
|
||
|
struct connectdata *conn = data->conn;
|
||
|
|
||
|
if(!conn)
|
||
|
return GETSOCK_BLANK;
|
||
|
else if(conn->handler->perform_getsock)
|
||
|
return conn->handler->perform_getsock(data, conn, sock);
|
||
|
else {
|
||
|
/* Default is to obey the data->req.keepon flags for send/recv */
|
||
|
int bitmap = GETSOCK_BLANK;
|
||
|
unsigned sockindex = 0;
|
||
|
if(CURL_WANT_RECV(data)) {
|
||
|
DEBUGASSERT(conn->sockfd != CURL_SOCKET_BAD);
|
||
|
bitmap |= GETSOCK_READSOCK(sockindex);
|
||
|
sock[sockindex] = conn->sockfd;
|
||
|
}
|
||
|
|
||
|
if(CURL_WANT_SEND(data)) {
|
||
|
if((conn->sockfd != conn->writesockfd) ||
|
||
|
bitmap == GETSOCK_BLANK) {
|
||
|
/* only if they are not the same socket and we have a readable
|
||
|
one, we increase index */
|
||
|
if(bitmap != GETSOCK_BLANK)
|
||
|
sockindex++; /* increase index if we need two entries */
|
||
|
|
||
|
DEBUGASSERT(conn->writesockfd != CURL_SOCKET_BAD);
|
||
|
sock[sockindex] = conn->writesockfd;
|
||
|
}
|
||
|
bitmap |= GETSOCK_WRITESOCK(sockindex);
|
||
|
}
|
||
|
return bitmap;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Initializes `poll_set` with the current socket poll actions needed
|
||
|
* for transfer `data`. */
|
||
|
static void multi_getsock(struct Curl_easy *data,
|
||
|
struct easy_pollset *ps)
|
||
|
{
|
||
|
/* The no connection case can happen when this is called from
|
||
|
curl_multi_remove_handle() => singlesocket() => multi_getsock().
|
||
|
*/
|
||
|
Curl_pollset_reset(data, ps);
|
||
|
if(!data->conn)
|
||
|
return;
|
||
|
|
||
|
switch(data->mstate) {
|
||
|
case MSTATE_INIT:
|
||
|
case MSTATE_PENDING:
|
||
|
case MSTATE_CONNECT:
|
||
|
/* nothing to poll for yet */
|
||
|
break;
|
||
|
|
||
|
case MSTATE_RESOLVING:
|
||
|
Curl_pollset_add_socks(data, ps, Curl_resolv_getsock);
|
||
|
/* connection filters are not involved in this phase */
|
||
|
break;
|
||
|
|
||
|
case MSTATE_CONNECTING:
|
||
|
case MSTATE_TUNNELING:
|
||
|
Curl_pollset_add_socks(data, ps, connecting_getsock);
|
||
|
Curl_conn_adjust_pollset(data, ps);
|
||
|
break;
|
||
|
|
||
|
case MSTATE_PROTOCONNECT:
|
||
|
case MSTATE_PROTOCONNECTING:
|
||
|
Curl_pollset_add_socks(data, ps, protocol_getsock);
|
||
|
Curl_conn_adjust_pollset(data, ps);
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DO:
|
||
|
case MSTATE_DOING:
|
||
|
Curl_pollset_add_socks(data, ps, doing_getsock);
|
||
|
Curl_conn_adjust_pollset(data, ps);
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DOING_MORE:
|
||
|
Curl_pollset_add_socks(data, ps, domore_getsock);
|
||
|
Curl_conn_adjust_pollset(data, ps);
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DID: /* same as PERFORMING in regard to polling */
|
||
|
case MSTATE_PERFORMING:
|
||
|
Curl_pollset_add_socks(data, ps, perform_getsock);
|
||
|
Curl_conn_adjust_pollset(data, ps);
|
||
|
break;
|
||
|
|
||
|
case MSTATE_RATELIMITING:
|
||
|
/* we need to let time pass, ignore socket(s) */
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DONE:
|
||
|
case MSTATE_COMPLETED:
|
||
|
case MSTATE_MSGSENT:
|
||
|
/* nothing more to poll for */
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
failf(data, "multi_getsock: unexpected multi state %d", data->mstate);
|
||
|
DEBUGASSERT(0);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_fdset(struct Curl_multi *multi,
|
||
|
fd_set *read_fd_set, fd_set *write_fd_set,
|
||
|
fd_set *exc_fd_set, int *max_fd)
|
||
|
{
|
||
|
/* Scan through all the easy handles to get the file descriptors set.
|
||
|
Some easy handles may not have connected to the remote host yet,
|
||
|
and then we must make sure that is done. */
|
||
|
struct Curl_easy *data;
|
||
|
int this_max_fd = -1;
|
||
|
struct easy_pollset ps;
|
||
|
unsigned int i;
|
||
|
(void)exc_fd_set; /* not used */
|
||
|
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
memset(&ps, 0, sizeof(ps));
|
||
|
for(data = multi->easyp; data; data = data->next) {
|
||
|
multi_getsock(data, &ps);
|
||
|
|
||
|
for(i = 0; i < ps.num; i++) {
|
||
|
if(!FDSET_SOCK(ps.sockets[i]))
|
||
|
/* pretend it doesn't exist */
|
||
|
continue;
|
||
|
if(ps.actions[i] & CURL_POLL_IN)
|
||
|
FD_SET(ps.sockets[i], read_fd_set);
|
||
|
if(ps.actions[i] & CURL_POLL_OUT)
|
||
|
FD_SET(ps.sockets[i], write_fd_set);
|
||
|
if((int)ps.sockets[i] > this_max_fd)
|
||
|
this_max_fd = (int)ps.sockets[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*max_fd = this_max_fd;
|
||
|
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
#ifdef USE_WINSOCK
|
||
|
/* Reset FD_WRITE for TCP sockets. Nothing is actually sent. UDP sockets can't
|
||
|
* be reset this way because an empty datagram would be sent. #9203
|
||
|
*
|
||
|
* "On Windows the internal state of FD_WRITE as returned from
|
||
|
* WSAEnumNetworkEvents is only reset after successful send()."
|
||
|
*/
|
||
|
static void reset_socket_fdwrite(curl_socket_t s)
|
||
|
{
|
||
|
int t;
|
||
|
int l = (int)sizeof(t);
|
||
|
if(!getsockopt(s, SOL_SOCKET, SO_TYPE, (char *)&t, &l) && t == SOCK_STREAM)
|
||
|
send(s, NULL, 0, 0);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define NUM_POLLS_ON_STACK 10
|
||
|
|
||
|
static CURLMcode multi_wait(struct Curl_multi *multi,
|
||
|
struct curl_waitfd extra_fds[],
|
||
|
unsigned int extra_nfds,
|
||
|
int timeout_ms,
|
||
|
int *ret,
|
||
|
bool extrawait, /* when no socket, wait */
|
||
|
bool use_wakeup)
|
||
|
{
|
||
|
struct Curl_easy *data;
|
||
|
struct easy_pollset ps;
|
||
|
size_t i;
|
||
|
unsigned int nfds = 0;
|
||
|
unsigned int curlfds;
|
||
|
long timeout_internal;
|
||
|
int retcode = 0;
|
||
|
struct pollfd a_few_on_stack[NUM_POLLS_ON_STACK];
|
||
|
struct pollfd *ufds = &a_few_on_stack[0];
|
||
|
bool ufds_malloc = FALSE;
|
||
|
#ifdef USE_WINSOCK
|
||
|
WSANETWORKEVENTS wsa_events;
|
||
|
DEBUGASSERT(multi->wsa_event != WSA_INVALID_EVENT);
|
||
|
#endif
|
||
|
#ifndef ENABLE_WAKEUP
|
||
|
(void)use_wakeup;
|
||
|
#endif
|
||
|
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
if(timeout_ms < 0)
|
||
|
return CURLM_BAD_FUNCTION_ARGUMENT;
|
||
|
|
||
|
/* Count up how many fds we have from the multi handle */
|
||
|
memset(&ps, 0, sizeof(ps));
|
||
|
for(data = multi->easyp; data; data = data->next) {
|
||
|
multi_getsock(data, &ps);
|
||
|
nfds += ps.num;
|
||
|
}
|
||
|
|
||
|
/* If the internally desired timeout is actually shorter than requested from
|
||
|
the outside, then use the shorter time! But only if the internal timer
|
||
|
is actually larger than -1! */
|
||
|
(void)multi_timeout(multi, &timeout_internal);
|
||
|
if((timeout_internal >= 0) && (timeout_internal < (long)timeout_ms))
|
||
|
timeout_ms = (int)timeout_internal;
|
||
|
|
||
|
curlfds = nfds; /* number of internal file descriptors */
|
||
|
nfds += extra_nfds; /* add the externally provided ones */
|
||
|
|
||
|
#ifdef ENABLE_WAKEUP
|
||
|
#ifdef USE_WINSOCK
|
||
|
if(use_wakeup) {
|
||
|
#else
|
||
|
if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
|
||
|
#endif
|
||
|
++nfds;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if(nfds > NUM_POLLS_ON_STACK) {
|
||
|
/* 'nfds' is a 32 bit value and 'struct pollfd' is typically 8 bytes
|
||
|
big, so at 2^29 sockets this value might wrap. When a process gets
|
||
|
the capability to actually handle over 500 million sockets this
|
||
|
calculation needs a integer overflow check. */
|
||
|
ufds = malloc(nfds * sizeof(struct pollfd));
|
||
|
if(!ufds)
|
||
|
return CURLM_OUT_OF_MEMORY;
|
||
|
ufds_malloc = TRUE;
|
||
|
}
|
||
|
nfds = 0;
|
||
|
|
||
|
/* only do the second loop if we found descriptors in the first stage run
|
||
|
above */
|
||
|
|
||
|
if(curlfds) {
|
||
|
/* Add the curl handles to our pollfds first */
|
||
|
for(data = multi->easyp; data; data = data->next) {
|
||
|
multi_getsock(data, &ps);
|
||
|
|
||
|
for(i = 0; i < ps.num; i++) {
|
||
|
struct pollfd *ufd = &ufds[nfds++];
|
||
|
#ifdef USE_WINSOCK
|
||
|
long mask = 0;
|
||
|
#endif
|
||
|
ufd->fd = ps.sockets[i];
|
||
|
ufd->events = 0;
|
||
|
if(ps.actions[i] & CURL_POLL_IN) {
|
||
|
#ifdef USE_WINSOCK
|
||
|
mask |= FD_READ|FD_ACCEPT|FD_CLOSE;
|
||
|
#endif
|
||
|
ufd->events |= POLLIN;
|
||
|
}
|
||
|
if(ps.actions[i] & CURL_POLL_OUT) {
|
||
|
#ifdef USE_WINSOCK
|
||
|
mask |= FD_WRITE|FD_CONNECT|FD_CLOSE;
|
||
|
reset_socket_fdwrite(ps.sockets[i]);
|
||
|
#endif
|
||
|
ufd->events |= POLLOUT;
|
||
|
}
|
||
|
#ifdef USE_WINSOCK
|
||
|
if(WSAEventSelect(ps.sockets[i], multi->wsa_event, mask) != 0) {
|
||
|
if(ufds_malloc)
|
||
|
free(ufds);
|
||
|
return CURLM_INTERNAL_ERROR;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Add external file descriptions from poll-like struct curl_waitfd */
|
||
|
for(i = 0; i < extra_nfds; i++) {
|
||
|
#ifdef USE_WINSOCK
|
||
|
long mask = 0;
|
||
|
if(extra_fds[i].events & CURL_WAIT_POLLIN)
|
||
|
mask |= FD_READ|FD_ACCEPT|FD_CLOSE;
|
||
|
if(extra_fds[i].events & CURL_WAIT_POLLPRI)
|
||
|
mask |= FD_OOB;
|
||
|
if(extra_fds[i].events & CURL_WAIT_POLLOUT) {
|
||
|
mask |= FD_WRITE|FD_CONNECT|FD_CLOSE;
|
||
|
reset_socket_fdwrite(extra_fds[i].fd);
|
||
|
}
|
||
|
if(WSAEventSelect(extra_fds[i].fd, multi->wsa_event, mask) != 0) {
|
||
|
if(ufds_malloc)
|
||
|
free(ufds);
|
||
|
return CURLM_INTERNAL_ERROR;
|
||
|
}
|
||
|
#endif
|
||
|
ufds[nfds].fd = extra_fds[i].fd;
|
||
|
ufds[nfds].events = 0;
|
||
|
if(extra_fds[i].events & CURL_WAIT_POLLIN)
|
||
|
ufds[nfds].events |= POLLIN;
|
||
|
if(extra_fds[i].events & CURL_WAIT_POLLPRI)
|
||
|
ufds[nfds].events |= POLLPRI;
|
||
|
if(extra_fds[i].events & CURL_WAIT_POLLOUT)
|
||
|
ufds[nfds].events |= POLLOUT;
|
||
|
++nfds;
|
||
|
}
|
||
|
|
||
|
#ifdef ENABLE_WAKEUP
|
||
|
#ifndef USE_WINSOCK
|
||
|
if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
|
||
|
ufds[nfds].fd = multi->wakeup_pair[0];
|
||
|
ufds[nfds].events = POLLIN;
|
||
|
++nfds;
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK)
|
||
|
if(nfds || use_wakeup) {
|
||
|
#else
|
||
|
if(nfds) {
|
||
|
#endif
|
||
|
int pollrc;
|
||
|
#ifdef USE_WINSOCK
|
||
|
if(nfds)
|
||
|
pollrc = Curl_poll(ufds, nfds, 0); /* just pre-check with WinSock */
|
||
|
else
|
||
|
pollrc = 0;
|
||
|
#else
|
||
|
pollrc = Curl_poll(ufds, nfds, timeout_ms); /* wait... */
|
||
|
#endif
|
||
|
if(pollrc < 0)
|
||
|
return CURLM_UNRECOVERABLE_POLL;
|
||
|
|
||
|
if(pollrc > 0) {
|
||
|
retcode = pollrc;
|
||
|
#ifdef USE_WINSOCK
|
||
|
}
|
||
|
else { /* now wait... if not ready during the pre-check (pollrc == 0) */
|
||
|
WSAWaitForMultipleEvents(1, &multi->wsa_event, FALSE, timeout_ms, FALSE);
|
||
|
}
|
||
|
/* With WinSock, we have to run the following section unconditionally
|
||
|
to call WSAEventSelect(fd, event, 0) on all the sockets */
|
||
|
{
|
||
|
#endif
|
||
|
/* copy revents results from the poll to the curl_multi_wait poll
|
||
|
struct, the bit values of the actual underlying poll() implementation
|
||
|
may not be the same as the ones in the public libcurl API! */
|
||
|
for(i = 0; i < extra_nfds; i++) {
|
||
|
unsigned r = ufds[curlfds + i].revents;
|
||
|
unsigned short mask = 0;
|
||
|
#ifdef USE_WINSOCK
|
||
|
curl_socket_t s = extra_fds[i].fd;
|
||
|
wsa_events.lNetworkEvents = 0;
|
||
|
if(WSAEnumNetworkEvents(s, NULL, &wsa_events) == 0) {
|
||
|
if(wsa_events.lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE))
|
||
|
mask |= CURL_WAIT_POLLIN;
|
||
|
if(wsa_events.lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE))
|
||
|
mask |= CURL_WAIT_POLLOUT;
|
||
|
if(wsa_events.lNetworkEvents & FD_OOB)
|
||
|
mask |= CURL_WAIT_POLLPRI;
|
||
|
if(ret && !pollrc && wsa_events.lNetworkEvents)
|
||
|
retcode++;
|
||
|
}
|
||
|
WSAEventSelect(s, multi->wsa_event, 0);
|
||
|
if(!pollrc) {
|
||
|
extra_fds[i].revents = mask;
|
||
|
continue;
|
||
|
}
|
||
|
#endif
|
||
|
if(r & POLLIN)
|
||
|
mask |= CURL_WAIT_POLLIN;
|
||
|
if(r & POLLOUT)
|
||
|
mask |= CURL_WAIT_POLLOUT;
|
||
|
if(r & POLLPRI)
|
||
|
mask |= CURL_WAIT_POLLPRI;
|
||
|
extra_fds[i].revents = mask;
|
||
|
}
|
||
|
|
||
|
#ifdef USE_WINSOCK
|
||
|
/* Count up all our own sockets that had activity,
|
||
|
and remove them from the event. */
|
||
|
if(curlfds) {
|
||
|
|
||
|
for(data = multi->easyp; data; data = data->next) {
|
||
|
multi_getsock(data, &ps);
|
||
|
|
||
|
for(i = 0; i < ps.num; i++) {
|
||
|
wsa_events.lNetworkEvents = 0;
|
||
|
if(WSAEnumNetworkEvents(ps.sockets[i], NULL,
|
||
|
&wsa_events) == 0) {
|
||
|
if(ret && !pollrc && wsa_events.lNetworkEvents)
|
||
|
retcode++;
|
||
|
}
|
||
|
WSAEventSelect(ps.sockets[i], multi->wsa_event, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
WSAResetEvent(multi->wsa_event);
|
||
|
#else
|
||
|
#ifdef ENABLE_WAKEUP
|
||
|
if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) {
|
||
|
if(ufds[curlfds + extra_nfds].revents & POLLIN) {
|
||
|
char buf[64];
|
||
|
ssize_t nread;
|
||
|
while(1) {
|
||
|
/* the reading socket is non-blocking, try to read
|
||
|
data from it until it receives an error (except EINTR).
|
||
|
In normal cases it will get EAGAIN or EWOULDBLOCK
|
||
|
when there is no more data, breaking the loop. */
|
||
|
nread = wakeup_read(multi->wakeup_pair[0], buf, sizeof(buf));
|
||
|
if(nread <= 0) {
|
||
|
if(nread < 0 && EINTR == SOCKERRNO)
|
||
|
continue;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
/* do not count the wakeup socket into the returned value */
|
||
|
retcode--;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(ufds_malloc)
|
||
|
free(ufds);
|
||
|
if(ret)
|
||
|
*ret = retcode;
|
||
|
#if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK)
|
||
|
if(extrawait && !nfds && !use_wakeup) {
|
||
|
#else
|
||
|
if(extrawait && !nfds) {
|
||
|
#endif
|
||
|
long sleep_ms = 0;
|
||
|
|
||
|
/* Avoid busy-looping when there's nothing particular to wait for */
|
||
|
if(!curl_multi_timeout(multi, &sleep_ms) && sleep_ms) {
|
||
|
if(sleep_ms > timeout_ms)
|
||
|
sleep_ms = timeout_ms;
|
||
|
/* when there are no easy handles in the multi, this holds a -1
|
||
|
timeout */
|
||
|
else if(sleep_ms < 0)
|
||
|
sleep_ms = timeout_ms;
|
||
|
Curl_wait_ms(sleep_ms);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_wait(struct Curl_multi *multi,
|
||
|
struct curl_waitfd extra_fds[],
|
||
|
unsigned int extra_nfds,
|
||
|
int timeout_ms,
|
||
|
int *ret)
|
||
|
{
|
||
|
return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, FALSE,
|
||
|
FALSE);
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_poll(struct Curl_multi *multi,
|
||
|
struct curl_waitfd extra_fds[],
|
||
|
unsigned int extra_nfds,
|
||
|
int timeout_ms,
|
||
|
int *ret)
|
||
|
{
|
||
|
return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, TRUE,
|
||
|
TRUE);
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_wakeup(struct Curl_multi *multi)
|
||
|
{
|
||
|
/* this function is usually called from another thread,
|
||
|
it has to be careful only to access parts of the
|
||
|
Curl_multi struct that are constant */
|
||
|
|
||
|
/* GOOD_MULTI_HANDLE can be safely called */
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
#ifdef ENABLE_WAKEUP
|
||
|
#ifdef USE_WINSOCK
|
||
|
if(WSASetEvent(multi->wsa_event))
|
||
|
return CURLM_OK;
|
||
|
#else
|
||
|
/* the wakeup_pair variable is only written during init and cleanup,
|
||
|
making it safe to access from another thread after the init part
|
||
|
and before cleanup */
|
||
|
if(multi->wakeup_pair[1] != CURL_SOCKET_BAD) {
|
||
|
char buf[1];
|
||
|
buf[0] = 1;
|
||
|
while(1) {
|
||
|
/* swrite() is not thread-safe in general, because concurrent calls
|
||
|
can have their messages interleaved, but in this case the content
|
||
|
of the messages does not matter, which makes it ok to call.
|
||
|
|
||
|
The write socket is set to non-blocking, this way this function
|
||
|
cannot block, making it safe to call even from the same thread
|
||
|
that will call curl_multi_wait(). If swrite() returns that it
|
||
|
would block, it's considered successful because it means that
|
||
|
previous calls to this function will wake up the poll(). */
|
||
|
if(wakeup_write(multi->wakeup_pair[1], buf, sizeof(buf)) < 0) {
|
||
|
int err = SOCKERRNO;
|
||
|
int return_success;
|
||
|
#ifdef USE_WINSOCK
|
||
|
return_success = WSAEWOULDBLOCK == err;
|
||
|
#else
|
||
|
if(EINTR == err)
|
||
|
continue;
|
||
|
return_success = EWOULDBLOCK == err || EAGAIN == err;
|
||
|
#endif
|
||
|
if(!return_success)
|
||
|
return CURLM_WAKEUP_FAILURE;
|
||
|
}
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
return CURLM_WAKEUP_FAILURE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* multi_ischanged() is called
|
||
|
*
|
||
|
* Returns TRUE/FALSE whether the state is changed to trigger a CONNECT_PEND
|
||
|
* => CONNECT action.
|
||
|
*
|
||
|
* Set 'clear' to TRUE to have it also clear the state variable.
|
||
|
*/
|
||
|
static bool multi_ischanged(struct Curl_multi *multi, bool clear)
|
||
|
{
|
||
|
bool retval = multi->recheckstate;
|
||
|
if(clear)
|
||
|
multi->recheckstate = FALSE;
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Curl_multi_connchanged() is called to tell that there is a connection in
|
||
|
* this multi handle that has changed state (multiplexing become possible, the
|
||
|
* number of allowed streams changed or similar), and a subsequent use of this
|
||
|
* multi handle should move CONNECT_PEND handles back to CONNECT to have them
|
||
|
* retry.
|
||
|
*/
|
||
|
void Curl_multi_connchanged(struct Curl_multi *multi)
|
||
|
{
|
||
|
multi->recheckstate = TRUE;
|
||
|
}
|
||
|
|
||
|
CURLMcode Curl_multi_add_perform(struct Curl_multi *multi,
|
||
|
struct Curl_easy *data,
|
||
|
struct connectdata *conn)
|
||
|
{
|
||
|
CURLMcode rc;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
rc = curl_multi_add_handle(multi, data);
|
||
|
if(!rc) {
|
||
|
struct SingleRequest *k = &data->req;
|
||
|
|
||
|
/* pass in NULL for 'conn' here since we don't want to init the
|
||
|
connection, only this transfer */
|
||
|
Curl_init_do(data, NULL);
|
||
|
|
||
|
/* take this handle to the perform state right away */
|
||
|
multistate(data, MSTATE_PERFORMING);
|
||
|
Curl_attach_connection(data, conn);
|
||
|
k->keepon |= KEEP_RECV; /* setup to receive! */
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static CURLcode multi_do(struct Curl_easy *data, bool *done)
|
||
|
{
|
||
|
CURLcode result = CURLE_OK;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
|
||
|
DEBUGASSERT(conn);
|
||
|
DEBUGASSERT(conn->handler);
|
||
|
|
||
|
if(conn->handler->do_it)
|
||
|
result = conn->handler->do_it(data, done);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* multi_do_more() is called during the DO_MORE multi state. It is basically a
|
||
|
* second stage DO state which (wrongly) was introduced to support FTP's
|
||
|
* second connection.
|
||
|
*
|
||
|
* 'complete' can return 0 for incomplete, 1 for done and -1 for go back to
|
||
|
* DOING state there's more work to do!
|
||
|
*/
|
||
|
|
||
|
static CURLcode multi_do_more(struct Curl_easy *data, int *complete)
|
||
|
{
|
||
|
CURLcode result = CURLE_OK;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
|
||
|
*complete = 0;
|
||
|
|
||
|
if(conn->handler->do_more)
|
||
|
result = conn->handler->do_more(data, complete);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether a timeout occurred, and handle it if it did
|
||
|
*/
|
||
|
static bool multi_handle_timeout(struct Curl_easy *data,
|
||
|
struct curltime *now,
|
||
|
bool *stream_error,
|
||
|
CURLcode *result,
|
||
|
bool connect_timeout)
|
||
|
{
|
||
|
timediff_t timeout_ms;
|
||
|
timeout_ms = Curl_timeleft(data, now, connect_timeout);
|
||
|
|
||
|
if(timeout_ms < 0) {
|
||
|
/* Handle timed out */
|
||
|
if(data->mstate == MSTATE_RESOLVING)
|
||
|
failf(data, "Resolving timed out after %" CURL_FORMAT_TIMEDIFF_T
|
||
|
" milliseconds",
|
||
|
Curl_timediff(*now, data->progress.t_startsingle));
|
||
|
else if(data->mstate == MSTATE_CONNECTING)
|
||
|
failf(data, "Connection timed out after %" CURL_FORMAT_TIMEDIFF_T
|
||
|
" milliseconds",
|
||
|
Curl_timediff(*now, data->progress.t_startsingle));
|
||
|
else {
|
||
|
struct SingleRequest *k = &data->req;
|
||
|
if(k->size != -1) {
|
||
|
failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
|
||
|
" milliseconds with %" CURL_FORMAT_CURL_OFF_T " out of %"
|
||
|
CURL_FORMAT_CURL_OFF_T " bytes received",
|
||
|
Curl_timediff(*now, data->progress.t_startsingle),
|
||
|
k->bytecount, k->size);
|
||
|
}
|
||
|
else {
|
||
|
failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T
|
||
|
" milliseconds with %" CURL_FORMAT_CURL_OFF_T
|
||
|
" bytes received",
|
||
|
Curl_timediff(*now, data->progress.t_startsingle),
|
||
|
k->bytecount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Force connection closed if the connection has indeed been used */
|
||
|
if(data->mstate > MSTATE_DO) {
|
||
|
streamclose(data->conn, "Disconnected with pending data");
|
||
|
*stream_error = TRUE;
|
||
|
}
|
||
|
*result = CURLE_OPERATION_TIMEDOUT;
|
||
|
(void)multi_done(data, *result, TRUE);
|
||
|
}
|
||
|
|
||
|
return (timeout_ms < 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We are doing protocol-specific connecting and this is being called over and
|
||
|
* over from the multi interface until the connection phase is done on
|
||
|
* protocol layer.
|
||
|
*/
|
||
|
|
||
|
static CURLcode protocol_connecting(struct Curl_easy *data, bool *done)
|
||
|
{
|
||
|
CURLcode result = CURLE_OK;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
|
||
|
if(conn && conn->handler->connecting) {
|
||
|
*done = FALSE;
|
||
|
result = conn->handler->connecting(data, done);
|
||
|
}
|
||
|
else
|
||
|
*done = TRUE;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We are DOING this is being called over and over from the multi interface
|
||
|
* until the DOING phase is done on protocol layer.
|
||
|
*/
|
||
|
|
||
|
static CURLcode protocol_doing(struct Curl_easy *data, bool *done)
|
||
|
{
|
||
|
CURLcode result = CURLE_OK;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
|
||
|
if(conn && conn->handler->doing) {
|
||
|
*done = FALSE;
|
||
|
result = conn->handler->doing(data, done);
|
||
|
}
|
||
|
else
|
||
|
*done = TRUE;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We have discovered that the TCP connection has been successful, we can now
|
||
|
* proceed with some action.
|
||
|
*
|
||
|
*/
|
||
|
static CURLcode protocol_connect(struct Curl_easy *data,
|
||
|
bool *protocol_done)
|
||
|
{
|
||
|
CURLcode result = CURLE_OK;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
DEBUGASSERT(conn);
|
||
|
DEBUGASSERT(protocol_done);
|
||
|
|
||
|
*protocol_done = FALSE;
|
||
|
|
||
|
if(Curl_conn_is_connected(conn, FIRSTSOCKET)
|
||
|
&& conn->bits.protoconnstart) {
|
||
|
/* We already are connected, get back. This may happen when the connect
|
||
|
worked fine in the first call, like when we connect to a local server
|
||
|
or proxy. Note that we don't know if the protocol is actually done.
|
||
|
|
||
|
Unless this protocol doesn't have any protocol-connect callback, as
|
||
|
then we know we're done. */
|
||
|
if(!conn->handler->connecting)
|
||
|
*protocol_done = TRUE;
|
||
|
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
if(!conn->bits.protoconnstart) {
|
||
|
if(conn->handler->connect_it) {
|
||
|
/* is there a protocol-specific connect() procedure? */
|
||
|
|
||
|
/* Call the protocol-specific connect function */
|
||
|
result = conn->handler->connect_it(data, protocol_done);
|
||
|
}
|
||
|
else
|
||
|
*protocol_done = TRUE;
|
||
|
|
||
|
/* it has started, possibly even completed but that knowledge isn't stored
|
||
|
in this bit! */
|
||
|
if(!result)
|
||
|
conn->bits.protoconnstart = TRUE;
|
||
|
}
|
||
|
|
||
|
return result; /* pass back status */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* readrewind() rewinds the read stream. This is typically used for HTTP
|
||
|
* POST/PUT with multi-pass authentication when a sending was denied and a
|
||
|
* resend is necessary.
|
||
|
*/
|
||
|
static CURLcode readrewind(struct Curl_easy *data)
|
||
|
{
|
||
|
curl_mimepart *mimepart = &data->set.mimepost;
|
||
|
DEBUGASSERT(data->conn);
|
||
|
|
||
|
data->state.rewindbeforesend = FALSE; /* we rewind now */
|
||
|
|
||
|
/* explicitly switch off sending data on this connection now since we are
|
||
|
about to restart a new transfer and thus we want to avoid inadvertently
|
||
|
sending more data on the existing connection until the next transfer
|
||
|
starts */
|
||
|
data->req.keepon &= ~KEEP_SEND;
|
||
|
|
||
|
/* We have sent away data. If not using CURLOPT_POSTFIELDS or
|
||
|
CURLOPT_HTTPPOST, call app to rewind
|
||
|
*/
|
||
|
#ifndef CURL_DISABLE_HTTP
|
||
|
if(data->conn->handler->protocol & PROTO_FAMILY_HTTP) {
|
||
|
if(data->state.mimepost)
|
||
|
mimepart = data->state.mimepost;
|
||
|
}
|
||
|
#endif
|
||
|
if(data->set.postfields ||
|
||
|
(data->state.httpreq == HTTPREQ_GET) ||
|
||
|
(data->state.httpreq == HTTPREQ_HEAD))
|
||
|
; /* no need to rewind */
|
||
|
else if(data->state.httpreq == HTTPREQ_POST_MIME ||
|
||
|
data->state.httpreq == HTTPREQ_POST_FORM) {
|
||
|
CURLcode result = Curl_mime_rewind(mimepart);
|
||
|
if(result) {
|
||
|
failf(data, "Cannot rewind mime/post data");
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if(data->set.seek_func) {
|
||
|
int err;
|
||
|
|
||
|
Curl_set_in_callback(data, true);
|
||
|
err = (data->set.seek_func)(data->set.seek_client, 0, SEEK_SET);
|
||
|
Curl_set_in_callback(data, false);
|
||
|
if(err) {
|
||
|
failf(data, "seek callback returned error %d", (int)err);
|
||
|
return CURLE_SEND_FAIL_REWIND;
|
||
|
}
|
||
|
}
|
||
|
else if(data->set.ioctl_func) {
|
||
|
curlioerr err;
|
||
|
|
||
|
Curl_set_in_callback(data, true);
|
||
|
err = (data->set.ioctl_func)(data, CURLIOCMD_RESTARTREAD,
|
||
|
data->set.ioctl_client);
|
||
|
Curl_set_in_callback(data, false);
|
||
|
infof(data, "the ioctl callback returned %d", (int)err);
|
||
|
|
||
|
if(err) {
|
||
|
failf(data, "ioctl callback returned error %d", (int)err);
|
||
|
return CURLE_SEND_FAIL_REWIND;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* If no CURLOPT_READFUNCTION is used, we know that we operate on a
|
||
|
given FILE * stream and we can actually attempt to rewind that
|
||
|
ourselves with fseek() */
|
||
|
if(data->state.fread_func == (curl_read_callback)fread) {
|
||
|
if(-1 != fseek(data->state.in, 0, SEEK_SET))
|
||
|
/* successful rewind */
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
/* no callback set or failure above, makes us fail at once */
|
||
|
failf(data, "necessary data rewind wasn't possible");
|
||
|
return CURLE_SEND_FAIL_REWIND;
|
||
|
}
|
||
|
}
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Curl_preconnect() is called immediately before a connect starts. When a
|
||
|
* redirect is followed, this is then called multiple times during a single
|
||
|
* transfer.
|
||
|
*/
|
||
|
CURLcode Curl_preconnect(struct Curl_easy *data)
|
||
|
{
|
||
|
if(!data->state.buffer) {
|
||
|
data->state.buffer = malloc(data->set.buffer_size + 1);
|
||
|
if(!data->state.buffer)
|
||
|
return CURLE_OUT_OF_MEMORY;
|
||
|
}
|
||
|
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
static void set_in_callback(struct Curl_multi *multi, bool value)
|
||
|
{
|
||
|
multi->in_callback = value;
|
||
|
}
|
||
|
|
||
|
static CURLMcode multi_runsingle(struct Curl_multi *multi,
|
||
|
struct curltime *nowp,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct Curl_message *msg = NULL;
|
||
|
bool connected;
|
||
|
bool async;
|
||
|
bool protocol_connected = FALSE;
|
||
|
bool dophase_done = FALSE;
|
||
|
bool done = FALSE;
|
||
|
CURLMcode rc;
|
||
|
CURLcode result = CURLE_OK;
|
||
|
timediff_t recv_timeout_ms;
|
||
|
timediff_t send_timeout_ms;
|
||
|
int control;
|
||
|
|
||
|
if(!GOOD_EASY_HANDLE(data))
|
||
|
return CURLM_BAD_EASY_HANDLE;
|
||
|
|
||
|
if(multi->dead) {
|
||
|
/* a multi-level callback returned error before, meaning every individual
|
||
|
transfer now has failed */
|
||
|
result = CURLE_ABORTED_BY_CALLBACK;
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, FALSE);
|
||
|
multistate(data, MSTATE_COMPLETED);
|
||
|
}
|
||
|
|
||
|
multi_warn_debug(multi, data);
|
||
|
|
||
|
do {
|
||
|
/* A "stream" here is a logical stream if the protocol can handle that
|
||
|
(HTTP/2), or the full connection for older protocols */
|
||
|
bool stream_error = FALSE;
|
||
|
rc = CURLM_OK;
|
||
|
|
||
|
if(multi_ischanged(multi, TRUE)) {
|
||
|
DEBUGF(infof(data, "multi changed, check CONNECT_PEND queue"));
|
||
|
process_pending_handles(multi); /* multiplexed */
|
||
|
}
|
||
|
|
||
|
if(data->mstate > MSTATE_CONNECT &&
|
||
|
data->mstate < MSTATE_COMPLETED) {
|
||
|
/* Make sure we set the connection's current owner */
|
||
|
DEBUGASSERT(data->conn);
|
||
|
if(!data->conn)
|
||
|
return CURLM_INTERNAL_ERROR;
|
||
|
}
|
||
|
|
||
|
if(data->conn &&
|
||
|
(data->mstate >= MSTATE_CONNECT) &&
|
||
|
(data->mstate < MSTATE_COMPLETED)) {
|
||
|
/* Check for overall operation timeout here but defer handling the
|
||
|
* connection timeout to later, to allow for a connection to be set up
|
||
|
* in the window since we last checked timeout. This prevents us
|
||
|
* tearing down a completed connection in the case where we were slow
|
||
|
* to check the timeout (e.g. process descheduled during this loop).
|
||
|
* We set connect_timeout=FALSE to do this. */
|
||
|
|
||
|
/* we need to wait for the connect state as only then is the start time
|
||
|
stored, but we must not check already completed handles */
|
||
|
if(multi_handle_timeout(data, nowp, &stream_error, &result, FALSE)) {
|
||
|
/* Skip the statemachine and go directly to error handling section. */
|
||
|
goto statemachine_end;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
switch(data->mstate) {
|
||
|
case MSTATE_INIT:
|
||
|
/* init this transfer. */
|
||
|
result = Curl_pretransfer(data);
|
||
|
|
||
|
if(!result) {
|
||
|
/* after init, go CONNECT */
|
||
|
multistate(data, MSTATE_CONNECT);
|
||
|
*nowp = Curl_pgrsTime(data, TIMER_STARTOP);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_CONNECT:
|
||
|
/* Connect. We want to get a connection identifier filled in. */
|
||
|
/* init this transfer. */
|
||
|
result = Curl_preconnect(data);
|
||
|
if(result)
|
||
|
break;
|
||
|
|
||
|
*nowp = Curl_pgrsTime(data, TIMER_STARTSINGLE);
|
||
|
if(data->set.timeout)
|
||
|
Curl_expire(data, data->set.timeout, EXPIRE_TIMEOUT);
|
||
|
|
||
|
if(data->set.connecttimeout)
|
||
|
Curl_expire(data, data->set.connecttimeout, EXPIRE_CONNECTTIMEOUT);
|
||
|
|
||
|
result = Curl_connect(data, &async, &connected);
|
||
|
if(CURLE_NO_CONNECTION_AVAILABLE == result) {
|
||
|
/* There was no connection available. We will go to the pending
|
||
|
state and wait for an available connection. */
|
||
|
multistate(data, MSTATE_PENDING);
|
||
|
|
||
|
/* add this handle to the list of connect-pending handles */
|
||
|
Curl_llist_insert_next(&multi->pending, multi->pending.tail, data,
|
||
|
&data->connect_queue);
|
||
|
/* unlink from the main list */
|
||
|
unlink_easy(multi, data);
|
||
|
result = CURLE_OK;
|
||
|
break;
|
||
|
}
|
||
|
else if(data->state.previouslypending) {
|
||
|
/* this transfer comes from the pending queue so try move another */
|
||
|
infof(data, "Transfer was pending, now try another");
|
||
|
process_pending_handles(data->multi);
|
||
|
}
|
||
|
|
||
|
if(!result) {
|
||
|
*nowp = Curl_pgrsTime(data, TIMER_POSTQUEUE);
|
||
|
if(async)
|
||
|
/* We're now waiting for an asynchronous name lookup */
|
||
|
multistate(data, MSTATE_RESOLVING);
|
||
|
else {
|
||
|
/* after the connect has been sent off, go WAITCONNECT unless the
|
||
|
protocol connect is already done and we can go directly to
|
||
|
WAITDO or DO! */
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
|
||
|
if(connected)
|
||
|
multistate(data, MSTATE_PROTOCONNECT);
|
||
|
else {
|
||
|
multistate(data, MSTATE_CONNECTING);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_RESOLVING:
|
||
|
/* awaiting an asynch name resolve to complete */
|
||
|
{
|
||
|
struct Curl_dns_entry *dns = NULL;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
const char *hostname;
|
||
|
|
||
|
DEBUGASSERT(conn);
|
||
|
#ifndef CURL_DISABLE_PROXY
|
||
|
if(conn->bits.httpproxy)
|
||
|
hostname = conn->http_proxy.host.name;
|
||
|
else
|
||
|
#endif
|
||
|
if(conn->bits.conn_to_host)
|
||
|
hostname = conn->conn_to_host.name;
|
||
|
else
|
||
|
hostname = conn->host.name;
|
||
|
|
||
|
/* check if we have the name resolved by now */
|
||
|
dns = Curl_fetch_addr(data, hostname, (int)conn->port);
|
||
|
|
||
|
if(dns) {
|
||
|
#ifdef CURLRES_ASYNCH
|
||
|
data->state.async.dns = dns;
|
||
|
data->state.async.done = TRUE;
|
||
|
#endif
|
||
|
result = CURLE_OK;
|
||
|
infof(data, "Hostname '%s' was found in DNS cache", hostname);
|
||
|
}
|
||
|
|
||
|
if(!dns)
|
||
|
result = Curl_resolv_check(data, &dns);
|
||
|
|
||
|
/* Update sockets here, because the socket(s) may have been
|
||
|
closed and the application thus needs to be told, even if it
|
||
|
is likely that the same socket(s) will again be used further
|
||
|
down. If the name has not yet been resolved, it is likely
|
||
|
that new sockets have been opened in an attempt to contact
|
||
|
another resolver. */
|
||
|
rc = singlesocket(multi, data);
|
||
|
if(rc)
|
||
|
return rc;
|
||
|
|
||
|
if(dns) {
|
||
|
/* Perform the next step in the connection phase, and then move on
|
||
|
to the WAITCONNECT state */
|
||
|
result = Curl_once_resolved(data, &connected);
|
||
|
|
||
|
if(result)
|
||
|
/* if Curl_once_resolved() returns failure, the connection struct
|
||
|
is already freed and gone */
|
||
|
data->conn = NULL; /* no more connection */
|
||
|
else {
|
||
|
/* call again please so that we get the next socket setup */
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
if(connected)
|
||
|
multistate(data, MSTATE_PROTOCONNECT);
|
||
|
else {
|
||
|
multistate(data, MSTATE_CONNECTING);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(result) {
|
||
|
/* failure detected */
|
||
|
stream_error = TRUE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
#ifndef CURL_DISABLE_HTTP
|
||
|
case MSTATE_TUNNELING:
|
||
|
/* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */
|
||
|
DEBUGASSERT(data->conn);
|
||
|
result = Curl_http_connect(data, &protocol_connected);
|
||
|
#ifndef CURL_DISABLE_PROXY
|
||
|
if(data->conn->bits.proxy_connect_closed) {
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
/* connect back to proxy again */
|
||
|
result = CURLE_OK;
|
||
|
multi_done(data, CURLE_OK, FALSE);
|
||
|
multistate(data, MSTATE_CONNECT);
|
||
|
}
|
||
|
else
|
||
|
#endif
|
||
|
if(!result) {
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
/* initiate protocol connect phase */
|
||
|
multistate(data, MSTATE_PROTOCONNECT);
|
||
|
}
|
||
|
else
|
||
|
stream_error = TRUE;
|
||
|
break;
|
||
|
#endif
|
||
|
|
||
|
case MSTATE_CONNECTING:
|
||
|
/* awaiting a completion of an asynch TCP connect */
|
||
|
DEBUGASSERT(data->conn);
|
||
|
result = Curl_conn_connect(data, FIRSTSOCKET, FALSE, &connected);
|
||
|
if(connected && !result) {
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
multistate(data, MSTATE_PROTOCONNECT);
|
||
|
}
|
||
|
else if(result) {
|
||
|
/* failure detected */
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, TRUE);
|
||
|
stream_error = TRUE;
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_PROTOCONNECT:
|
||
|
if(data->state.rewindbeforesend)
|
||
|
result = readrewind(data);
|
||
|
|
||
|
if(!result && data->conn->bits.reuse) {
|
||
|
/* ftp seems to hang when protoconnect on reused connection
|
||
|
* since we handle PROTOCONNECT in general inside the filers, it
|
||
|
* seems wrong to restart this on a reused connection. */
|
||
|
multistate(data, MSTATE_DO);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
break;
|
||
|
}
|
||
|
if(!result)
|
||
|
result = protocol_connect(data, &protocol_connected);
|
||
|
if(!result && !protocol_connected) {
|
||
|
/* switch to waiting state */
|
||
|
multistate(data, MSTATE_PROTOCONNECTING);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
else if(!result) {
|
||
|
/* protocol connect has completed, go WAITDO or DO */
|
||
|
multistate(data, MSTATE_DO);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
else {
|
||
|
/* failure detected */
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, TRUE);
|
||
|
stream_error = TRUE;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_PROTOCONNECTING:
|
||
|
/* protocol-specific connect phase */
|
||
|
result = protocol_connecting(data, &protocol_connected);
|
||
|
if(!result && protocol_connected) {
|
||
|
/* after the connect has completed, go WAITDO or DO */
|
||
|
multistate(data, MSTATE_DO);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
else if(result) {
|
||
|
/* failure detected */
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, TRUE);
|
||
|
stream_error = TRUE;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DO:
|
||
|
if(data->set.fprereq) {
|
||
|
int prereq_rc;
|
||
|
|
||
|
/* call the prerequest callback function */
|
||
|
Curl_set_in_callback(data, true);
|
||
|
prereq_rc = data->set.fprereq(data->set.prereq_userp,
|
||
|
data->info.conn_primary_ip,
|
||
|
data->info.conn_local_ip,
|
||
|
data->info.conn_primary_port,
|
||
|
data->info.conn_local_port);
|
||
|
Curl_set_in_callback(data, false);
|
||
|
if(prereq_rc != CURL_PREREQFUNC_OK) {
|
||
|
failf(data, "operation aborted by pre-request callback");
|
||
|
/* failure in pre-request callback - don't do any other processing */
|
||
|
result = CURLE_ABORTED_BY_CALLBACK;
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, FALSE);
|
||
|
stream_error = TRUE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(data->set.connect_only == 1) {
|
||
|
/* keep connection open for application to use the socket */
|
||
|
connkeep(data->conn, "CONNECT_ONLY");
|
||
|
multistate(data, MSTATE_DONE);
|
||
|
result = CURLE_OK;
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
else {
|
||
|
/* Perform the protocol's DO action */
|
||
|
result = multi_do(data, &dophase_done);
|
||
|
|
||
|
/* When multi_do() returns failure, data->conn might be NULL! */
|
||
|
|
||
|
if(!result) {
|
||
|
if(!dophase_done) {
|
||
|
#ifndef CURL_DISABLE_FTP
|
||
|
/* some steps needed for wildcard matching */
|
||
|
if(data->state.wildcardmatch) {
|
||
|
struct WildcardData *wc = data->wildcard;
|
||
|
if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) {
|
||
|
/* skip some states if it is important */
|
||
|
multi_done(data, CURLE_OK, FALSE);
|
||
|
|
||
|
/* if there's no connection left, skip the DONE state */
|
||
|
multistate(data, data->conn ?
|
||
|
MSTATE_DONE : MSTATE_COMPLETED);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
/* DO was not completed in one function call, we must continue
|
||
|
DOING... */
|
||
|
multistate(data, MSTATE_DOING);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
|
||
|
/* after DO, go DO_DONE... or DO_MORE */
|
||
|
else if(data->conn->bits.do_more) {
|
||
|
/* we're supposed to do more, but we need to sit down, relax
|
||
|
and wait a little while first */
|
||
|
multistate(data, MSTATE_DOING_MORE);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
else {
|
||
|
/* we're done with the DO, now DID */
|
||
|
multistate(data, MSTATE_DID);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
}
|
||
|
else if((CURLE_SEND_ERROR == result) &&
|
||
|
data->conn->bits.reuse) {
|
||
|
/*
|
||
|
* In this situation, a connection that we were trying to use
|
||
|
* may have unexpectedly died. If possible, send the connection
|
||
|
* back to the CONNECT phase so we can try again.
|
||
|
*/
|
||
|
char *newurl = NULL;
|
||
|
followtype follow = FOLLOW_NONE;
|
||
|
CURLcode drc;
|
||
|
|
||
|
drc = Curl_retry_request(data, &newurl);
|
||
|
if(drc) {
|
||
|
/* a failure here pretty much implies an out of memory */
|
||
|
result = drc;
|
||
|
stream_error = TRUE;
|
||
|
}
|
||
|
|
||
|
Curl_posttransfer(data);
|
||
|
drc = multi_done(data, result, FALSE);
|
||
|
|
||
|
/* When set to retry the connection, we must go back to the CONNECT
|
||
|
* state */
|
||
|
if(newurl) {
|
||
|
if(!drc || (drc == CURLE_SEND_ERROR)) {
|
||
|
follow = FOLLOW_RETRY;
|
||
|
drc = Curl_follow(data, newurl, follow);
|
||
|
if(!drc) {
|
||
|
multistate(data, MSTATE_CONNECT);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
result = CURLE_OK;
|
||
|
}
|
||
|
else {
|
||
|
/* Follow failed */
|
||
|
result = drc;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* done didn't return OK or SEND_ERROR */
|
||
|
result = drc;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* Have error handler disconnect conn if we can't retry */
|
||
|
stream_error = TRUE;
|
||
|
}
|
||
|
free(newurl);
|
||
|
}
|
||
|
else {
|
||
|
/* failure detected */
|
||
|
Curl_posttransfer(data);
|
||
|
if(data->conn)
|
||
|
multi_done(data, result, FALSE);
|
||
|
stream_error = TRUE;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DOING:
|
||
|
/* we continue DOING until the DO phase is complete */
|
||
|
DEBUGASSERT(data->conn);
|
||
|
result = protocol_doing(data, &dophase_done);
|
||
|
if(!result) {
|
||
|
if(dophase_done) {
|
||
|
/* after DO, go DO_DONE or DO_MORE */
|
||
|
multistate(data, data->conn->bits.do_more?
|
||
|
MSTATE_DOING_MORE : MSTATE_DID);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
} /* dophase_done */
|
||
|
}
|
||
|
else {
|
||
|
/* failure detected */
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, FALSE);
|
||
|
stream_error = TRUE;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DOING_MORE:
|
||
|
/*
|
||
|
* When we are connected, DOING MORE and then go DID
|
||
|
*/
|
||
|
DEBUGASSERT(data->conn);
|
||
|
result = multi_do_more(data, &control);
|
||
|
|
||
|
if(!result) {
|
||
|
if(control) {
|
||
|
/* if positive, advance to DO_DONE
|
||
|
if negative, go back to DOING */
|
||
|
multistate(data, control == 1?
|
||
|
MSTATE_DID : MSTATE_DOING);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
/* else
|
||
|
stay in DO_MORE */
|
||
|
}
|
||
|
else {
|
||
|
/* failure detected */
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, FALSE);
|
||
|
stream_error = TRUE;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_DID:
|
||
|
DEBUGASSERT(data->conn);
|
||
|
if(data->conn->bits.multiplex)
|
||
|
/* Check if we can move pending requests to send pipe */
|
||
|
process_pending_handles(multi); /* multiplexed */
|
||
|
|
||
|
/* Only perform the transfer if there's a good socket to work with.
|
||
|
Having both BAD is a signal to skip immediately to DONE */
|
||
|
if((data->conn->sockfd != CURL_SOCKET_BAD) ||
|
||
|
(data->conn->writesockfd != CURL_SOCKET_BAD))
|
||
|
multistate(data, MSTATE_PERFORMING);
|
||
|
else {
|
||
|
#ifndef CURL_DISABLE_FTP
|
||
|
if(data->state.wildcardmatch &&
|
||
|
((data->conn->handler->flags & PROTOPT_WILDCARD) == 0)) {
|
||
|
data->wildcard->state = CURLWC_DONE;
|
||
|
}
|
||
|
#endif
|
||
|
multistate(data, MSTATE_DONE);
|
||
|
}
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
break;
|
||
|
|
||
|
case MSTATE_RATELIMITING: /* limit-rate exceeded in either direction */
|
||
|
DEBUGASSERT(data->conn);
|
||
|
/* if both rates are within spec, resume transfer */
|
||
|
if(Curl_pgrsUpdate(data))
|
||
|
result = CURLE_ABORTED_BY_CALLBACK;
|
||
|
else
|
||
|
result = Curl_speedcheck(data, *nowp);
|
||
|
|
||
|
if(result) {
|
||
|
if(!(data->conn->handler->flags & PROTOPT_DUAL) &&
|
||
|
result != CURLE_HTTP2_STREAM)
|
||
|
streamclose(data->conn, "Transfer returned error");
|
||
|
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, TRUE);
|
||
|
}
|
||
|
else {
|
||
|
send_timeout_ms = 0;
|
||
|
if(data->set.max_send_speed)
|
||
|
send_timeout_ms =
|
||
|
Curl_pgrsLimitWaitTime(data->progress.uploaded,
|
||
|
data->progress.ul_limit_size,
|
||
|
data->set.max_send_speed,
|
||
|
data->progress.ul_limit_start,
|
||
|
*nowp);
|
||
|
|
||
|
recv_timeout_ms = 0;
|
||
|
if(data->set.max_recv_speed)
|
||
|
recv_timeout_ms =
|
||
|
Curl_pgrsLimitWaitTime(data->progress.downloaded,
|
||
|
data->progress.dl_limit_size,
|
||
|
data->set.max_recv_speed,
|
||
|
data->progress.dl_limit_start,
|
||
|
*nowp);
|
||
|
|
||
|
if(!send_timeout_ms && !recv_timeout_ms) {
|
||
|
multistate(data, MSTATE_PERFORMING);
|
||
|
Curl_ratelimit(data, *nowp);
|
||
|
}
|
||
|
else if(send_timeout_ms >= recv_timeout_ms)
|
||
|
Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
|
||
|
else
|
||
|
Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case MSTATE_PERFORMING:
|
||
|
{
|
||
|
char *newurl = NULL;
|
||
|
bool retry = FALSE;
|
||
|
DEBUGASSERT(data->state.buffer);
|
||
|
/* check if over send speed */
|
||
|
send_timeout_ms = 0;
|
||
|
if(data->set.max_send_speed)
|
||
|
send_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.uploaded,
|
||
|
data->progress.ul_limit_size,
|
||
|
data->set.max_send_speed,
|
||
|
data->progress.ul_limit_start,
|
||
|
*nowp);
|
||
|
|
||
|
/* check if over recv speed */
|
||
|
recv_timeout_ms = 0;
|
||
|
if(data->set.max_recv_speed)
|
||
|
recv_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.downloaded,
|
||
|
data->progress.dl_limit_size,
|
||
|
data->set.max_recv_speed,
|
||
|
data->progress.dl_limit_start,
|
||
|
*nowp);
|
||
|
|
||
|
if(send_timeout_ms || recv_timeout_ms) {
|
||
|
Curl_ratelimit(data, *nowp);
|
||
|
multistate(data, MSTATE_RATELIMITING);
|
||
|
if(send_timeout_ms >= recv_timeout_ms)
|
||
|
Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST);
|
||
|
else
|
||
|
Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* read/write data if it is ready to do so */
|
||
|
result = Curl_readwrite(data, &done);
|
||
|
|
||
|
if(done || (result == CURLE_RECV_ERROR)) {
|
||
|
/* If CURLE_RECV_ERROR happens early enough, we assume it was a race
|
||
|
* condition and the server closed the reused connection exactly when
|
||
|
* we wanted to use it, so figure out if that is indeed the case.
|
||
|
*/
|
||
|
CURLcode ret = Curl_retry_request(data, &newurl);
|
||
|
if(!ret)
|
||
|
retry = (newurl)?TRUE:FALSE;
|
||
|
else if(!result)
|
||
|
result = ret;
|
||
|
|
||
|
if(retry) {
|
||
|
/* if we are to retry, set the result to OK and consider the
|
||
|
request as done */
|
||
|
result = CURLE_OK;
|
||
|
done = TRUE;
|
||
|
}
|
||
|
}
|
||
|
else if((CURLE_HTTP2_STREAM == result) &&
|
||
|
Curl_h2_http_1_1_error(data)) {
|
||
|
CURLcode ret = Curl_retry_request(data, &newurl);
|
||
|
|
||
|
if(!ret) {
|
||
|
infof(data, "Downgrades to HTTP/1.1");
|
||
|
streamclose(data->conn, "Disconnect HTTP/2 for HTTP/1");
|
||
|
data->state.httpwant = CURL_HTTP_VERSION_1_1;
|
||
|
/* clear the error message bit too as we ignore the one we got */
|
||
|
data->state.errorbuf = FALSE;
|
||
|
if(!newurl)
|
||
|
/* typically for HTTP_1_1_REQUIRED error on first flight */
|
||
|
newurl = strdup(data->state.url);
|
||
|
/* if we are to retry, set the result to OK and consider the request
|
||
|
as done */
|
||
|
retry = TRUE;
|
||
|
result = CURLE_OK;
|
||
|
done = TRUE;
|
||
|
}
|
||
|
else
|
||
|
result = ret;
|
||
|
}
|
||
|
|
||
|
if(result) {
|
||
|
/*
|
||
|
* The transfer phase returned error, we mark the connection to get
|
||
|
* closed to prevent being reused. This is because we can't possibly
|
||
|
* know if the connection is in a good shape or not now. Unless it is
|
||
|
* a protocol which uses two "channels" like FTP, as then the error
|
||
|
* happened in the data connection.
|
||
|
*/
|
||
|
|
||
|
if(!(data->conn->handler->flags & PROTOPT_DUAL) &&
|
||
|
result != CURLE_HTTP2_STREAM)
|
||
|
streamclose(data->conn, "Transfer returned error");
|
||
|
|
||
|
Curl_posttransfer(data);
|
||
|
multi_done(data, result, TRUE);
|
||
|
}
|
||
|
else if(done) {
|
||
|
|
||
|
/* call this even if the readwrite function returned error */
|
||
|
Curl_posttransfer(data);
|
||
|
|
||
|
/* When we follow redirects or is set to retry the connection, we must
|
||
|
to go back to the CONNECT state */
|
||
|
if(data->req.newurl || retry) {
|
||
|
followtype follow = FOLLOW_NONE;
|
||
|
if(!retry) {
|
||
|
/* if the URL is a follow-location and not just a retried request
|
||
|
then figure out the URL here */
|
||
|
free(newurl);
|
||
|
newurl = data->req.newurl;
|
||
|
data->req.newurl = NULL;
|
||
|
follow = FOLLOW_REDIR;
|
||
|
}
|
||
|
else
|
||
|
follow = FOLLOW_RETRY;
|
||
|
(void)multi_done(data, CURLE_OK, FALSE);
|
||
|
/* multi_done() might return CURLE_GOT_NOTHING */
|
||
|
result = Curl_follow(data, newurl, follow);
|
||
|
if(!result) {
|
||
|
multistate(data, MSTATE_CONNECT);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
free(newurl);
|
||
|
}
|
||
|
else {
|
||
|
/* after the transfer is done, go DONE */
|
||
|
|
||
|
/* but first check to see if we got a location info even though we're
|
||
|
not following redirects */
|
||
|
if(data->req.location) {
|
||
|
free(newurl);
|
||
|
newurl = data->req.location;
|
||
|
data->req.location = NULL;
|
||
|
result = Curl_follow(data, newurl, FOLLOW_FAKE);
|
||
|
free(newurl);
|
||
|
if(result) {
|
||
|
stream_error = TRUE;
|
||
|
result = multi_done(data, result, TRUE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(!result) {
|
||
|
multistate(data, MSTATE_DONE);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if(data->state.select_bits) {
|
||
|
/* This avoids CURLM_CALL_MULTI_PERFORM so that a very fast transfer
|
||
|
won't get stuck on this transfer at the expense of other concurrent
|
||
|
transfers */
|
||
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case MSTATE_DONE:
|
||
|
/* this state is highly transient, so run another loop after this */
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
|
||
|
if(data->conn) {
|
||
|
CURLcode res;
|
||
|
|
||
|
if(data->conn->bits.multiplex)
|
||
|
/* Check if we can move pending requests to connection */
|
||
|
process_pending_handles(multi); /* multiplexing */
|
||
|
|
||
|
/* post-transfer command */
|
||
|
res = multi_done(data, result, FALSE);
|
||
|
|
||
|
/* allow a previously set error code take precedence */
|
||
|
if(!result)
|
||
|
result = res;
|
||
|
}
|
||
|
|
||
|
#ifndef CURL_DISABLE_FTP
|
||
|
if(data->state.wildcardmatch) {
|
||
|
if(data->wildcard->state != CURLWC_DONE) {
|
||
|
/* if a wildcard is set and we are not ending -> lets start again
|
||
|
with MSTATE_INIT */
|
||
|
multistate(data, MSTATE_INIT);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
/* after we have DONE what we're supposed to do, go COMPLETED, and
|
||
|
it doesn't matter what the multi_done() returned! */
|
||
|
multistate(data, MSTATE_COMPLETED);
|
||
|
break;
|
||
|
|
||
|
case MSTATE_COMPLETED:
|
||
|
break;
|
||
|
|
||
|
case MSTATE_PENDING:
|
||
|
case MSTATE_MSGSENT:
|
||
|
/* handles in these states should NOT be in this list */
|
||
|
DEBUGASSERT(0);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return CURLM_INTERNAL_ERROR;
|
||
|
}
|
||
|
|
||
|
if(data->conn &&
|
||
|
data->mstate >= MSTATE_CONNECT &&
|
||
|
data->mstate < MSTATE_DO &&
|
||
|
rc != CURLM_CALL_MULTI_PERFORM &&
|
||
|
!multi_ischanged(multi, false)) {
|
||
|
/* We now handle stream timeouts if and only if this will be the last
|
||
|
* loop iteration. We only check this on the last iteration to ensure
|
||
|
* that if we know we have additional work to do immediately
|
||
|
* (i.e. CURLM_CALL_MULTI_PERFORM == TRUE) then we should do that before
|
||
|
* declaring the connection timed out as we may almost have a completed
|
||
|
* connection. */
|
||
|
multi_handle_timeout(data, nowp, &stream_error, &result, TRUE);
|
||
|
}
|
||
|
|
||
|
statemachine_end:
|
||
|
|
||
|
if(data->mstate < MSTATE_COMPLETED) {
|
||
|
if(result) {
|
||
|
/*
|
||
|
* If an error was returned, and we aren't in completed state now,
|
||
|
* then we go to completed and consider this transfer aborted.
|
||
|
*/
|
||
|
|
||
|
/* NOTE: no attempt to disconnect connections must be made
|
||
|
in the case blocks above - cleanup happens only here */
|
||
|
|
||
|
/* Check if we can move pending requests to send pipe */
|
||
|
process_pending_handles(multi); /* connection */
|
||
|
|
||
|
if(data->conn) {
|
||
|
if(stream_error) {
|
||
|
/* Don't attempt to send data over a connection that timed out */
|
||
|
bool dead_connection = result == CURLE_OPERATION_TIMEDOUT;
|
||
|
struct connectdata *conn = data->conn;
|
||
|
|
||
|
/* This is where we make sure that the conn pointer is reset.
|
||
|
We don't have to do this in every case block above where a
|
||
|
failure is detected */
|
||
|
Curl_detach_connection(data);
|
||
|
|
||
|
/* remove connection from cache */
|
||
|
Curl_conncache_remove_conn(data, conn, TRUE);
|
||
|
|
||
|
/* disconnect properly */
|
||
|
Curl_disconnect(data, conn, dead_connection);
|
||
|
}
|
||
|
}
|
||
|
else if(data->mstate == MSTATE_CONNECT) {
|
||
|
/* Curl_connect() failed */
|
||
|
(void)Curl_posttransfer(data);
|
||
|
}
|
||
|
|
||
|
multistate(data, MSTATE_COMPLETED);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
/* if there's still a connection to use, call the progress function */
|
||
|
else if(data->conn && Curl_pgrsUpdate(data)) {
|
||
|
/* aborted due to progress callback return code must close the
|
||
|
connection */
|
||
|
result = CURLE_ABORTED_BY_CALLBACK;
|
||
|
streamclose(data->conn, "Aborted by callback");
|
||
|
|
||
|
/* if not yet in DONE state, go there, otherwise COMPLETED */
|
||
|
multistate(data, (data->mstate < MSTATE_DONE)?
|
||
|
MSTATE_DONE: MSTATE_COMPLETED);
|
||
|
rc = CURLM_CALL_MULTI_PERFORM;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(MSTATE_COMPLETED == data->mstate) {
|
||
|
if(data->set.fmultidone) {
|
||
|
/* signal via callback instead */
|
||
|
data->set.fmultidone(data, result);
|
||
|
}
|
||
|
else {
|
||
|
/* now fill in the Curl_message with this info */
|
||
|
msg = &data->msg;
|
||
|
|
||
|
msg->extmsg.msg = CURLMSG_DONE;
|
||
|
msg->extmsg.easy_handle = data;
|
||
|
msg->extmsg.data.result = result;
|
||
|
|
||
|
multi_addmsg(multi, msg);
|
||
|
DEBUGASSERT(!data->conn);
|
||
|
}
|
||
|
multistate(data, MSTATE_MSGSENT);
|
||
|
|
||
|
/* add this handle to the list of msgsent handles */
|
||
|
Curl_llist_insert_next(&multi->msgsent, multi->msgsent.tail, data,
|
||
|
&data->connect_queue);
|
||
|
/* unlink from the main list */
|
||
|
unlink_easy(multi, data);
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
} while((rc == CURLM_CALL_MULTI_PERFORM) || multi_ischanged(multi, FALSE));
|
||
|
|
||
|
data->result = result;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
|
||
|
CURLMcode curl_multi_perform(struct Curl_multi *multi, int *running_handles)
|
||
|
{
|
||
|
struct Curl_easy *data;
|
||
|
CURLMcode returncode = CURLM_OK;
|
||
|
struct Curl_tree *t;
|
||
|
struct curltime now = Curl_now();
|
||
|
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
data = multi->easyp;
|
||
|
if(data) {
|
||
|
CURLMcode result;
|
||
|
bool nosig = data->set.no_signal;
|
||
|
SIGPIPE_VARIABLE(pipe_st);
|
||
|
sigpipe_ignore(data, &pipe_st);
|
||
|
/* Do the loop and only alter the signal ignore state if the next handle
|
||
|
has a different NO_SIGNAL state than the previous */
|
||
|
do {
|
||
|
/* the current node might be unlinked in multi_runsingle(), get the next
|
||
|
pointer now */
|
||
|
struct Curl_easy *datanext = data->next;
|
||
|
if(data->set.no_signal != nosig) {
|
||
|
sigpipe_restore(&pipe_st);
|
||
|
sigpipe_ignore(data, &pipe_st);
|
||
|
nosig = data->set.no_signal;
|
||
|
}
|
||
|
result = multi_runsingle(multi, &now, data);
|
||
|
if(result)
|
||
|
returncode = result;
|
||
|
data = datanext; /* operate on next handle */
|
||
|
} while(data);
|
||
|
sigpipe_restore(&pipe_st);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Simply remove all expired timers from the splay since handles are dealt
|
||
|
* with unconditionally by this function and curl_multi_timeout() requires
|
||
|
* that already passed/handled expire times are removed from the splay.
|
||
|
*
|
||
|
* It is important that the 'now' value is set at the entry of this function
|
||
|
* and not for the current time as it may have ticked a little while since
|
||
|
* then and then we risk this loop to remove timers that actually have not
|
||
|
* been handled!
|
||
|
*/
|
||
|
do {
|
||
|
multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
|
||
|
if(t)
|
||
|
/* the removed may have another timeout in queue */
|
||
|
(void)add_next_timeout(now, multi, t->payload);
|
||
|
|
||
|
} while(t);
|
||
|
|
||
|
*running_handles = multi->num_alive;
|
||
|
|
||
|
if(CURLM_OK >= returncode)
|
||
|
returncode = Curl_update_timer(multi);
|
||
|
|
||
|
return returncode;
|
||
|
}
|
||
|
|
||
|
/* unlink_all_msgsent_handles() detaches all those easy handles from this
|
||
|
multi handle */
|
||
|
static void unlink_all_msgsent_handles(struct Curl_multi *multi)
|
||
|
{
|
||
|
struct Curl_llist_element *e = multi->msgsent.head;
|
||
|
if(e) {
|
||
|
struct Curl_easy *data = e->ptr;
|
||
|
DEBUGASSERT(data->mstate == MSTATE_MSGSENT);
|
||
|
data->multi = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_cleanup(struct Curl_multi *multi)
|
||
|
{
|
||
|
struct Curl_easy *data;
|
||
|
struct Curl_easy *nextdata;
|
||
|
|
||
|
if(GOOD_MULTI_HANDLE(multi)) {
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
multi->magic = 0; /* not good anymore */
|
||
|
|
||
|
unlink_all_msgsent_handles(multi);
|
||
|
process_pending_handles(multi);
|
||
|
/* First remove all remaining easy handles */
|
||
|
data = multi->easyp;
|
||
|
while(data) {
|
||
|
nextdata = data->next;
|
||
|
if(!data->state.done && data->conn)
|
||
|
/* if DONE was never called for this handle */
|
||
|
(void)multi_done(data, CURLE_OK, TRUE);
|
||
|
if(data->dns.hostcachetype == HCACHE_MULTI) {
|
||
|
/* clear out the usage of the shared DNS cache */
|
||
|
Curl_hostcache_clean(data, data->dns.hostcache);
|
||
|
data->dns.hostcache = NULL;
|
||
|
data->dns.hostcachetype = HCACHE_NONE;
|
||
|
}
|
||
|
|
||
|
/* Clear the pointer to the connection cache */
|
||
|
data->state.conn_cache = NULL;
|
||
|
data->multi = NULL; /* clear the association */
|
||
|
|
||
|
#ifdef USE_LIBPSL
|
||
|
if(data->psl == &multi->psl)
|
||
|
data->psl = NULL;
|
||
|
#endif
|
||
|
|
||
|
data = nextdata;
|
||
|
}
|
||
|
|
||
|
/* Close all the connections in the connection cache */
|
||
|
Curl_conncache_close_all_connections(&multi->conn_cache);
|
||
|
|
||
|
sockhash_destroy(&multi->sockhash);
|
||
|
Curl_conncache_destroy(&multi->conn_cache);
|
||
|
Curl_hash_destroy(&multi->hostcache);
|
||
|
Curl_psl_destroy(&multi->psl);
|
||
|
|
||
|
#ifdef USE_WINSOCK
|
||
|
WSACloseEvent(multi->wsa_event);
|
||
|
#else
|
||
|
#ifdef ENABLE_WAKEUP
|
||
|
wakeup_close(multi->wakeup_pair[0]);
|
||
|
wakeup_close(multi->wakeup_pair[1]);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#ifdef USE_SSL
|
||
|
Curl_free_multi_ssl_backend_data(multi->ssl_backend_data);
|
||
|
#endif
|
||
|
|
||
|
free(multi);
|
||
|
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* curl_multi_info_read()
|
||
|
*
|
||
|
* This function is the primary way for a multi/multi_socket application to
|
||
|
* figure out if a transfer has ended. We MUST make this function as fast as
|
||
|
* possible as it will be polled frequently and we MUST NOT scan any lists in
|
||
|
* here to figure out things. We must scale fine to thousands of handles and
|
||
|
* beyond. The current design is fully O(1).
|
||
|
*/
|
||
|
|
||
|
CURLMsg *curl_multi_info_read(struct Curl_multi *multi, int *msgs_in_queue)
|
||
|
{
|
||
|
struct Curl_message *msg;
|
||
|
|
||
|
*msgs_in_queue = 0; /* default to none */
|
||
|
|
||
|
if(GOOD_MULTI_HANDLE(multi) &&
|
||
|
!multi->in_callback &&
|
||
|
Curl_llist_count(&multi->msglist)) {
|
||
|
/* there is one or more messages in the list */
|
||
|
struct Curl_llist_element *e;
|
||
|
|
||
|
/* extract the head of the list to return */
|
||
|
e = multi->msglist.head;
|
||
|
|
||
|
msg = e->ptr;
|
||
|
|
||
|
/* remove the extracted entry */
|
||
|
Curl_llist_remove(&multi->msglist, e, NULL);
|
||
|
|
||
|
*msgs_in_queue = curlx_uztosi(Curl_llist_count(&multi->msglist));
|
||
|
|
||
|
return &msg->extmsg;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* singlesocket() checks what sockets we deal with and their "action state"
|
||
|
* and if we have a different state in any of those sockets from last time we
|
||
|
* call the callback accordingly.
|
||
|
*/
|
||
|
static CURLMcode singlesocket(struct Curl_multi *multi,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct easy_pollset cur_poll;
|
||
|
unsigned int i;
|
||
|
struct Curl_sh_entry *entry;
|
||
|
curl_socket_t s;
|
||
|
int rc;
|
||
|
|
||
|
/* Fill in the 'current' struct with the state as it is now: what sockets to
|
||
|
supervise and for what actions */
|
||
|
multi_getsock(data, &cur_poll);
|
||
|
|
||
|
/* We have 0 .. N sockets already and we get to know about the 0 .. M
|
||
|
sockets we should have from now on. Detect the differences, remove no
|
||
|
longer supervised ones and add new ones */
|
||
|
|
||
|
/* walk over the sockets we got right now */
|
||
|
for(i = 0; i < cur_poll.num; i++) {
|
||
|
unsigned char cur_action = cur_poll.actions[i];
|
||
|
unsigned char last_action = 0;
|
||
|
int comboaction;
|
||
|
|
||
|
s = cur_poll.sockets[i];
|
||
|
|
||
|
/* get it from the hash */
|
||
|
entry = sh_getentry(&multi->sockhash, s);
|
||
|
if(entry) {
|
||
|
/* check if new for this transfer */
|
||
|
unsigned int j;
|
||
|
for(j = 0; j< data->last_poll.num; j++) {
|
||
|
if(s == data->last_poll.sockets[j]) {
|
||
|
last_action = data->last_poll.actions[j];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* this is a socket we didn't have before, add it to the hash! */
|
||
|
entry = sh_addentry(&multi->sockhash, s);
|
||
|
if(!entry)
|
||
|
/* fatal */
|
||
|
return CURLM_OUT_OF_MEMORY;
|
||
|
}
|
||
|
if(last_action && (last_action != cur_action)) {
|
||
|
/* Socket was used already, but different action now */
|
||
|
if(last_action & CURL_POLL_IN)
|
||
|
entry->readers--;
|
||
|
if(last_action & CURL_POLL_OUT)
|
||
|
entry->writers--;
|
||
|
if(cur_action & CURL_POLL_IN)
|
||
|
entry->readers++;
|
||
|
if(cur_action & CURL_POLL_OUT)
|
||
|
entry->writers++;
|
||
|
}
|
||
|
else if(!last_action) {
|
||
|
/* a new transfer using this socket */
|
||
|
entry->users++;
|
||
|
if(cur_action & CURL_POLL_IN)
|
||
|
entry->readers++;
|
||
|
if(cur_action & CURL_POLL_OUT)
|
||
|
entry->writers++;
|
||
|
|
||
|
/* add 'data' to the transfer hash on this socket! */
|
||
|
if(!Curl_hash_add(&entry->transfers, (char *)&data, /* hash key */
|
||
|
sizeof(struct Curl_easy *), data)) {
|
||
|
Curl_hash_destroy(&entry->transfers);
|
||
|
return CURLM_OUT_OF_MEMORY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
comboaction = (entry->writers ? CURL_POLL_OUT : 0) |
|
||
|
(entry->readers ? CURL_POLL_IN : 0);
|
||
|
|
||
|
/* socket existed before and has the same action set as before */
|
||
|
if(last_action && ((int)entry->action == comboaction))
|
||
|
/* same, continue */
|
||
|
continue;
|
||
|
|
||
|
if(multi->socket_cb) {
|
||
|
set_in_callback(multi, TRUE);
|
||
|
rc = multi->socket_cb(data, s, comboaction, multi->socket_userp,
|
||
|
entry->socketp);
|
||
|
|
||
|
set_in_callback(multi, FALSE);
|
||
|
if(rc == -1) {
|
||
|
multi->dead = TRUE;
|
||
|
return CURLM_ABORTED_BY_CALLBACK;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
entry->action = comboaction; /* store the current action state */
|
||
|
}
|
||
|
|
||
|
/* Check for last_poll.sockets that no longer appear in cur_poll.sockets.
|
||
|
* Need to remove the easy handle from the multi->sockhash->transfers and
|
||
|
* remove multi->sockhash entry when this was the last transfer */
|
||
|
for(i = 0; i< data->last_poll.num; i++) {
|
||
|
unsigned int j;
|
||
|
bool stillused = FALSE;
|
||
|
s = data->last_poll.sockets[i];
|
||
|
for(j = 0; j < cur_poll.num; j++) {
|
||
|
if(s == cur_poll.sockets[j]) {
|
||
|
/* this is still supervised */
|
||
|
stillused = TRUE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if(stillused)
|
||
|
continue;
|
||
|
|
||
|
entry = sh_getentry(&multi->sockhash, s);
|
||
|
/* if this is NULL here, the socket has been closed and notified so
|
||
|
already by Curl_multi_closed() */
|
||
|
if(entry) {
|
||
|
unsigned char oldactions = data->last_poll.actions[i];
|
||
|
/* this socket has been removed. Decrease user count */
|
||
|
entry->users--;
|
||
|
if(oldactions & CURL_POLL_OUT)
|
||
|
entry->writers--;
|
||
|
if(oldactions & CURL_POLL_IN)
|
||
|
entry->readers--;
|
||
|
if(!entry->users) {
|
||
|
if(multi->socket_cb) {
|
||
|
set_in_callback(multi, TRUE);
|
||
|
rc = multi->socket_cb(data, s, CURL_POLL_REMOVE,
|
||
|
multi->socket_userp, entry->socketp);
|
||
|
set_in_callback(multi, FALSE);
|
||
|
if(rc == -1) {
|
||
|
multi->dead = TRUE;
|
||
|
return CURLM_ABORTED_BY_CALLBACK;
|
||
|
}
|
||
|
}
|
||
|
sh_delentry(entry, &multi->sockhash, s);
|
||
|
}
|
||
|
else {
|
||
|
/* still users, but remove this handle as a user of this socket */
|
||
|
if(Curl_hash_delete(&entry->transfers, (char *)&data,
|
||
|
sizeof(struct Curl_easy *))) {
|
||
|
DEBUGASSERT(NULL);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} /* for loop over num */
|
||
|
|
||
|
/* Remember for next time */
|
||
|
memcpy(&data->last_poll, &cur_poll, sizeof(data->last_poll));
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
CURLcode Curl_updatesocket(struct Curl_easy *data)
|
||
|
{
|
||
|
if(singlesocket(data->multi, data))
|
||
|
return CURLE_ABORTED_BY_CALLBACK;
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Curl_multi_closed()
|
||
|
*
|
||
|
* Used by the connect code to tell the multi_socket code that one of the
|
||
|
* sockets we were using is about to be closed. This function will then
|
||
|
* remove it from the sockethash for this handle to make the multi_socket API
|
||
|
* behave properly, especially for the case when libcurl will create another
|
||
|
* socket again and it gets the same file descriptor number.
|
||
|
*/
|
||
|
|
||
|
void Curl_multi_closed(struct Curl_easy *data, curl_socket_t s)
|
||
|
{
|
||
|
if(data) {
|
||
|
/* if there's still an easy handle associated with this connection */
|
||
|
struct Curl_multi *multi = data->multi;
|
||
|
if(multi) {
|
||
|
/* this is set if this connection is part of a handle that is added to
|
||
|
a multi handle, and only then this is necessary */
|
||
|
struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
|
||
|
|
||
|
if(entry) {
|
||
|
int rc = 0;
|
||
|
if(multi->socket_cb) {
|
||
|
set_in_callback(multi, TRUE);
|
||
|
rc = multi->socket_cb(data, s, CURL_POLL_REMOVE,
|
||
|
multi->socket_userp, entry->socketp);
|
||
|
set_in_callback(multi, FALSE);
|
||
|
}
|
||
|
|
||
|
/* now remove it from the socket hash */
|
||
|
sh_delentry(entry, &multi->sockhash, s);
|
||
|
if(rc == -1)
|
||
|
/* This just marks the multi handle as "dead" without returning an
|
||
|
error code primarily because this function is used from many
|
||
|
places where propagating an error back is tricky. */
|
||
|
multi->dead = TRUE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* add_next_timeout()
|
||
|
*
|
||
|
* Each Curl_easy has a list of timeouts. The add_next_timeout() is called
|
||
|
* when it has just been removed from the splay tree because the timeout has
|
||
|
* expired. This function is then to advance in the list to pick the next
|
||
|
* timeout to use (skip the already expired ones) and add this node back to
|
||
|
* the splay tree again.
|
||
|
*
|
||
|
* The splay tree only has each sessionhandle as a single node and the nearest
|
||
|
* timeout is used to sort it on.
|
||
|
*/
|
||
|
static CURLMcode add_next_timeout(struct curltime now,
|
||
|
struct Curl_multi *multi,
|
||
|
struct Curl_easy *d)
|
||
|
{
|
||
|
struct curltime *tv = &d->state.expiretime;
|
||
|
struct Curl_llist *list = &d->state.timeoutlist;
|
||
|
struct Curl_llist_element *e;
|
||
|
struct time_node *node = NULL;
|
||
|
|
||
|
/* move over the timeout list for this specific handle and remove all
|
||
|
timeouts that are now passed tense and store the next pending
|
||
|
timeout in *tv */
|
||
|
for(e = list->head; e;) {
|
||
|
struct Curl_llist_element *n = e->next;
|
||
|
timediff_t diff;
|
||
|
node = (struct time_node *)e->ptr;
|
||
|
diff = Curl_timediff_us(node->time, now);
|
||
|
if(diff <= 0)
|
||
|
/* remove outdated entry */
|
||
|
Curl_llist_remove(list, e, NULL);
|
||
|
else
|
||
|
/* the list is sorted so get out on the first mismatch */
|
||
|
break;
|
||
|
e = n;
|
||
|
}
|
||
|
e = list->head;
|
||
|
if(!e) {
|
||
|
/* clear the expire times within the handles that we remove from the
|
||
|
splay tree */
|
||
|
tv->tv_sec = 0;
|
||
|
tv->tv_usec = 0;
|
||
|
}
|
||
|
else {
|
||
|
/* copy the first entry to 'tv' */
|
||
|
memcpy(tv, &node->time, sizeof(*tv));
|
||
|
|
||
|
/* Insert this node again into the splay. Keep the timer in the list in
|
||
|
case we need to recompute future timers. */
|
||
|
multi->timetree = Curl_splayinsert(*tv, multi->timetree,
|
||
|
&d->state.timenode);
|
||
|
}
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
static CURLMcode multi_socket(struct Curl_multi *multi,
|
||
|
bool checkall,
|
||
|
curl_socket_t s,
|
||
|
int ev_bitmask,
|
||
|
int *running_handles)
|
||
|
{
|
||
|
CURLMcode result = CURLM_OK;
|
||
|
struct Curl_easy *data = NULL;
|
||
|
struct Curl_tree *t;
|
||
|
struct curltime now = Curl_now();
|
||
|
bool first = FALSE;
|
||
|
bool nosig = FALSE;
|
||
|
SIGPIPE_VARIABLE(pipe_st);
|
||
|
|
||
|
if(checkall) {
|
||
|
/* *perform() deals with running_handles on its own */
|
||
|
result = curl_multi_perform(multi, running_handles);
|
||
|
|
||
|
/* walk through each easy handle and do the socket state change magic
|
||
|
and callbacks */
|
||
|
if(result != CURLM_BAD_HANDLE) {
|
||
|
data = multi->easyp;
|
||
|
while(data && !result) {
|
||
|
result = singlesocket(multi, data);
|
||
|
data = data->next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* or should we fall-through and do the timer-based stuff? */
|
||
|
return result;
|
||
|
}
|
||
|
if(s != CURL_SOCKET_TIMEOUT) {
|
||
|
struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s);
|
||
|
|
||
|
if(!entry)
|
||
|
/* Unmatched socket, we can't act on it but we ignore this fact. In
|
||
|
real-world tests it has been proved that libevent can in fact give
|
||
|
the application actions even though the socket was just previously
|
||
|
asked to get removed, so thus we better survive stray socket actions
|
||
|
and just move on. */
|
||
|
;
|
||
|
else {
|
||
|
struct Curl_hash_iterator iter;
|
||
|
struct Curl_hash_element *he;
|
||
|
|
||
|
/* the socket can be shared by many transfers, iterate */
|
||
|
Curl_hash_start_iterate(&entry->transfers, &iter);
|
||
|
for(he = Curl_hash_next_element(&iter); he;
|
||
|
he = Curl_hash_next_element(&iter)) {
|
||
|
data = (struct Curl_easy *)he->ptr;
|
||
|
DEBUGASSERT(data);
|
||
|
DEBUGASSERT(data->magic == CURLEASY_MAGIC_NUMBER);
|
||
|
|
||
|
if(data->conn && !(data->conn->handler->flags & PROTOPT_DIRLOCK))
|
||
|
/* set socket event bitmask if they're not locked */
|
||
|
data->state.select_bits = (unsigned char)ev_bitmask;
|
||
|
|
||
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
||
|
}
|
||
|
|
||
|
/* Now we fall-through and do the timer-based stuff, since we don't want
|
||
|
to force the user to have to deal with timeouts as long as at least
|
||
|
one connection in fact has traffic. */
|
||
|
|
||
|
data = NULL; /* set data to NULL again to avoid calling
|
||
|
multi_runsingle() in case there's no need to */
|
||
|
now = Curl_now(); /* get a newer time since the multi_runsingle() loop
|
||
|
may have taken some time */
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* Asked to run due to time-out. Clear the 'lastcall' variable to force
|
||
|
Curl_update_timer() to trigger a callback to the app again even if the
|
||
|
same timeout is still the one to run after this call. That handles the
|
||
|
case when the application asks libcurl to run the timeout
|
||
|
prematurely. */
|
||
|
memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The loop following here will go on as long as there are expire-times left
|
||
|
* to process in the splay and 'data' will be re-assigned for every expired
|
||
|
* handle we deal with.
|
||
|
*/
|
||
|
do {
|
||
|
/* the first loop lap 'data' can be NULL */
|
||
|
if(data) {
|
||
|
if(!first) {
|
||
|
first = TRUE;
|
||
|
nosig = data->set.no_signal; /* initial state */
|
||
|
sigpipe_ignore(data, &pipe_st);
|
||
|
}
|
||
|
else if(data->set.no_signal != nosig) {
|
||
|
sigpipe_restore(&pipe_st);
|
||
|
sigpipe_ignore(data, &pipe_st);
|
||
|
nosig = data->set.no_signal; /* remember new state */
|
||
|
}
|
||
|
result = multi_runsingle(multi, &now, data);
|
||
|
|
||
|
if(CURLM_OK >= result) {
|
||
|
/* get the socket(s) and check if the state has been changed since
|
||
|
last */
|
||
|
result = singlesocket(multi, data);
|
||
|
if(result)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Check if there's one (more) expired timer to deal with! This function
|
||
|
extracts a matching node if there is one */
|
||
|
|
||
|
multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
|
||
|
if(t) {
|
||
|
data = t->payload; /* assign this for next loop */
|
||
|
(void)add_next_timeout(now, multi, t->payload);
|
||
|
}
|
||
|
|
||
|
} while(t);
|
||
|
if(first)
|
||
|
sigpipe_restore(&pipe_st);
|
||
|
|
||
|
*running_handles = multi->num_alive;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#undef curl_multi_setopt
|
||
|
CURLMcode curl_multi_setopt(struct Curl_multi *multi,
|
||
|
CURLMoption option, ...)
|
||
|
{
|
||
|
CURLMcode res = CURLM_OK;
|
||
|
va_list param;
|
||
|
unsigned long uarg;
|
||
|
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
va_start(param, option);
|
||
|
|
||
|
switch(option) {
|
||
|
case CURLMOPT_SOCKETFUNCTION:
|
||
|
multi->socket_cb = va_arg(param, curl_socket_callback);
|
||
|
break;
|
||
|
case CURLMOPT_SOCKETDATA:
|
||
|
multi->socket_userp = va_arg(param, void *);
|
||
|
break;
|
||
|
case CURLMOPT_PUSHFUNCTION:
|
||
|
multi->push_cb = va_arg(param, curl_push_callback);
|
||
|
break;
|
||
|
case CURLMOPT_PUSHDATA:
|
||
|
multi->push_userp = va_arg(param, void *);
|
||
|
break;
|
||
|
case CURLMOPT_PIPELINING:
|
||
|
multi->multiplexing = va_arg(param, long) & CURLPIPE_MULTIPLEX ? 1 : 0;
|
||
|
break;
|
||
|
case CURLMOPT_TIMERFUNCTION:
|
||
|
multi->timer_cb = va_arg(param, curl_multi_timer_callback);
|
||
|
break;
|
||
|
case CURLMOPT_TIMERDATA:
|
||
|
multi->timer_userp = va_arg(param, void *);
|
||
|
break;
|
||
|
case CURLMOPT_MAXCONNECTS:
|
||
|
uarg = va_arg(param, unsigned long);
|
||
|
if(uarg <= UINT_MAX)
|
||
|
multi->maxconnects = (unsigned int)uarg;
|
||
|
break;
|
||
|
case CURLMOPT_MAX_HOST_CONNECTIONS:
|
||
|
multi->max_host_connections = va_arg(param, long);
|
||
|
break;
|
||
|
case CURLMOPT_MAX_TOTAL_CONNECTIONS:
|
||
|
multi->max_total_connections = va_arg(param, long);
|
||
|
break;
|
||
|
/* options formerly used for pipelining */
|
||
|
case CURLMOPT_MAX_PIPELINE_LENGTH:
|
||
|
break;
|
||
|
case CURLMOPT_CONTENT_LENGTH_PENALTY_SIZE:
|
||
|
break;
|
||
|
case CURLMOPT_CHUNK_LENGTH_PENALTY_SIZE:
|
||
|
break;
|
||
|
case CURLMOPT_PIPELINING_SITE_BL:
|
||
|
break;
|
||
|
case CURLMOPT_PIPELINING_SERVER_BL:
|
||
|
break;
|
||
|
case CURLMOPT_MAX_CONCURRENT_STREAMS:
|
||
|
{
|
||
|
long streams = va_arg(param, long);
|
||
|
if((streams < 1) || (streams > INT_MAX))
|
||
|
streams = 100;
|
||
|
multi->max_concurrent_streams = (unsigned int)streams;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
res = CURLM_UNKNOWN_OPTION;
|
||
|
break;
|
||
|
}
|
||
|
va_end(param);
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/* we define curl_multi_socket() in the public multi.h header */
|
||
|
#undef curl_multi_socket
|
||
|
|
||
|
CURLMcode curl_multi_socket(struct Curl_multi *multi, curl_socket_t s,
|
||
|
int *running_handles)
|
||
|
{
|
||
|
CURLMcode result;
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
result = multi_socket(multi, FALSE, s, 0, running_handles);
|
||
|
if(CURLM_OK >= result)
|
||
|
result = Curl_update_timer(multi);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_socket_action(struct Curl_multi *multi, curl_socket_t s,
|
||
|
int ev_bitmask, int *running_handles)
|
||
|
{
|
||
|
CURLMcode result;
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
result = multi_socket(multi, FALSE, s, ev_bitmask, running_handles);
|
||
|
if(CURLM_OK >= result)
|
||
|
result = Curl_update_timer(multi);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_socket_all(struct Curl_multi *multi, int *running_handles)
|
||
|
{
|
||
|
CURLMcode result;
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
result = multi_socket(multi, TRUE, CURL_SOCKET_BAD, 0, running_handles);
|
||
|
if(CURLM_OK >= result)
|
||
|
result = Curl_update_timer(multi);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static CURLMcode multi_timeout(struct Curl_multi *multi,
|
||
|
long *timeout_ms)
|
||
|
{
|
||
|
static const struct curltime tv_zero = {0, 0};
|
||
|
|
||
|
if(multi->dead) {
|
||
|
*timeout_ms = 0;
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
if(multi->timetree) {
|
||
|
/* we have a tree of expire times */
|
||
|
struct curltime now = Curl_now();
|
||
|
|
||
|
/* splay the lowest to the bottom */
|
||
|
multi->timetree = Curl_splay(tv_zero, multi->timetree);
|
||
|
|
||
|
if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) {
|
||
|
/* some time left before expiration */
|
||
|
timediff_t diff = Curl_timediff_ceil(multi->timetree->key, now);
|
||
|
/* this should be safe even on 32 bit archs, as we don't use that
|
||
|
overly long timeouts */
|
||
|
*timeout_ms = (long)diff;
|
||
|
}
|
||
|
else
|
||
|
/* 0 means immediately */
|
||
|
*timeout_ms = 0;
|
||
|
}
|
||
|
else
|
||
|
*timeout_ms = -1;
|
||
|
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
CURLMcode curl_multi_timeout(struct Curl_multi *multi,
|
||
|
long *timeout_ms)
|
||
|
{
|
||
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
||
|
if(!GOOD_MULTI_HANDLE(multi))
|
||
|
return CURLM_BAD_HANDLE;
|
||
|
|
||
|
if(multi->in_callback)
|
||
|
return CURLM_RECURSIVE_API_CALL;
|
||
|
|
||
|
return multi_timeout(multi, timeout_ms);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Tell the application it should update its timers, if it subscribes to the
|
||
|
* update timer callback.
|
||
|
*/
|
||
|
CURLMcode Curl_update_timer(struct Curl_multi *multi)
|
||
|
{
|
||
|
long timeout_ms;
|
||
|
int rc;
|
||
|
|
||
|
if(!multi->timer_cb || multi->dead)
|
||
|
return CURLM_OK;
|
||
|
if(multi_timeout(multi, &timeout_ms)) {
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
if(timeout_ms < 0) {
|
||
|
static const struct curltime none = {0, 0};
|
||
|
if(Curl_splaycomparekeys(none, multi->timer_lastcall)) {
|
||
|
multi->timer_lastcall = none;
|
||
|
/* there's no timeout now but there was one previously, tell the app to
|
||
|
disable it */
|
||
|
set_in_callback(multi, TRUE);
|
||
|
rc = multi->timer_cb(multi, -1, multi->timer_userp);
|
||
|
set_in_callback(multi, FALSE);
|
||
|
if(rc == -1) {
|
||
|
multi->dead = TRUE;
|
||
|
return CURLM_ABORTED_BY_CALLBACK;
|
||
|
}
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
/* When multi_timeout() is done, multi->timetree points to the node with the
|
||
|
* timeout we got the (relative) time-out time for. We can thus easily check
|
||
|
* if this is the same (fixed) time as we got in a previous call and then
|
||
|
* avoid calling the callback again. */
|
||
|
if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0)
|
||
|
return CURLM_OK;
|
||
|
|
||
|
multi->timer_lastcall = multi->timetree->key;
|
||
|
|
||
|
set_in_callback(multi, TRUE);
|
||
|
rc = multi->timer_cb(multi, timeout_ms, multi->timer_userp);
|
||
|
set_in_callback(multi, FALSE);
|
||
|
if(rc == -1) {
|
||
|
multi->dead = TRUE;
|
||
|
return CURLM_ABORTED_BY_CALLBACK;
|
||
|
}
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* multi_deltimeout()
|
||
|
*
|
||
|
* Remove a given timestamp from the list of timeouts.
|
||
|
*/
|
||
|
static void
|
||
|
multi_deltimeout(struct Curl_easy *data, expire_id eid)
|
||
|
{
|
||
|
struct Curl_llist_element *e;
|
||
|
struct Curl_llist *timeoutlist = &data->state.timeoutlist;
|
||
|
/* find and remove the specific node from the list */
|
||
|
for(e = timeoutlist->head; e; e = e->next) {
|
||
|
struct time_node *n = (struct time_node *)e->ptr;
|
||
|
if(n->eid == eid) {
|
||
|
Curl_llist_remove(timeoutlist, e, NULL);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* multi_addtimeout()
|
||
|
*
|
||
|
* Add a timestamp to the list of timeouts. Keep the list sorted so that head
|
||
|
* of list is always the timeout nearest in time.
|
||
|
*
|
||
|
*/
|
||
|
static CURLMcode
|
||
|
multi_addtimeout(struct Curl_easy *data,
|
||
|
struct curltime *stamp,
|
||
|
expire_id eid)
|
||
|
{
|
||
|
struct Curl_llist_element *e;
|
||
|
struct time_node *node;
|
||
|
struct Curl_llist_element *prev = NULL;
|
||
|
size_t n;
|
||
|
struct Curl_llist *timeoutlist = &data->state.timeoutlist;
|
||
|
|
||
|
node = &data->state.expires[eid];
|
||
|
|
||
|
/* copy the timestamp and id */
|
||
|
memcpy(&node->time, stamp, sizeof(*stamp));
|
||
|
node->eid = eid; /* also marks it as in use */
|
||
|
|
||
|
n = Curl_llist_count(timeoutlist);
|
||
|
if(n) {
|
||
|
/* find the correct spot in the list */
|
||
|
for(e = timeoutlist->head; e; e = e->next) {
|
||
|
struct time_node *check = (struct time_node *)e->ptr;
|
||
|
timediff_t diff = Curl_timediff(check->time, node->time);
|
||
|
if(diff > 0)
|
||
|
break;
|
||
|
prev = e;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
/* else
|
||
|
this is the first timeout on the list */
|
||
|
|
||
|
Curl_llist_insert_next(timeoutlist, prev, node, &node->list);
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Curl_expire()
|
||
|
*
|
||
|
* given a number of milliseconds from now to use to set the 'act before
|
||
|
* this'-time for the transfer, to be extracted by curl_multi_timeout()
|
||
|
*
|
||
|
* The timeout will be added to a queue of timeouts if it defines a moment in
|
||
|
* time that is later than the current head of queue.
|
||
|
*
|
||
|
* Expire replaces a former timeout using the same id if already set.
|
||
|
*/
|
||
|
void Curl_expire(struct Curl_easy *data, timediff_t milli, expire_id id)
|
||
|
{
|
||
|
struct Curl_multi *multi = data->multi;
|
||
|
struct curltime *nowp = &data->state.expiretime;
|
||
|
struct curltime set;
|
||
|
|
||
|
/* this is only interesting while there is still an associated multi struct
|
||
|
remaining! */
|
||
|
if(!multi)
|
||
|
return;
|
||
|
|
||
|
DEBUGASSERT(id < EXPIRE_LAST);
|
||
|
|
||
|
set = Curl_now();
|
||
|
set.tv_sec += (time_t)(milli/1000); /* might be a 64 to 32 bit conversion */
|
||
|
set.tv_usec += (unsigned int)(milli%1000)*1000;
|
||
|
|
||
|
if(set.tv_usec >= 1000000) {
|
||
|
set.tv_sec++;
|
||
|
set.tv_usec -= 1000000;
|
||
|
}
|
||
|
|
||
|
/* Remove any timer with the same id just in case. */
|
||
|
multi_deltimeout(data, id);
|
||
|
|
||
|
/* Add it to the timer list. It must stay in the list until it has expired
|
||
|
in case we need to recompute the minimum timer later. */
|
||
|
multi_addtimeout(data, &set, id);
|
||
|
|
||
|
if(nowp->tv_sec || nowp->tv_usec) {
|
||
|
/* This means that the struct is added as a node in the splay tree.
|
||
|
Compare if the new time is earlier, and only remove-old/add-new if it
|
||
|
is. */
|
||
|
timediff_t diff = Curl_timediff(set, *nowp);
|
||
|
int rc;
|
||
|
|
||
|
if(diff > 0) {
|
||
|
/* The current splay tree entry is sooner than this new expiry time.
|
||
|
We don't need to update our splay tree entry. */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Since this is an updated time, we must remove the previous entry from
|
||
|
the splay tree first and then re-add the new value */
|
||
|
rc = Curl_splayremove(multi->timetree, &data->state.timenode,
|
||
|
&multi->timetree);
|
||
|
if(rc)
|
||
|
infof(data, "Internal error removing splay node = %d", rc);
|
||
|
}
|
||
|
|
||
|
/* Indicate that we are in the splay tree and insert the new timer expiry
|
||
|
value since it is our local minimum. */
|
||
|
*nowp = set;
|
||
|
data->state.timenode.payload = data;
|
||
|
multi->timetree = Curl_splayinsert(*nowp, multi->timetree,
|
||
|
&data->state.timenode);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Curl_expire_done()
|
||
|
*
|
||
|
* Removes the expire timer. Marks it as done.
|
||
|
*
|
||
|
*/
|
||
|
void Curl_expire_done(struct Curl_easy *data, expire_id id)
|
||
|
{
|
||
|
/* remove the timer, if there */
|
||
|
multi_deltimeout(data, id);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Curl_expire_clear()
|
||
|
*
|
||
|
* Clear ALL timeout values for this handle.
|
||
|
*/
|
||
|
void Curl_expire_clear(struct Curl_easy *data)
|
||
|
{
|
||
|
struct Curl_multi *multi = data->multi;
|
||
|
struct curltime *nowp = &data->state.expiretime;
|
||
|
|
||
|
/* this is only interesting while there is still an associated multi struct
|
||
|
remaining! */
|
||
|
if(!multi)
|
||
|
return;
|
||
|
|
||
|
if(nowp->tv_sec || nowp->tv_usec) {
|
||
|
/* Since this is an cleared time, we must remove the previous entry from
|
||
|
the splay tree */
|
||
|
struct Curl_llist *list = &data->state.timeoutlist;
|
||
|
int rc;
|
||
|
|
||
|
rc = Curl_splayremove(multi->timetree, &data->state.timenode,
|
||
|
&multi->timetree);
|
||
|
if(rc)
|
||
|
infof(data, "Internal error clearing splay node = %d", rc);
|
||
|
|
||
|
/* flush the timeout list too */
|
||
|
while(list->size > 0) {
|
||
|
Curl_llist_remove(list, list->tail, NULL);
|
||
|
}
|
||
|
|
||
|
#ifdef DEBUGBUILD
|
||
|
infof(data, "Expire cleared");
|
||
|
#endif
|
||
|
nowp->tv_sec = 0;
|
||
|
nowp->tv_usec = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
CURLMcode curl_multi_assign(struct Curl_multi *multi, curl_socket_t s,
|
||
|
void *hashp)
|
||
|
{
|
||
|
struct Curl_sh_entry *there = NULL;
|
||
|
|
||
|
there = sh_getentry(&multi->sockhash, s);
|
||
|
|
||
|
if(!there)
|
||
|
return CURLM_BAD_SOCKET;
|
||
|
|
||
|
there->socketp = hashp;
|
||
|
|
||
|
return CURLM_OK;
|
||
|
}
|
||
|
|
||
|
size_t Curl_multi_max_host_connections(struct Curl_multi *multi)
|
||
|
{
|
||
|
return multi ? multi->max_host_connections : 0;
|
||
|
}
|
||
|
|
||
|
size_t Curl_multi_max_total_connections(struct Curl_multi *multi)
|
||
|
{
|
||
|
return multi ? multi->max_total_connections : 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When information about a connection has appeared, call this!
|
||
|
*/
|
||
|
|
||
|
void Curl_multiuse_state(struct Curl_easy *data,
|
||
|
int bundlestate) /* use BUNDLE_* defines */
|
||
|
{
|
||
|
struct connectdata *conn;
|
||
|
DEBUGASSERT(data);
|
||
|
DEBUGASSERT(data->multi);
|
||
|
conn = data->conn;
|
||
|
DEBUGASSERT(conn);
|
||
|
DEBUGASSERT(conn->bundle);
|
||
|
|
||
|
conn->bundle->multiuse = bundlestate;
|
||
|
process_pending_handles(data->multi);
|
||
|
}
|
||
|
|
||
|
/* process_pending_handles() moves all handles from PENDING
|
||
|
back into the main list and change state to CONNECT */
|
||
|
static void process_pending_handles(struct Curl_multi *multi)
|
||
|
{
|
||
|
struct Curl_llist_element *e = multi->pending.head;
|
||
|
if(e) {
|
||
|
struct Curl_easy *data = e->ptr;
|
||
|
|
||
|
DEBUGASSERT(data->mstate == MSTATE_PENDING);
|
||
|
|
||
|
/* put it back into the main list */
|
||
|
link_easy(multi, data);
|
||
|
|
||
|
multistate(data, MSTATE_CONNECT);
|
||
|
|
||
|
/* Remove this node from the list */
|
||
|
Curl_llist_remove(&multi->pending, e, NULL);
|
||
|
|
||
|
/* Make sure that the handle will be processed soonish. */
|
||
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
||
|
|
||
|
/* mark this as having been in the pending queue */
|
||
|
data->state.previouslypending = TRUE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Curl_set_in_callback(struct Curl_easy *data, bool value)
|
||
|
{
|
||
|
/* might get called when there is no data pointer! */
|
||
|
if(data) {
|
||
|
if(data->multi_easy)
|
||
|
data->multi_easy->in_callback = value;
|
||
|
else if(data->multi)
|
||
|
data->multi->in_callback = value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool Curl_is_in_callback(struct Curl_easy *easy)
|
||
|
{
|
||
|
return ((easy->multi && easy->multi->in_callback) ||
|
||
|
(easy->multi_easy && easy->multi_easy->in_callback));
|
||
|
}
|
||
|
|
||
|
unsigned int Curl_multi_max_concurrent_streams(struct Curl_multi *multi)
|
||
|
{
|
||
|
DEBUGASSERT(multi);
|
||
|
return multi->max_concurrent_streams;
|
||
|
}
|
||
|
|
||
|
struct Curl_easy **curl_multi_get_handles(struct Curl_multi *multi)
|
||
|
{
|
||
|
struct Curl_easy **a = malloc(sizeof(struct Curl_easy *) *
|
||
|
(multi->num_easy + 1));
|
||
|
if(a) {
|
||
|
unsigned int i = 0;
|
||
|
struct Curl_easy *e = multi->easyp;
|
||
|
while(e) {
|
||
|
DEBUGASSERT(i < multi->num_easy);
|
||
|
if(!e->state.internal)
|
||
|
a[i++] = e;
|
||
|
e = e->next;
|
||
|
}
|
||
|
a[i] = NULL; /* last entry is a NULL */
|
||
|
}
|
||
|
return a;
|
||
|
}
|