wolfssl-w32/src/pk.c

13903 lines
396 KiB
C

/* pk.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/internal.h>
#ifndef WC_NO_RNG
#include <wolfssl/wolfcrypt/random.h>
#endif
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h>
#endif
#ifndef WOLFSSL_HAVE_ECC_KEY_GET_PRIV
/* FIPS build has replaced ecc.h. */
#define wc_ecc_key_get_priv(key) (&((key)->k))
#define WOLFSSL_HAVE_ECC_KEY_GET_PRIV
#endif
#if !defined(WOLFSSL_PK_INCLUDED)
#ifndef WOLFSSL_IGNORE_FILE_WARN
#warning pk.c does not need to be compiled separately from ssl.c
#endif
#else
#ifndef NO_RSA
#include <wolfssl/wolfcrypt/rsa.h>
#endif
#if defined(OPENSSL_EXTRA) && !defined(NO_BIO) && defined(WOLFSSL_KEY_GEN) && \
(!defined(HAVE_USER_RSA) || defined(HAVE_ECC) || \
(!defined(NO_DSA) && !defined(HAVE_SELFTEST)))
/* Forward declaration for wolfSSL_PEM_write_bio_DSA_PUBKEY.
* Implementation in ssl.c.
*/
static int pem_write_bio_pubkey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key);
#endif
/*******************************************************************************
* COMMON FUNCTIONS
******************************************************************************/
/* Calculate the number of bytes require to represent a length value in ASN.
*
* @param [in] l Length value to use.
* @return Number of bytes required to represent length value.
*/
#define ASN_LEN_SIZE(l) \
(((l) < 128) ? 1 : (((l) < 256) ? 2 : 3))
#if defined(OPENSSL_EXTRA)
#ifndef NO_ASN
#if (!defined(NO_FILESYSTEM) && (defined(OPENSSL_EXTRA) || \
defined(OPENSSL_ALL))) || (!defined(NO_BIO) && defined(OPENSSL_EXTRA))
/* Convert the PEM encoding in the buffer to DER.
*
* @param [in] pem Buffer containing PEM encoded data.
* @param [in] pemSz Size of data in buffer in bytes.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted.
* @param [in] keyType Type of key to match against PEM header/footer.
* @param [out] keyFormat Format of key.
* @param [out] der Buffer holding DER encoding.
* @return Negative on failure.
* @return Number of bytes consumed on success.
*/
static int pem_mem_to_der(const char* pem, int pemSz, wc_pem_password_cb* cb,
void* pass, int keyType, int* keyFormat, DerBuffer** der)
{
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif /* WOLFSSL_SMALL_STACK */
wc_pem_password_cb* localCb = NULL;
int ret = 0;
if (cb != NULL) {
localCb = cb;
}
else if (pass != NULL) {
localCb = wolfSSL_PEM_def_callback;
}
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL) {
WOLFSSL_ERROR_MSG("Error getting memory for EncryptedInfo structure");
ret = MEMORY_E;
}
#endif /* WOLFSSL_SMALL_STACK */
if (ret == 0) {
XMEMSET(info, 0, sizeof(EncryptedInfo));
info->passwd_cb = localCb;
info->passwd_userdata = pass;
/* Do not strip PKCS8 header */
ret = PemToDer((const unsigned char *)pem, pemSz, keyType, der, NULL,
info, keyFormat);
if (ret < 0) {
WOLFSSL_ERROR_MSG("Bad PEM To DER");
}
}
if (ret >= 0) {
ret = (int)info->consumed;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return ret;
}
#endif
#if !defined(NO_RSA) || !defined(WOLFCRYPT_ONLY)
#ifndef NO_BIO
/* Read PEM data from a BIO and decode to DER in a new buffer.
*
* @param [in, out] bio BIO object to read with.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted.
* @param [in] keyType Type of key to match against PEM header/footer.
* @param [out] keyFormat Format of key.
* @param [out] der Buffer holding DER encoding.
* @return Negative on failure.
* @return Number of bytes consumed on success.
*/
static int pem_read_bio_key(WOLFSSL_BIO* bio, wc_pem_password_cb* cb,
void* pass, int keyType, int* keyFormat, DerBuffer** der)
{
int ret;
char* mem = NULL;
int memSz;
int alloced = 0;
ret = wolfssl_read_bio(bio, &mem, &memSz, &alloced);
if (ret == 0) {
ret = pem_mem_to_der(mem, memSz, cb, pass, keyType, keyFormat, der);
/* Write left over data back to BIO if not a file BIO */
if ((ret > 0) && ((memSz - ret) > 0) &&
(bio->type != WOLFSSL_BIO_FILE)) {
int res;
res = wolfSSL_BIO_write(bio, mem + ret, memSz - ret);
if (res != memSz - ret) {
WOLFSSL_ERROR_MSG("Unable to write back excess data");
if (res < 0) {
ret = res;
}
else {
ret = MEMORY_E;
}
}
}
if (alloced) {
XFREE(mem, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
return ret;
}
#endif /* !NO_BIO */
#if !defined(NO_FILESYSTEM)
/* Read PEM data from a file and decode to DER in a new buffer.
*
* @param [in] fp File pointer to read with.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted.
* @param [in] keyType Type of key to match against PEM header/footer.
* @param [out] keyFormat Format of key.
* @param [out] der Buffer holding DER encoding.
* @return Negative on failure.
* @return Number of bytes consumed on success.
*/
static int pem_read_file_key(XFILE fp, wc_pem_password_cb* cb, void* pass,
int keyType, int* keyFormat, DerBuffer** der)
{
int ret;
char* mem = NULL;
int memSz;
ret = wolfssl_read_file(fp, &mem, &memSz);
if (ret == 0) {
ret = pem_mem_to_der(mem, memSz, cb, pass, keyType, keyFormat, der);
XFREE(mem, NULL, DYNAMIC_TYPE_OPENSSL);
}
return ret;
}
#endif /* !NO_FILESYSTEM */
#endif
#if defined(OPENSSL_EXTRA) && ((!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) \
&& !defined(HAVE_USER_RSA)) || !defined(WOLFCRYPT_ONLY))
/* Convert DER data to PEM in an allocated buffer.
*
* @param [in] der Buffer containing DER data.
* @param [in] derSz Size of DER data in bytes.
* @param [in] type Type of key being encoded.
* @param [in] heap Heap hint for dynamic memory allocation.
* @param [out] out Allocated buffer containing PEM.
* @param [out] outSz Size of PEM encoding.
* @return WOLFSSL_FAILURE on error.
* @return WOLFSSL_SUCCESS on success.
*/
static int der_to_pem_alloc(const unsigned char* der, int derSz, int type,
void* heap, byte** out, int* outSz)
{
int ret = WOLFSSL_SUCCESS;
int pemSz;
byte* pem = NULL;
(void)heap;
pemSz = wc_DerToPem(der, (word32)derSz, NULL, 0, type);
if (pemSz < 0) {
ret = WOLFSSL_FAILURE;
}
if (ret == WOLFSSL_SUCCESS) {
pem = (byte*)XMALLOC((size_t)pemSz, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pem == NULL) {
ret = WOLFSSL_FAILURE;
}
}
if ((ret == WOLFSSL_SUCCESS) && (wc_DerToPem(der, (word32)derSz, pem,
(word32)pemSz, type) < 0)) {
ret = WOLFSSL_FAILURE;
XFREE(pem, heap, DYNAMIC_TYPE_TMP_BUFFER);
pem = NULL;
}
*out = pem;
*outSz = pemSz;
return ret;
}
#ifndef NO_BIO
/* Write the DER data as PEM into BIO.
*
* @param [in] der Buffer containing DER data.
* @param [in] derSz Size of DER data in bytes.
* @param [in, out] bio BIO object to write with.
* @param [in] type Type of key being encoded.
* @return WOLFSSL_FAILURE on error.
* @return WOLFSSL_SUCCESS on success.
*/
static int der_write_to_bio_as_pem(const unsigned char* der, int derSz,
WOLFSSL_BIO* bio, int type)
{
int ret;
int pemSz;
byte* pem = NULL;
ret = der_to_pem_alloc(der, derSz, type, bio->heap, &pem, &pemSz);
if (ret == WOLFSSL_SUCCESS) {
int len = wolfSSL_BIO_write(bio, pem, pemSz);
if (len != pemSz) {
WOLFSSL_ERROR_MSG("Unable to write full PEM to BIO");
ret = WOLFSSL_FAILURE;
}
}
XFREE(pem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif
#endif
#if (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) && \
!defined(HAVE_USER_RSA)) || \
(!defined(NO_DH) && defined(WOLFSSL_DH_EXTRA)) || \
(defined(HAVE_ECC) && defined(WOLFSSL_KEY_GEN))
#if !defined(NO_FILESYSTEM)
/* Write the DER data as PEM into file pointer.
*
* @param [in] der Buffer containing DER data.
* @param [in] derSz Size of DER data in bytes.
* @param [in] fp File pointer to write with.
* @param [in] type Type of key being encoded.
* @param [in] heap Heap hint for dynamic memory allocation.
* @return WOLFSSL_FAILURE on error.
* @return WOLFSSL_SUCCESS on success.
*/
static int der_write_to_file_as_pem(const unsigned char* der, int derSz,
XFILE fp, int type, void* heap)
{
int ret;
int pemSz;
byte* pem = NULL;
ret = der_to_pem_alloc(der, derSz, type, heap, &pem, &pemSz);
if (ret == WOLFSSL_SUCCESS) {
int len = (int)XFWRITE(pem, 1, (size_t)pemSz, fp);
if (len != pemSz) {
WOLFSSL_ERROR_MSG("Unable to write full PEM to BIO");
ret = WOLFSSL_FAILURE;
}
}
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif
#endif
#if defined(WOLFSSL_KEY_GEN) && \
(defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)) && \
((!defined(NO_RSA) && !defined(HAVE_USER_RSA)) || defined(HAVE_ECC))
static int der_to_enc_pem_alloc(unsigned char* der, int derSz,
const EVP_CIPHER *cipher, unsigned char *passwd, int passwdSz, int type,
void* heap, byte** out, int* outSz)
{
int ret = 1;
byte* tmp = NULL;
byte* cipherInfo = NULL;
int pemSz = 0;
/* Macro doesn't always use it. */
(void)heap;
/* Encrypt DER buffer if required. */
if ((ret == 1) && (passwd != NULL) && (passwdSz > 0) && (cipher != NULL)) {
int blockSz = wolfSSL_EVP_CIPHER_block_size(cipher);
byte *tmpBuf;
/* Add space for padding. */
tmpBuf = (byte*)XREALLOC(der, (size_t)(derSz + blockSz), heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (tmpBuf == NULL) {
WOLFSSL_ERROR_MSG("Extending DER buffer failed");
ret = 0; /* der buffer is free'd at the end of the function */
}
else {
der = tmpBuf;
/* Encrypt DER inline. */
ret = EncryptDerKey(der, &derSz, cipher, passwd, passwdSz,
&cipherInfo, derSz + blockSz);
if (ret != 1) {
WOLFSSL_ERROR_MSG("EncryptDerKey failed");
}
}
}
if (ret == 1) {
/* Calculate PEM encoding size. */
pemSz = wc_DerToPemEx(der, (word32)derSz, NULL, 0, cipherInfo, type);
if (pemSz <= 0) {
WOLFSSL_ERROR_MSG("wc_DerToPemEx failed");
ret = 0;
}
}
if (ret == 1) {
/* Allocate space for PEM encoding plus a NUL terminator. */
tmp = (byte*)XMALLOC((size_t)(pemSz + 1), NULL, DYNAMIC_TYPE_KEY);
if (tmp == NULL) {
WOLFSSL_ERROR_MSG("malloc failed");
ret = 0;
}
}
if (ret == 1) {
/* DER to PEM */
pemSz = wc_DerToPemEx(der, (word32)derSz, tmp, (word32)pemSz,
cipherInfo, type);
if (pemSz <= 0) {
WOLFSSL_ERROR_MSG("wc_DerToPemEx failed");
ret = 0;
}
}
if (ret == 1) {
/* NUL terminate string - PEM. */
tmp[pemSz] = 0x00;
/* Return allocated buffer and size. */
*out = tmp;
*outSz = pemSz;
/* Don't free returning buffer. */
tmp = NULL;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_KEY);
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
XFREE(der, heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif
#endif /* !NO_ASN */
#if !defined(NO_CERTS) && defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \
!defined(NO_STDIO_FILESYSTEM) && (!defined(NO_RSA) || !defined(NO_DSA) || \
defined(HAVE_ECC)) && defined(OPENSSL_EXTRA)
/* Print the number bn in hex with name field and indentation indent to file fp.
*
* Used by wolfSSL_DSA_print_fp, wolfSSL_RSA_print_fp and
* wolfSSL_EC_KEY_print_fp to print DSA, RSA and ECC keys and parameters.
*
* @param [in] fp File pointer to write to.
* @param [in] indent Number of spaces to prepend to each line.
* @param [in] field Name of field.
* @param [in] bn Big number to print.
* @return 1 on success.
* @return 0 on failure.
* @return BAD_FUNC_ARG when fp is invalid, indent is less than 0, or field or
* bn or NULL.
*/
static int pk_bn_field_print_fp(XFILE fp, int indent, const char* field,
const WOLFSSL_BIGNUM* bn)
{
static const int HEX_INDENT = 4;
static const int MAX_DIGITS_PER_LINE = 30;
int ret = 1;
int i = 0;
char* buf = NULL;
/* Internal function - assume parameters are valid. */
/* Convert BN to hexadecimal character array (allocates buffer). */
buf = wolfSSL_BN_bn2hex(bn);
if (buf == NULL) {
ret = 0;
}
if (ret == 1) {
/* Print leading spaces, name and spaces before data. */
if (indent > 0) {
if (XFPRINTF(fp, "%*s", indent, "") < 0)
ret = 0;
}
}
if (ret == 1) {
if (XFPRINTF(fp, "%s:\n", field) < 0)
ret = 0;
}
if (ret == 1) {
if (indent > 0) {
if (XFPRINTF(fp, "%*s", indent, "") < 0)
ret = 0;
}
}
if (ret == 1) {
if (XFPRINTF(fp, "%*s", HEX_INDENT, "") < 0)
ret = 0;
}
if (ret == 1) {
/* Print first byte - should always exist. */
if ((buf[i] != '\0') && (buf[i+1] != '\0')) {
if (XFPRINTF(fp, "%c", buf[i++]) < 0)
ret = 0;
else if (XFPRINTF(fp, "%c", buf[i++]) < 0)
ret = 0;
}
}
if (ret == 1) {
/* Print each hexadecimal character with byte separator. */
while ((buf[i] != '\0') && (buf[i+1] != '\0')) {
/* Byte separator every two nibbles - one byte. */
if (XFPRINTF(fp, ":") < 0) {
ret = 0;
break;
}
/* New line after every 15 bytes - 30 nibbles. */
if (i % MAX_DIGITS_PER_LINE == 0) {
if (XFPRINTF(fp, "\n") < 0) {
ret = 0;
break;
}
if (indent > 0) {
if (XFPRINTF(fp, "%*s", indent, "") < 0) {
ret = 0;
break;
}
}
if (XFPRINTF(fp, "%*s", HEX_INDENT, "") < 0) {
ret = 0;
break;
}
}
/* Print two nibbles - one byte. */
if (XFPRINTF(fp, "%c", buf[i++]) < 0) {
ret = 0;
break;
}
if (XFPRINTF(fp, "%c", buf[i++]) < 0) {
ret = 0;
break;
}
}
/* Ensure on new line after data. */
if (XFPRINTF(fp, "\n") < 0) {
ret = 0;
}
}
/* Dispose of any allocated character array. */
XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL);
return ret;
}
#endif /* !NO_CERTS && XFPRINTF && !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM &&
* (!NO_DSA || !NO_RSA || HAVE_ECC) */
#if defined(XSNPRINTF) && !defined(NO_BIO) && !defined(NO_RSA) && \
!defined(HAVE_FAST_RSA)
/* snprintf() must be available */
/* Maximum number of extra indent spaces on each line. */
#define PRINT_NUM_MAX_INDENT 48
/* Maximum size of a line containing a value. */
#define PRINT_NUM_MAX_VALUE_LINE PRINT_NUM_MAX_INDENT
/* Number of leading spaces on each line. */
#define PRINT_NUM_INDENT_CNT 4
/* Indent spaces for number lines. */
#define PRINT_NUM_INDENT " "
/* 4 leading spaces and 15 bytes with colons is a complete line. */
#define PRINT_NUM_MAX_DIGIT_LINE (PRINT_NUM_INDENT_CNT + 3 * 15)
/* Print indent to BIO.
*
* @param [in] bio BIO object to write to.
* @param [in] line Buffer to put characters to before writing to BIO.
* @param [in] lineLen Length of buffer.
* @return 1 on success.
* @return 0 on failure.
*/
static int wolfssl_print_indent(WOLFSSL_BIO* bio, char* line, int lineLen,
int indent)
{
int ret = 1;
if (indent > 0) {
/* Print indent spaces. */
int len_wanted = XSNPRINTF(line, (size_t)lineLen, "%*s", indent, " ");
if (len_wanted >= lineLen) {
WOLFSSL_ERROR_MSG("Buffer overflow formatting indentation");
ret = 0;
}
else {
/* Write indents string to BIO */
if (wolfSSL_BIO_write(bio, line, len_wanted) <= 0) {
ret = 0;
}
}
}
return ret;
}
/* Print out name, and value in decimal and hex to BIO.
*
* @param [in] bio BIO object to write to.
* @param [in] value MP integer to write.
* @param [in] name Name of value.
* @param [in] indent Number of leading spaces before line.
* @return 1 on success.
* @return 0 on failure.
*/
static int wolfssl_print_value(WOLFSSL_BIO* bio, mp_int* value,
const char* name, int indent)
{
int ret = 1;
int len;
char line[PRINT_NUM_MAX_VALUE_LINE + 1];
/* Get the length of hex encoded value. */
len = mp_unsigned_bin_size(value);
/* Value must no more than 32-bits - 4 bytes. */
if ((len < 0) || (len > 4)) {
WOLFSSL_ERROR_MSG("Error getting exponent size");
ret = 0;
}
if (ret == 1) {
/* Print any indent spaces. */
ret = wolfssl_print_indent(bio, line, sizeof(line), indent);
}
if (ret == 1) {
/* Get 32-bits of value. */
word32 v = (word32)value->dp[0];
/* Print the line to the string. */
len = (int)XSNPRINTF(line, sizeof(line), "%s %u (0x%x)\n", name, v,
v);
if (len >= (int)sizeof(line)) {
WOLFSSL_ERROR_MSG("Buffer overflow while formatting value");
ret = 0;
} else {
/* Write string to BIO */
if (wolfSSL_BIO_write(bio, line, len) <= 0) {
ret = 0;
}
}
}
return ret;
}
/* Print out name and multi-precision number to BIO.
*
* @param [in] bio BIO object to write to.
* @param [in] num MP integer to write.
* @param [in] name Name of value.
* @param [in] indent Number of leading spaces before each line.
* @return 1 on success.
* @return 0 on failure.
*/
static int wolfssl_print_number(WOLFSSL_BIO* bio, mp_int* num, const char* name,
int indent)
{
int ret = 1;
int rawLen = 0;
byte* rawKey = NULL;
char line[PRINT_NUM_MAX_DIGIT_LINE + 1];
int li = 0; /* Line index. */
int i;
/* Allocate a buffer to hold binary encoded data. */
rawLen = mp_unsigned_bin_size(num);
if (rawLen == 0) {
WOLFSSL_ERROR_MSG("Invalid number");
ret = 0;
}
if (ret == 1) {
rawKey = (byte*)XMALLOC((size_t)rawLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (rawKey == NULL) {
WOLFSSL_ERROR_MSG("Memory allocation error");
ret = 0;
}
}
/* Encode number as big-endian byte array. */
if ((ret == 1) && (mp_to_unsigned_bin(num, rawKey) < 0)) {
ret = 0;
}
if (ret == 1) {
/* Print any indent spaces. */
ret = wolfssl_print_indent(bio, line, sizeof(line), indent);
}
if (ret == 1) {
/* Print header string line to string. */
li = XSNPRINTF(line, sizeof(line), "%s\n", name);
if (li >= (int)sizeof(line)) {
WOLFSSL_ERROR_MSG("Buffer overflow formatting name");
ret = 0;
}
else {
if (wolfSSL_BIO_write(bio, line, li) <= 0) {
ret = 0;
}
}
}
if (ret == 1) {
/* Print any indent spaces. */
ret = wolfssl_print_indent(bio, line, sizeof(line), indent);
}
if (ret == 1) {
/* Start first digit line with spaces.
* Writing out zeros ensures number is a positive value. */
li = XSNPRINTF(line, sizeof(line), PRINT_NUM_INDENT "%s",
mp_leading_bit(num) ? "00:" : "");
if (li >= (int)sizeof(line)) {
WOLFSSL_ERROR_MSG("Buffer overflow formatting spaces");
ret = 0;
}
}
/* Put out each line of numbers. */
for (i = 0; (ret == 1) && (i < rawLen); i++) {
/* Encode another byte as 2 hex digits and append colon. */
int len_wanted = XSNPRINTF(line + li, sizeof(line) - (size_t)li,
"%02x:", rawKey[i]);
/* Check if there was room -- if not, print the current line, not
* including the newest octet.
*/
if (len_wanted >= (int)sizeof(line) - li) {
/* bump current octet to the next line. */
--i;
/* More bytes coming so add a line break. */
line[li++] = '\n';
/* Write out the line. */
if (wolfSSL_BIO_write(bio, line, li) <= 0) {
ret = 0;
}
if (ret == 1) {
/* Print any indent spaces. */
ret = wolfssl_print_indent(bio, line, sizeof(line), indent);
}
/* Put the leading spaces on new line. */
XSTRNCPY(line, PRINT_NUM_INDENT, PRINT_NUM_INDENT_CNT + 1);
li = PRINT_NUM_INDENT_CNT;
}
else {
li += len_wanted;
}
}
if (ret == 1) {
/* Put out last line - replace last colon with carriage return. */
line[li-1] = '\n';
if (wolfSSL_BIO_write(bio, line, li) <= 0) {
ret = 0;
}
}
/* Dispose of any allocated data. */
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif /* XSNPRINTF && !NO_BIO && !NO_RSA && !HAVE_FAST_RSA */
#if !defined(NO_RSA) || (!defined(NO_DH) && !defined(NO_CERTS) && \
defined(HAVE_FIPS) && !FIPS_VERSION_GT(2,0)) || defined(HAVE_ECC)
/* Uses the DER SEQUENCE to determine size of DER data.
*
* Outer SEQUENCE encapsulates all the DER encoding.
* Add the length of the SEQUENCE data to the length of the SEQUENCE header.
*
* @param [in] seq Buffer holding DER encoded sequence.
* @param [in] len Length of data in buffer (may be larger than SEQ).
* @return Size of complete DER encoding on success.
* @return 0 on failure.
*/
static int wolfssl_der_length(const unsigned char* seq, int len)
{
int ret = 0;
word32 i = 0;
/* Check it is a SEQUENCE and get the length of the underlying data.
* i is updated to be after SEQUENCE header bytes.
*/
if (GetSequence_ex(seq, &i, &ret, (word32)len, 0) >= 0) {
/* Add SEQUENCE header length to underlying data length. */
ret += (int)i;
}
return ret;
}
#endif /* !NO_RSA */
#endif /* OPENSSL_EXTRA */
/*******************************************************************************
* START OF RSA API
******************************************************************************/
#ifndef NO_RSA
/*
* RSA METHOD
* Could be used to hold function pointers to implementations of RSA operations.
*/
#if defined(OPENSSL_EXTRA)
/* Return a blank RSA method and set the name and flags.
*
* Only one implementation of RSA operations.
* name is duplicated.
*
* @param [in] name Name to use in method.
* @param [in] flags Flags to set into method.
* @return Newly allocated RSA method on success.
* @return NULL on failure.
*/
WOLFSSL_RSA_METHOD *wolfSSL_RSA_meth_new(const char *name, int flags)
{
WOLFSSL_RSA_METHOD* meth = NULL;
int name_len = 0;
int err;
/* Validate name is not NULL. */
err = (name == NULL);
if (!err) {
/* Allocate an RSA METHOD to return. */
meth = (WOLFSSL_RSA_METHOD*)XMALLOC(sizeof(WOLFSSL_RSA_METHOD), NULL,
DYNAMIC_TYPE_OPENSSL);
err = (meth == NULL);
}
if (!err) {
XMEMSET(meth, 0, sizeof(*meth));
meth->flags = flags;
meth->dynamic = 1;
name_len = (int)XSTRLEN(name);
meth->name = (char*)XMALLOC((size_t)(name_len + 1), NULL,
DYNAMIC_TYPE_OPENSSL);
err = (meth->name == NULL);
}
if (!err) {
XMEMCPY(meth->name, name, (size_t)(name_len + 1));
}
if (err) {
/* meth->name won't be allocated on error. */
XFREE(meth, NULL, DYNAMIC_TYPE_OPENSSL);
meth = NULL;
}
return meth;
}
/* Default RSA method is one with wolfSSL name and no flags.
*
* @return Newly allocated wolfSSL RSA method on success.
* @return NULL on failure.
*/
const WOLFSSL_RSA_METHOD* wolfSSL_RSA_get_default_method(void)
{
static const WOLFSSL_RSA_METHOD wolfssl_rsa_meth = {
0, /* No flags. */
(char*)"wolfSSL RSA",
0 /* Static definition. */
};
return &wolfssl_rsa_meth;
}
/* Dispose of RSA method and allocated data.
*
* @param [in] meth RSA method to free.
*/
void wolfSSL_RSA_meth_free(WOLFSSL_RSA_METHOD *meth)
{
/* Free method if available and dynamically allocated. */
if ((meth != NULL) && meth->dynamic) {
/* Name was duplicated and must be freed. */
XFREE(meth->name, NULL, DYNAMIC_TYPE_OPENSSL);
/* Dispose of RSA method. */
XFREE(meth, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
#ifndef NO_WOLFSSL_STUB
/* Stub function for any RSA method setting function.
*
* Nothing is stored - not even flags or name.
*
* @param [in] meth RSA method.
* @param [in] p A pointer.
* @return 1 to indicate success.
*/
int wolfSSL_RSA_meth_set(WOLFSSL_RSA_METHOD *meth, void* p)
{
WOLFSSL_STUB("RSA_METHOD is not implemented.");
(void)meth;
(void)p;
return 1;
}
#endif /* !NO_WOLFSSL_STUB */
#endif /* OPENSSL_EXTRA */
/*
* RSA constructor/deconstructor APIs
*/
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Dispose of RSA key and allocated data.
*
* Cannot use rsa after this call.
*
* @param [in] rsa RSA key to free.
*/
void wolfSSL_RSA_free(WOLFSSL_RSA* rsa)
{
int doFree = 1;
WOLFSSL_ENTER("wolfSSL_RSA_free");
/* Validate parameter. */
if (rsa == NULL) {
doFree = 0;
}
if (doFree) {
int err;
/* Decrement reference count. */
wolfSSL_RefDec(&rsa->ref, &doFree, &err);
#ifndef WOLFSSL_REFCNT_ERROR_RETURN
(void)err;
#endif
}
if (doFree) {
void* heap = rsa->heap;
/* Dispose of allocated reference counting data. */
wolfSSL_RefFree(&rsa->ref);
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
wolfSSL_CRYPTO_cleanup_ex_data(&rsa->ex_data);
#endif
if (rsa->internal != NULL) {
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
/* Check if RNG is owned before freeing it. */
if (rsa->ownRng) {
WC_RNG* rng = ((RsaKey*)(rsa->internal))->rng;
if ((rng != NULL) && (rng != wolfssl_get_global_rng())) {
wc_FreeRng(rng);
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
}
/* RNG isn't freed by wolfCrypt RSA free. */
}
#endif
/* Dispose of allocated data in wolfCrypt RSA key. */
wc_FreeRsaKey((RsaKey*)rsa->internal);
/* Dispose of memory for wolfCrypt RSA key. */
XFREE(rsa->internal, heap, DYNAMIC_TYPE_RSA);
}
/* Dispose of external representation of RSA values. */
wolfSSL_BN_clear_free(rsa->iqmp);
wolfSSL_BN_clear_free(rsa->dmq1);
wolfSSL_BN_clear_free(rsa->dmp1);
wolfSSL_BN_clear_free(rsa->q);
wolfSSL_BN_clear_free(rsa->p);
wolfSSL_BN_clear_free(rsa->d);
wolfSSL_BN_free(rsa->e);
wolfSSL_BN_free(rsa->n);
#if defined(OPENSSL_EXTRA)
if (rsa->meth) {
wolfSSL_RSA_meth_free((WOLFSSL_RSA_METHOD*)rsa->meth);
}
#endif
/* Set back to NULLs for safety. */
ForceZero(rsa, sizeof(*rsa));
XFREE(rsa, heap, DYNAMIC_TYPE_RSA);
(void)heap;
}
}
/* Allocate and initialize a new RSA key.
*
* Not OpenSSL API.
*
* @param [in] heap Heap hint for dynamic memory allocation.
* @param [in] devId Device identifier value.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA* wolfSSL_RSA_new_ex(void* heap, int devId)
{
WOLFSSL_RSA* rsa = NULL;
RsaKey* key = NULL;
int err = 0;
int rsaKeyInited = 0;
WOLFSSL_ENTER("wolfSSL_RSA_new");
/* Allocate memory for new wolfCrypt RSA key. */
key = (RsaKey*)XMALLOC(sizeof(RsaKey), heap, DYNAMIC_TYPE_RSA);
if (key == NULL) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_new malloc RsaKey failure");
err = 1;
}
if (!err) {
/* Allocate memory for new RSA key. */
rsa = (WOLFSSL_RSA*)XMALLOC(sizeof(WOLFSSL_RSA), heap,
DYNAMIC_TYPE_RSA);
if (rsa == NULL) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_new malloc WOLFSSL_RSA failure");
err = 1;
}
}
if (!err) {
/* Clear all fields of RSA key. */
XMEMSET(rsa, 0, sizeof(WOLFSSL_RSA));
/* Cache heap to use for all allocations. */
rsa->heap = heap;
#ifdef OPENSSL_EXTRA
/* Always have a method set. */
rsa->meth = wolfSSL_RSA_get_default_method();
#endif
/* Initialize reference counting. */
wolfSSL_RefInit(&rsa->ref, &err);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
}
if (!err) {
#endif
/* Initialize wolfCrypt RSA key. */
if (wc_InitRsaKey_ex(key, heap, devId) != 0) {
WOLFSSL_ERROR_MSG("InitRsaKey WOLFSSL_RSA failure");
err = 1;
}
else {
rsaKeyInited = 1;
}
}
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
if (!err) {
WC_RNG* rng;
/* Create a local RNG. */
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), heap, DYNAMIC_TYPE_RNG);
if ((rng != NULL) && (wc_InitRng_ex(rng, heap, devId) != 0)) {
WOLFSSL_MSG("InitRng failure, attempting to use global RNG");
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
rng = NULL;
}
rsa->ownRng = 1;
if (rng == NULL) {
/* Get the wolfSSL global RNG - not thread safe. */
rng = wolfssl_get_global_rng();
rsa->ownRng = 0;
}
if (rng == NULL) {
/* Couldn't create global either. */
WOLFSSL_ERROR_MSG("wolfSSL_RSA_new no WC_RNG for blinding");
err = 1;
}
else {
/* Set the local or global RNG into the wolfCrypt RSA key. */
(void)wc_RsaSetRNG(key, rng);
/* Won't fail as key and rng are not NULL. */
}
}
#endif /* !HAVE_FIPS && !HAVE_USER_RSA && !HAVE_FAST_RSA &&
* WC_RSA_BLINDING */
if (!err) {
/* Set wolfCrypt RSA key into RSA key. */
rsa->internal = key;
/* Data from external RSA key has not been set into internal one. */
rsa->inSet = 0;
}
if (err) {
/* Dispose of any allocated data on error. */
/* No failure after RNG allocation - no need to free RNG. */
if (rsaKeyInited) {
wc_FreeRsaKey(key);
}
XFREE(key, heap, DYNAMIC_TYPE_RSA);
XFREE(rsa, heap, DYNAMIC_TYPE_RSA);
/* Return NULL. */
rsa = NULL;
}
return rsa;
}
/* Allocate and initialize a new RSA key.
*
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA* wolfSSL_RSA_new(void)
{
/* Call wolfSSL API to do work. */
return wolfSSL_RSA_new_ex(NULL, INVALID_DEVID);
}
/* Increments ref count of RSA key.
*
* @param [in, out] rsa RSA key.
* @return 1 on success
* @return 0 on error
*/
int wolfSSL_RSA_up_ref(WOLFSSL_RSA* rsa)
{
int err = 0;
if (rsa != NULL) {
wolfSSL_RefInc(&rsa->ref, &err);
}
return !err;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_EXTRA
#if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_USER_RSA)
/* Allocate a new RSA key and make it a copy.
*
* Encodes to and from DER to copy.
*
* @param [in] rsa RSA key to duplicate.
* @return RSA key on success.
* @return NULL on error.
*/
WOLFSSL_RSA* wolfSSL_RSAPublicKey_dup(WOLFSSL_RSA *rsa)
{
WOLFSSL_RSA* ret = NULL;
int derSz = 0;
byte* derBuf = NULL;
int err;
WOLFSSL_ENTER("wolfSSL_RSAPublicKey_dup");
err = (rsa == NULL);
if (!err) {
/* Create a new RSA key to return. */
ret = wolfSSL_RSA_new();
if (ret == NULL) {
WOLFSSL_ERROR_MSG("Error creating a new WOLFSSL_RSA structure");
err = 1;
}
}
if (!err) {
/* Encode RSA public key to copy to DER - allocates DER buffer. */
if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1, rsa->heap)) < 0) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed");
err = 1;
}
}
if (!err) {
/* Decode DER of the RSA public key into new key. */
if (wolfSSL_RSA_LoadDer_ex(ret, derBuf, derSz,
WOLFSSL_RSA_LOAD_PUBLIC) != 1) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_LoadDer_ex failed");
err = 1;
}
}
/* Dispose of any allocated DER buffer. */
XFREE(derBuf, rsa ? rsa->heap : NULL, DYNAMIC_TYPE_ASN1);
if (err) {
/* Disposes of any created RSA key - on error. */
wolfSSL_RSA_free(ret);
ret = NULL;
}
return ret;
}
/* wolfSSL_RSAPrivateKey_dup not supported */
#endif /* WOLFSSL_KEY_GEN && !HAVE_USER_RSA */
#ifndef HAVE_USER_RSA
static int wolfSSL_RSA_To_Der_ex(WOLFSSL_RSA* rsa, byte** outBuf, int publicKey,
void* heap);
#endif
/*
* RSA to/from bin APIs
*/
/* Convert RSA public key data to internal.
*
* Creates new RSA key from the DER encoded RSA public key.
*
* @param [out] out Pointer to RSA key to return through. May be NULL.
* @param [in, out] derBuf Pointer to start of DER encoded data.
* @param [in] derSz Length of the data in the DER buffer.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA *wolfSSL_d2i_RSAPublicKey(WOLFSSL_RSA **out,
const unsigned char **derBuf, long derSz)
{
WOLFSSL_RSA *rsa = NULL;
int err = 0;
WOLFSSL_ENTER("wolfSSL_d2i_RSAPublicKey");
/* Validate parameters. */
if (derBuf == NULL) {
WOLFSSL_ERROR_MSG("Bad argument");
err = 1;
}
/* Create a new RSA key to return. */
if ((!err) && ((rsa = wolfSSL_RSA_new()) == NULL)) {
WOLFSSL_ERROR_MSG("RSA_new failed");
err = 1;
}
/* Decode RSA key from DER. */
if ((!err) && (wolfSSL_RSA_LoadDer_ex(rsa, *derBuf, (int)derSz,
WOLFSSL_RSA_LOAD_PUBLIC) != 1)) {
WOLFSSL_ERROR_MSG("RSA_LoadDer failed");
err = 1;
}
if ((!err) && (out != NULL)) {
/* Return through parameter too. */
*out = rsa;
/* Move buffer on by the used amount. */
*derBuf += wolfssl_der_length(*derBuf, (int)derSz);
}
if (err) {
/* Dispose of any created RSA key. */
wolfSSL_RSA_free(rsa);
rsa = NULL;
}
return rsa;
}
/* Convert RSA private key data to internal.
*
* Create a new RSA key from the DER encoded RSA private key.
*
* @param [out] out Pointer to RSA key to return through. May be NULL.
* @param [in, out] derBuf Pointer to start of DER encoded data.
* @param [in] derSz Length of the data in the DER buffer.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA *wolfSSL_d2i_RSAPrivateKey(WOLFSSL_RSA **out,
const unsigned char **derBuf, long derSz)
{
WOLFSSL_RSA *rsa = NULL;
int err = 0;
WOLFSSL_ENTER("wolfSSL_d2i_RSAPublicKey");
/* Validate parameters. */
if (derBuf == NULL) {
WOLFSSL_ERROR_MSG("Bad argument");
err = 1;
}
/* Create a new RSA key to return. */
if ((!err) && ((rsa = wolfSSL_RSA_new()) == NULL)) {
WOLFSSL_ERROR_MSG("RSA_new failed");
err = 1;
}
/* Decode RSA key from DER. */
if ((!err) && (wolfSSL_RSA_LoadDer_ex(rsa, *derBuf, (int)derSz,
WOLFSSL_RSA_LOAD_PRIVATE) != 1)) {
WOLFSSL_ERROR_MSG("RSA_LoadDer failed");
err = 1;
}
if ((!err) && (out != NULL)) {
/* Return through parameter too. */
*out = rsa;
/* Move buffer on by the used amount. */
*derBuf += wolfssl_der_length(*derBuf, (int)derSz);
}
if (err) {
/* Dispose of any created RSA key. */
wolfSSL_RSA_free(rsa);
rsa = NULL;
}
return rsa;
}
#if defined(OPENSSL_EXTRA) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA)
/* Converts an internal RSA structure to DER format for the private key.
*
* If "pp" is null then buffer size only is returned.
* If "*pp" is null then a created buffer is set in *pp and the caller is
* responsible for free'ing it.
*
* @param [in] rsa RSA key.
* @param [in, out] pp On in, pointer to allocated buffer or NULL.
* May be NULL.
* On out, newly allocated buffer or pointer to byte after
* encoding in passed in buffer.
*
* @return Size of DER encoding on success
* @return BAD_FUNC_ARG when rsa is NULL.
* @return 0 on failure.
*/
int wolfSSL_i2d_RSAPrivateKey(WOLFSSL_RSA *rsa, unsigned char **pp)
{
int ret;
WOLFSSL_ENTER("wolfSSL_i2d_RSAPrivateKey");
/* Validate parameters. */
if (rsa == NULL) {
WOLFSSL_ERROR_MSG("Bad Function Arguments");
ret = BAD_FUNC_ARG;
}
/* Encode the RSA key as a DER. Call allocates buffer into pp.
* No heap hint as this gets returned to the user */
else if ((ret = wolfSSL_RSA_To_Der_ex(rsa, pp, 0, NULL)) < 0) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed");
ret = 0;
}
/* Size of DER encoding. */
return ret;
}
/* Converts an internal RSA structure to DER format for the public key.
*
* If "pp" is null then buffer size only is returned.
* If "*pp" is null then a created buffer is set in *pp and the caller is
* responsible for free'ing it.
*
* @param [in] rsa RSA key.
* @param [in, out] pp On in, pointer to allocated buffer or NULL.
* May be NULL.
* On out, newly allocated buffer or pointer to byte after
* encoding in passed in buffer.
* @return Size of DER encoding on success
* @return BAD_FUNC_ARG when rsa is NULL.
* @return 0 on failure.
*/
int wolfSSL_i2d_RSAPublicKey(WOLFSSL_RSA *rsa, unsigned char **pp)
{
int ret;
WOLFSSL_ENTER("wolfSSL_i2d_RSAPublicKey");
/* check for bad functions arguments */
if (rsa == NULL) {
WOLFSSL_ERROR_MSG("Bad Function Arguments");
ret = BAD_FUNC_ARG;
}
/* Encode the RSA key as a DER. Call allocates buffer into pp.
* No heap hint as this gets returned to the user */
else if ((ret = wolfSSL_RSA_To_Der_ex(rsa, pp, 1, NULL)) < 0) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed");
ret = 0;
}
return ret;
}
#endif /* defined(OPENSSL_EXTRA) && !defined(HAVE_USER_RSA) &&
* !defined(HAVE_FAST_RSA) */
#endif /* OPENSSL_EXTRA */
/*
* RSA to/from BIO APIs
*/
/* wolfSSL_d2i_RSAPublicKey_bio not supported */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || defined(WOLFSSL_HAPROXY) \
|| defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT)
#if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && !defined(NO_BIO)
/* Read DER data from a BIO.
*
* DER structures start with a constructed sequence. Use this to calculate the
* total length of the DER data.
*
* @param [in] bio BIO object to read from.
* @param [out] out Buffer holding DER encoding.
* @return Number of bytes to DER encoding on success.
* @return 0 on failure.
*/
static int wolfssl_read_der_bio(WOLFSSL_BIO* bio, unsigned char** out)
{
int err = 0;
unsigned char seq[MAX_SEQ_SZ];
unsigned char* der = NULL;
int derLen = 0;
/* Read in a minimal amount to get a SEQUENCE header of any size. */
if (wolfSSL_BIO_read(bio, seq, sizeof(seq)) != sizeof(seq)) {
WOLFSSL_ERROR_MSG("wolfSSL_BIO_read() of sequence failure");
err = 1;
}
/* Calculate complete DER encoding length. */
if ((!err) && ((derLen = wolfssl_der_length(seq, sizeof(seq))) <= 0)) {
WOLFSSL_ERROR_MSG("DER SEQUENCE decode failed");
err = 1;
}
/* Allocate a buffer to read DER data into. */
if ((!err) && ((der = (unsigned char*)XMALLOC((size_t)derLen, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER)) == NULL)) {
WOLFSSL_ERROR_MSG("Malloc failure");
err = 1;
}
if (!err) {
/* Calculate the unread amount. */
int len = derLen - (int)sizeof(seq);
/* Copy the previously read data into the buffer. */
XMEMCPY(der, seq, sizeof(seq));
/* Read rest of DER data from BIO. */
if (wolfSSL_BIO_read(bio, der + sizeof(seq), len) != len) {
WOLFSSL_ERROR_MSG("wolfSSL_BIO_read() failure");
err = 1;
}
}
if (!err) {
/* Return buffer through parameter. */
*out = der;
}
if (err) {
/* Dispose of any allocated buffer on error. */
XFREE(der, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
derLen = 0;
}
return derLen;
}
/* Reads the RSA private key data from a BIO to the internal form.
*
* Creates new RSA key from the DER encoded RSA private key read from the BIO.
*
* @param [in] bio BIO object to read from.
* @param [out] out Pointer to RSA key to return through. May be NULL.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA* wolfSSL_d2i_RSAPrivateKey_bio(WOLFSSL_BIO *bio, WOLFSSL_RSA **out)
{
WOLFSSL_RSA* key = NULL;
unsigned char* der = NULL;
int derLen = 0;
int err;
WOLFSSL_ENTER("wolfSSL_d2i_RSAPrivateKey_bio");
/* Validate parameters. */
err = (bio == NULL);
/* Read just DER encoding from BIO - buffer allocated in call. */
if ((!err) && ((derLen = wolfssl_read_der_bio(bio, &der)) == 0)) {
err = 1;
}
if (!err) {
/* Keep der for call to deallocate. */
const unsigned char* cder = der;
/* Create an RSA key from the data from the BIO. */
key = wolfSSL_d2i_RSAPrivateKey(NULL, &cder, derLen);
err = (key == NULL);
}
if ((!err) && (out != NULL)) {
/* Return the created RSA key through the parameter. */
*out = key;
}
if (err) {
/* Dispose of created key on error. */
wolfSSL_RSA_free(key);
key = NULL;
}
/* Dispose of allocated data. */
XFREE(der, bio ? bio->heap : NULL, DYNAMIC_TYPE_TMP_BUFFER);
return key;
}
#endif /* defined(WOLFSSL_KEY_GEN) && !defined(HAVE_USER_RSA) &&
* !defined(HAVE_FAST_RSA) && !NO_BIO */
#endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT */
/*
* RSA DER APIs
*/
#ifdef OPENSSL_EXTRA
#ifndef HAVE_USER_RSA
/* Create a DER encoding of key.
*
* Not OpenSSL API.
*
* @param [in] rsa RSA key.
* @param [out] outBuf Allocated buffer containing DER encoding.
* May be NULL.
* @param [in] publicKey Whether to encode as public key.
* @param [in] heap Heap hint.
* @return Encoding size on success.
* @return Negative on failure.
*/
int wolfSSL_RSA_To_Der(WOLFSSL_RSA* rsa, byte** outBuf, int publicKey,
void* heap)
{
byte* p = NULL;
int ret;
if (outBuf != NULL) {
p = *outBuf;
}
ret = wolfSSL_RSA_To_Der_ex(rsa, outBuf, publicKey, heap);
if ((ret > 0) && (p != NULL)) {
*outBuf = p;
}
return ret;
}
/* Create a DER encoding of key.
*
* Buffer allocated with heap and DYNAMIC_TYPE_TMP_BUFFER.
*
* @param [in] rsa RSA key.
* @param [in, out] outBuf On in, pointer to allocated buffer or NULL.
* May be NULL.
* On out, newly allocated buffer or pointer to byte
* after encoding in passed in buffer.
* @param [in] publicKey Whether to encode as public key.
* @param [in] heap Heap hint.
* @return Encoding size on success.
* @return Negative on failure.
*/
static int wolfSSL_RSA_To_Der_ex(WOLFSSL_RSA* rsa, byte** outBuf, int publicKey,
void* heap)
{
int ret = 1;
int derSz = 0;
byte* derBuf = NULL;
WOLFSSL_ENTER("wolfSSL_RSA_To_Der");
/* Unused if memory is disabled. */
(void)heap;
/* Validate parameters. */
if ((rsa == NULL) || ((publicKey != 0) && (publicKey != 1))) {
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", BAD_FUNC_ARG);
ret = BAD_FUNC_ARG;
}
/* Push external RSA data into internal RSA key if not set. */
if ((ret == 1) && (!rsa->inSet)) {
ret = SetRsaInternal(rsa);
}
/* wc_RsaKeyToPublicDer encode regardless of values. */
if ((ret == 1) && publicKey && (mp_iszero(&((RsaKey*)rsa->internal)->n) ||
mp_iszero(&((RsaKey*)rsa->internal)->e))) {
ret = BAD_FUNC_ARG;
}
if (ret == 1) {
if (publicKey) {
/* Calculate length of DER encoded RSA public key. */
derSz = wc_RsaPublicKeyDerSize((RsaKey*)rsa->internal, 1);
if (derSz < 0) {
WOLFSSL_ERROR_MSG("wc_RsaPublicKeyDerSize failed");
ret = derSz;
}
}
else {
/* Calculate length of DER encoded RSA private key. */
derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, NULL, 0);
if (derSz < 0) {
WOLFSSL_ERROR_MSG("wc_RsaKeyToDer failed");
ret = derSz;
}
}
}
if ((ret == 1) && (outBuf != NULL)) {
derBuf = *outBuf;
if (derBuf == NULL) {
/* Allocate buffer to hold DER encoded RSA key. */
derBuf = (byte*)XMALLOC((size_t)derSz, heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (derBuf == NULL) {
WOLFSSL_ERROR_MSG("Memory allocation failed");
ret = MEMORY_ERROR;
}
}
}
if ((ret == 1) && (outBuf != NULL)) {
if (publicKey > 0) {
/* RSA public key to DER. */
derSz = wc_RsaKeyToPublicDer((RsaKey*)rsa->internal, derBuf,
(word32)derSz);
}
else {
/* RSA private key to DER. */
derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, derBuf,
(word32)derSz);
}
if (derSz < 0) {
WOLFSSL_ERROR_MSG("RSA key encoding failed");
ret = derSz;
}
else if ((*outBuf) != NULL) {
derBuf = NULL;
*outBuf += derSz;
}
else {
/* Return allocated buffer. */
*outBuf = derBuf;
}
}
if (ret == 1) {
/* Success - return DER encoding size. */
ret = derSz;
}
if ((outBuf != NULL) && (*outBuf != derBuf)) {
/* Not returning buffer, needs to be disposed of. */
XFREE(derBuf, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", ret);
return ret;
}
#endif /* !HAVE_USER_RSA */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Load the DER encoded private RSA key.
*
* Not OpenSSL API.
*
* @param [in] rsa RSA key.
* @param [in] derBuf Buffer holding DER encoding.
* @param [in] derSz Length of DER encoding.
* @return 1 on success.
* @return -1 on failure.
*/
int wolfSSL_RSA_LoadDer(WOLFSSL_RSA* rsa, const unsigned char* derBuf,
int derSz)
{
/* Call implementation that handles both private and public keys. */
return wolfSSL_RSA_LoadDer_ex(rsa, derBuf, derSz, WOLFSSL_RSA_LOAD_PRIVATE);
}
/* Load the DER encoded public or private RSA key.
*
* Not OpenSSL API.
*
* @param [in] rsa RSA key.
* @param [in] derBuf Buffer holding DER encoding.
* @param [in] derSz Length of DER encoding.
* @param [in] opt Indicates public or private key.
* (WOLFSSL_RSA_LOAD_PUBLIC or WOLFSSL_RSA_LOAD_PRIVATE)
* @return 1 on success.
* @return -1 on failure.
*/
int wolfSSL_RSA_LoadDer_ex(WOLFSSL_RSA* rsa, const unsigned char* derBuf,
int derSz, int opt)
{
int ret = 1;
int res;
word32 idx = 0;
word32 algId;
WOLFSSL_ENTER("wolfSSL_RSA_LoadDer");
/* Validate parameters. */
if ((rsa == NULL) || (rsa->internal == NULL) || (derBuf == NULL) ||
(derSz <= 0)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
if (ret == 1) {
rsa->pkcs8HeaderSz = 0;
/* Check if input buffer has PKCS8 header. In the case that it does not
* have a PKCS8 header then do not error out. */
res = ToTraditionalInline_ex((const byte*)derBuf, &idx, (word32)derSz,
&algId);
if (res > 0) {
/* Store size of PKCS#8 header for encoding. */
WOLFSSL_MSG("Found PKCS8 header");
rsa->pkcs8HeaderSz = (word16)idx;
}
/* When decoding and not PKCS#8, return will be ASN_PARSE_E. */
else if (res != ASN_PARSE_E) {
/* Something went wrong while decoding. */
WOLFSSL_ERROR_MSG("Unexpected error with trying to remove PKCS#8 "
"header");
ret = -1;
}
}
if (ret == 1) {
/* Decode private or public key data. */
if (opt == WOLFSSL_RSA_LOAD_PRIVATE) {
res = wc_RsaPrivateKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal,
(word32)derSz);
}
else {
res = wc_RsaPublicKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal,
(word32)derSz);
}
/* Check for error. */
if (res < 0) {
if (opt == WOLFSSL_RSA_LOAD_PRIVATE) {
WOLFSSL_ERROR_MSG("RsaPrivateKeyDecode failed");
}
else {
WOLFSSL_ERROR_MSG("RsaPublicKeyDecode failed");
}
WOLFSSL_ERROR_VERBOSE(res);
ret = -1;
}
}
if (ret == 1) {
/* Set external RSA key data from wolfCrypt key. */
if (SetRsaExternal(rsa) != 1) {
ret = -1;
}
else {
rsa->inSet = 1;
}
}
return ret;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
#if !defined(NO_BIO) || !defined(NO_FILESYSTEM)
/* Load DER encoded data into WOLFSSL_RSA object.
*
* Creates a new WOLFSSL_RSA object if one is not passed in.
*
* @param [in, out] rsa WOLFSSL_RSA object to load into.
* When rsa or *rsa is NULL a new object is created.
* When not NULL and *rsa is NULL then new object
* returned through pointer.
* @param [in] in DER encoded RSA key data.
* @param [in] inSz Size of DER encoded data in bytes.
* @param [in] opt Public or private key encoded in data. Valid values:
* WOLFSSL_RSA_LOAD_PRIVATE, WOLFSSL_RSA_LOAD_PUBLIC.
* @return NULL on failure.
* @return WOLFSSL_RSA object on success.
*/
static WOLFSSL_RSA* wolfssl_rsa_d2i(WOLFSSL_RSA** rsa, const unsigned char* in,
long inSz, int opt)
{
WOLFSSL_RSA* ret = NULL;
if ((rsa != NULL) && (*rsa != NULL)) {
ret = *rsa;
}
else {
ret = wolfSSL_RSA_new();
}
if ((ret != NULL) && (wolfSSL_RSA_LoadDer_ex(ret, in, (int)inSz, opt)
!= 1)) {
if ((rsa == NULL) || (ret != *rsa)) {
wolfSSL_RSA_free(ret);
}
ret = NULL;
}
if ((rsa != NULL) && (*rsa == NULL)) {
*rsa = ret;
}
return ret;
}
#endif
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
/*
* RSA PEM APIs
*/
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
#if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_USER_RSA)
/* Writes PEM encoding of an RSA public key to a BIO.
*
* @param [in] bio BIO object to write to.
* @param [in] rsa RSA key to write.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_PEM_write_bio_RSA_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa)
{
int ret = 1;
int derSz = 0;
byte* derBuf = NULL;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_RSA_PUBKEY");
/* Validate parameters. */
if ((bio == NULL) || (rsa == NULL)) {
WOLFSSL_ERROR_MSG("Bad Function Arguments");
return 0;
}
if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1, bio->heap)) < 0) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed");
ret = 0;
}
if (derBuf == NULL) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed to get buffer");
ret = 0;
}
if ((ret == 1) && (der_write_to_bio_as_pem(derBuf, derSz, bio,
PUBLICKEY_TYPE) != WOLFSSL_SUCCESS)) {
ret = 0;
}
/* Dispose of DER buffer. */
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif /* WOLFSSL_KEY_GEN && !HAVE_USER_RSA */
#endif /* !NO_BIO */
#if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_USER_RSA)
#ifndef NO_FILESYSTEM
/* Writes PEM encoding of an RSA public key to a file pointer.
*
* @param [in] fp File pointer to write to.
* @param [in] rsa RSA key to write.
* @param [in] type PEM type to write out.
* @return 1 on success.
* @return 0 on failure.
*/
static int wolfssl_pem_write_rsa_public_key(XFILE fp, WOLFSSL_RSA* rsa,
int type)
{
int ret = 1;
int derSz;
byte* derBuf = NULL;
/* Validate parameters. */
if ((fp == XBADFILE) || (rsa == NULL)) {
WOLFSSL_ERROR_MSG("Bad Function Arguments");
return 0;
}
if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1, rsa->heap)) < 0) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed");
ret = 0;
}
if (derBuf == NULL) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed to get buffer");
ret = 0;
}
if ((ret == 1) && (der_write_to_file_as_pem(derBuf, derSz, fp, type,
rsa->heap) != WOLFSSL_SUCCESS)) {
ret = 0;
}
/* Dispose of DER buffer. */
XFREE(derBuf, rsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* Writes PEM encoding of an RSA public key to a file pointer.
*
* Header/footer will contain: PUBLIC KEY
*
* @param [in] fp File pointer to write to.
* @param [in] rsa RSA key to write.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_PEM_write_RSA_PUBKEY(XFILE fp, WOLFSSL_RSA* rsa)
{
return wolfssl_pem_write_rsa_public_key(fp, rsa, PUBLICKEY_TYPE);
}
/* Writes PEM encoding of an RSA public key to a file pointer.
*
* Header/footer will contain: RSA PUBLIC KEY
*
* @param [in] fp File pointer to write to.
* @param [in] rsa RSA key to write.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_PEM_write_RSAPublicKey(XFILE fp, WOLFSSL_RSA* rsa)
{
return wolfssl_pem_write_rsa_public_key(fp, rsa, RSA_PUBLICKEY_TYPE);
}
#endif /* !NO_FILESYSTEM */
#endif /* WOLFSSL_KEY_GEN && !HAVE_USER_RSA */
#ifndef NO_BIO
/* Create an RSA public key by reading the PEM encoded data from the BIO.
*
* @param [in] bio BIO object to read from.
* @param [out] out RSA key created.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM encrypted.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA *wolfSSL_PEM_read_bio_RSA_PUBKEY(WOLFSSL_BIO* bio,
WOLFSSL_RSA** out, wc_pem_password_cb* cb, void *pass)
{
WOLFSSL_RSA* rsa = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_RSA_PUBKEY");
if ((bio != NULL) && (pem_read_bio_key(bio, cb, pass, PUBLICKEY_TYPE,
&keyFormat, &der) >= 0)) {
rsa = wolfssl_rsa_d2i(out, der->buffer, der->length,
WOLFSSL_RSA_LOAD_PUBLIC);
if (rsa == NULL) {
WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA");
}
}
FreeDer(&der);
if ((out != NULL) && (rsa != NULL)) {
*out = rsa;
}
return rsa;
}
#endif /* !NO_BIO */
#ifndef NO_FILESYSTEM
/* Create an RSA public key by reading the PEM encoded data from the BIO.
*
* Header/footer should contain: PUBLIC KEY
* PEM decoder supports either 'RSA PUBLIC KEY' or 'PUBLIC KEY'.
*
* @param [in] fp File pointer to read from.
* @param [out] out RSA key created.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM encrypted.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA *wolfSSL_PEM_read_RSA_PUBKEY(XFILE fp,
WOLFSSL_RSA** out, wc_pem_password_cb* cb, void *pass)
{
WOLFSSL_RSA* rsa = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_RSA_PUBKEY");
if ((fp != XBADFILE) && (pem_read_file_key(fp, cb, pass, PUBLICKEY_TYPE,
&keyFormat, &der) >= 0)) {
rsa = wolfssl_rsa_d2i(out, der->buffer, der->length,
WOLFSSL_RSA_LOAD_PUBLIC);
if (rsa == NULL) {
WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA");
}
}
FreeDer(&der);
if ((out != NULL) && (rsa != NULL)) {
*out = rsa;
}
return rsa;
}
/* Create an RSA public key by reading the PEM encoded data from the BIO.
*
* Header/footer should contain: RSA PUBLIC KEY
* PEM decoder supports either 'RSA PUBLIC KEY' or 'PUBLIC KEY'.
*
* @param [in] fp File pointer to read from.
* @param [out] rsa RSA key created.
* @param [in] cb Password callback when PEM encrypted. May be NULL.
* @param [in] pass NUL terminated string for passphrase when PEM encrypted.
* May be NULL.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA* wolfSSL_PEM_read_RSAPublicKey(XFILE fp, WOLFSSL_RSA** rsa,
wc_pem_password_cb* cb, void* pass)
{
return wolfSSL_PEM_read_RSA_PUBKEY(fp, rsa, cb, pass);
}
#endif /* NO_FILESYSTEM */
#if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_USER_RSA) && \
(defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM))
/* Writes PEM encoding of an RSA private key to newly allocated buffer.
*
* Buffer returned was allocated with: DYNAMIC_TYPE_KEY.
*
* @param [in] rsa RSA key to write.
* @param [in] cipher Cipher to use when PEM encrypted. May be NULL.
* @param [in] passwd Password string when PEM encrypted. May be NULL.
* @param [in] passwdSz Length of password string when PEM encrypted.
* @param [out] pem Allocated buffer with PEM encoding.
* @param [out] pLen Length of PEM encoding.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_PEM_write_mem_RSAPrivateKey(RSA* rsa, const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz, unsigned char **pem, int *pLen)
{
int ret = 1;
byte* derBuf = NULL;
int derSz = 0;
WOLFSSL_ENTER("wolfSSL_PEM_write_mem_RSAPrivateKey");
/* Validate parameters. */
if ((pem == NULL) || (pLen == NULL) || (rsa == NULL) ||
(rsa->internal == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
/* Set the RSA key data into the wolfCrypt RSA key if not done so. */
if ((ret == 1) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) {
ret = 0;
}
/* Encode wolfCrypt RSA key to DER - derBuf allocated in call. */
if ((ret == 1) && ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 0,
rsa->heap)) < 0)) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed");
ret = 0;
}
if ((ret == 1) && (der_to_enc_pem_alloc(derBuf, derSz, cipher, passwd,
passwdSz, PRIVATEKEY_TYPE, NULL, pem, pLen) != 1)) {
WOLFSSL_ERROR_MSG("der_to_enc_pem_alloc failed");
ret = 0;
}
return ret;
}
#ifndef NO_BIO
/* Writes PEM encoding of an RSA private key to a BIO.
*
* @param [in] bio BIO object to write to.
* @param [in] rsa RSA key to write.
* @param [in] cipher Cipher to use when PEM encrypted.
* @param [in] passwd Password string when PEM encrypted.
* @param [in] len Length of password string when PEM encrypted.
* @param [in] cb Password callback to use when PEM encrypted.
* @param [in] arg NUL terminated string for passphrase when PEM encrypted.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_PEM_write_bio_RSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa,
const WOLFSSL_EVP_CIPHER* cipher, unsigned char* passwd, int len,
wc_pem_password_cb* cb, void* arg)
{
int ret = 1;
byte* pem = NULL;
int pLen = 0;
(void)cb;
(void)arg;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_RSAPrivateKey");
/* Validate parameters. */
if ((bio == NULL) || (rsa == NULL) || (rsa->internal == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
if (ret == 1) {
/* Write PEM to buffer that is allocated in the call. */
ret = wolfSSL_PEM_write_mem_RSAPrivateKey(rsa, cipher, passwd, len,
&pem, &pLen);
if (ret != 1) {
WOLFSSL_ERROR_MSG("wolfSSL_PEM_write_mem_RSAPrivateKey failed");
}
}
/* Write PEM to BIO. */
if ((ret == 1) && (wolfSSL_BIO_write(bio, pem, pLen) <= 0)) {
WOLFSSL_ERROR_MSG("RSA private key BIO write failed");
ret = 0;
}
/* Dispose of any allocated PEM buffer. */
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return ret;
}
#endif /* !NO_BIO */
#ifndef NO_FILESYSTEM
/* Writes PEM encoding of an RSA private key to a file pointer.
*
* TODO: Support use of the password callback and callback context.
*
* @param [in] fp File pointer to write to.
* @param [in] rsa RSA key to write.
* @param [in] cipher Cipher to use when PEM encrypted. May be NULL.
* @param [in] passwd Password string when PEM encrypted. May be NULL.
* @param [in] passwdSz Length of password string when PEM encrypted.
* @param [in] cb Password callback to use when PEM encrypted. Unused.
* @param [in] arg NUL terminated string for passphrase when PEM
* encrypted. Unused.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_PEM_write_RSAPrivateKey(XFILE fp, WOLFSSL_RSA *rsa,
const EVP_CIPHER *cipher, unsigned char *passwd, int passwdSz,
wc_pem_password_cb *cb, void *arg)
{
int ret = 1;
byte* pem = NULL;
int pLen = 0;
(void)cb;
(void)arg;
WOLFSSL_ENTER("wolfSSL_PEM_write_RSAPrivateKey");
/* Validate parameters. */
if ((fp == XBADFILE) || (rsa == NULL) || (rsa->internal == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
if (ret == 1) {
/* Write PEM to buffer that is allocated in the call. */
ret = wolfSSL_PEM_write_mem_RSAPrivateKey(rsa, cipher, passwd, passwdSz,
&pem, &pLen);
if (ret != 1) {
WOLFSSL_ERROR_MSG("wolfSSL_PEM_write_mem_RSAPrivateKey failed");
}
}
/* Write PEM to file pointer. */
if ((ret == 1) && ((int)XFWRITE(pem, 1, (size_t)pLen, fp) != pLen)) {
WOLFSSL_ERROR_MSG("RSA private key file write failed");
ret = 0;
}
/* Dispose of any allocated PEM buffer. */
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return ret;
}
#endif /* NO_FILESYSTEM */
#endif /* WOLFSSL_KEY_GEN && !HAVE_USER_RSA && WOLFSSL_PEM_TO_DER */
#ifndef NO_BIO
/* Create an RSA private key by reading the PEM encoded data from the BIO.
*
* @param [in] bio BIO object to read from.
* @param [out] out RSA key created.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM encrypted.
* @return RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA* wolfSSL_PEM_read_bio_RSAPrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_RSA** out, wc_pem_password_cb* cb, void* pass)
{
WOLFSSL_RSA* rsa = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_RSAPrivateKey");
if ((bio != NULL) && (pem_read_bio_key(bio, cb, pass, PRIVATEKEY_TYPE,
&keyFormat, &der) >= 0)) {
rsa = wolfssl_rsa_d2i(out, der->buffer, der->length,
WOLFSSL_RSA_LOAD_PRIVATE);
if (rsa == NULL) {
WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA");
}
}
FreeDer(&der);
if ((out != NULL) && (rsa != NULL)) {
*out = rsa;
}
return rsa;
}
#endif /* !NO_BIO */
/* Create an RSA private key by reading the PEM encoded data from the file
* pointer.
*
* @param [in] fp File pointer to read from.
* @param [out] out RSA key created.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM encrypted.
* @return RSA key on success.
* @return NULL on failure.
*/
#ifndef NO_FILESYSTEM
WOLFSSL_RSA* wolfSSL_PEM_read_RSAPrivateKey(XFILE fp, WOLFSSL_RSA** out,
wc_pem_password_cb* cb, void* pass)
{
WOLFSSL_RSA* rsa = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_RSAPrivateKey");
if ((fp != XBADFILE) && (pem_read_file_key(fp, cb, pass, PRIVATEKEY_TYPE,
&keyFormat, &der) >= 0)) {
rsa = wolfssl_rsa_d2i(out, der->buffer, der->length,
WOLFSSL_RSA_LOAD_PRIVATE);
if (rsa == NULL) {
WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA");
}
}
FreeDer(&der);
if ((out != NULL) && (rsa != NULL)) {
*out = rsa;
}
return rsa;
}
#endif /* !NO_FILESYSTEM */
/*
* RSA print APIs
*/
#if defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \
!defined(NO_STDIO_FILESYSTEM)
/* Print an RSA key to a file pointer.
*
* @param [in] fp File pointer to write to.
* @param [in] rsa RSA key to write.
* @param [in] indent Number of spaces to prepend to each line.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_print_fp(XFILE fp, WOLFSSL_RSA* rsa, int indent)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_RSA_print_fp");
/* Validate parameters. */
if ((fp == XBADFILE) || (rsa == NULL)) {
ret = 0;
}
/* Set the external data from the wolfCrypt RSA key if not done. */
if ((ret == 1) && (!rsa->exSet)) {
ret = SetRsaExternal(rsa);
}
/* Get the key size from modulus if available. */
if ((ret == 1) && (rsa->n != NULL)) {
int keySize = wolfSSL_BN_num_bits(rsa->n);
if (keySize == 0) {
ret = 0;
}
else {
if (XFPRINTF(fp, "%*s", indent, "") < 0)
ret = 0;
else if (XFPRINTF(fp, "RSA Private-Key: (%d bit, 2 primes)\n",
keySize) < 0)
ret = 0;
}
}
/* Print out any components available. */
if ((ret == 1) && (rsa->n != NULL)) {
ret = pk_bn_field_print_fp(fp, indent, "modulus", rsa->n);
}
if ((ret == 1) && (rsa->d != NULL)) {
ret = pk_bn_field_print_fp(fp, indent, "privateExponent", rsa->d);
}
if ((ret == 1) && (rsa->p != NULL)) {
ret = pk_bn_field_print_fp(fp, indent, "prime1", rsa->p);
}
if ((ret == 1) && (rsa->q != NULL)) {
ret = pk_bn_field_print_fp(fp, indent, "prime2", rsa->q);
}
if ((ret == 1) && (rsa->dmp1 != NULL)) {
ret = pk_bn_field_print_fp(fp, indent, "exponent1", rsa->dmp1);
}
if ((ret == 1) && (rsa->dmq1 != NULL)) {
ret = pk_bn_field_print_fp(fp, indent, "exponent2", rsa->dmq1);
}
if ((ret == 1) && (rsa->iqmp != NULL)) {
ret = pk_bn_field_print_fp(fp, indent, "coefficient", rsa->iqmp);
}
WOLFSSL_LEAVE("wolfSSL_RSA_print_fp", ret);
return ret;
}
#endif /* XFPRINTF && !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM */
#if defined(XSNPRINTF) && !defined(NO_BIO) && !defined(HAVE_FAST_RSA)
/* snprintf() must be available */
/* Maximum size of a header line. */
#define RSA_PRINT_MAX_HEADER_LINE PRINT_NUM_MAX_INDENT
/* Writes the human readable form of RSA to a BIO.
*
* @param [in] bio BIO object to write to.
* @param [in] rsa RSA key to write.
* @param [in] indent Number of spaces before each line.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_print(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa, int indent)
{
int ret = 1;
int sz = 0;
RsaKey* key = NULL;
char line[RSA_PRINT_MAX_HEADER_LINE];
int i = 0;
mp_int *num = NULL;
/* Header strings. */
const char *name[] = {
"Modulus:", "Exponent:", "PrivateExponent:", "Prime1:", "Prime2:",
"Exponent1:", "Exponent2:", "Coefficient:"
};
WOLFSSL_ENTER("wolfSSL_RSA_print");
/* Validate parameters. */
if ((bio == NULL) || (rsa == NULL) || (indent > PRINT_NUM_MAX_INDENT)) {
ret = -1;
}
if (ret == 1) {
key = (RsaKey*)rsa->internal;
/* Get size in bits of key for printing out. */
sz = wolfSSL_RSA_bits(rsa);
if (sz <= 0) {
WOLFSSL_ERROR_MSG("Error getting RSA key size");
ret = 0;
}
}
if (ret == 1) {
/* Print any indent spaces. */
ret = wolfssl_print_indent(bio, line, sizeof(line), indent);
}
if (ret == 1) {
/* Print header line. */
int len = XSNPRINTF(line, sizeof(line), "\nRSA %s: (%d bit)\n",
(!mp_iszero(&key->d)) ? "Private-Key" : "Public-Key", sz);
if (len >= (int)sizeof(line)) {
WOLFSSL_ERROR_MSG("Buffer overflow while formatting key preamble");
ret = 0;
}
else {
if (wolfSSL_BIO_write(bio, line, len) <= 0) {
ret = 0;
}
}
}
for (i = 0; (ret == 1) && (i < RSA_INTS); i++) {
/* Get mp_int for index. */
switch (i) {
case 0:
/* Print out modulus */
num = &key->n;
break;
case 1:
num = &key->e;
break;
case 2:
num = &key->d;
break;
case 3:
num = &key->p;
break;
case 4:
num = &key->q;
break;
case 5:
num = &key->dP;
break;
case 6:
num = &key->dQ;
break;
case 7:
num = &key->u;
break;
default:
WOLFSSL_ERROR_MSG("Bad index value");
}
if (i == 1) {
/* Print exponent as a 32-bit value. */
ret = wolfssl_print_value(bio, num, name[i], indent);
}
else if (!mp_iszero(num)) {
/* Print name and MP integer. */
ret = wolfssl_print_number(bio, num, name[i], indent);
}
}
return ret;
}
#endif /* XSNPRINTF && !NO_BIO && !HAVE_FAST_RSA */
#endif /* OPENSSL_EXTRA */
/*
* RSA get/set/test APIs
*/
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
#if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
/* Set RSA key data (external) from wolfCrypt RSA key (internal).
*
* @param [in, out] rsa RSA key.
* @return 1 on success.
* @return 0 on failure.
*/
int SetRsaExternal(WOLFSSL_RSA* rsa)
{
int ret = 1;
WOLFSSL_ENTER("SetRsaExternal");
/* Validate parameters. */
if ((rsa == NULL) || (rsa->internal == NULL)) {
WOLFSSL_ERROR_MSG("rsa key NULL error");
ret = -1;
}
if (ret == 1) {
RsaKey* key = (RsaKey*)rsa->internal;
/* Copy modulus. */
ret = wolfssl_bn_set_value(&rsa->n, &key->n);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa n error");
}
if (ret == 1) {
/* Copy public exponent. */
ret = wolfssl_bn_set_value(&rsa->e, &key->e);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa e error");
}
}
if (key->type == RSA_PRIVATE) {
if (ret == 1) {
/* Copy private exponent. */
ret = wolfssl_bn_set_value(&rsa->d, &key->d);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa d error");
}
}
if (ret == 1) {
/* Copy first prime. */
ret = wolfssl_bn_set_value(&rsa->p, &key->p);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa p error");
}
}
if (ret == 1) {
/* Copy second prime. */
ret = wolfssl_bn_set_value(&rsa->q, &key->q);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa q error");
}
}
#ifndef RSA_LOW_MEM
if (ret == 1) {
/* Copy d mod p-1. */
ret = wolfssl_bn_set_value(&rsa->dmp1, &key->dP);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa dP error");
}
}
if (ret == 1) {
/* Copy d mod q-1. */
ret = wolfssl_bn_set_value(&rsa->dmq1, &key->dQ);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa dq error");
}
}
if (ret == 1) {
/* Copy 1/q mod p. */
ret = wolfssl_bn_set_value(&rsa->iqmp, &key->u);
if (ret != 1) {
WOLFSSL_ERROR_MSG("rsa u error");
}
}
#endif /* !RSA_LOW_MEM */
}
}
if (ret == 1) {
/* External values set. */
rsa->exSet = 1;
}
else {
/* Return 0 on failure. */
ret = 0;
}
return ret;
}
#endif /* !HAVE_USER_RSA && !HAVE_FAST_RSA */
#endif /* (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */
#ifdef OPENSSL_EXTRA
#if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
/* Set wolfCrypt RSA key data (internal) from RSA key (external).
*
* @param [in, out] rsa RSA key.
* @return 1 on success.
* @return 0 on failure.
*/
int SetRsaInternal(WOLFSSL_RSA* rsa)
{
int ret = 1;
WOLFSSL_ENTER("SetRsaInternal");
/* Validate parameters. */
if ((rsa == NULL) || (rsa->internal == NULL)) {
WOLFSSL_ERROR_MSG("rsa key NULL error");
ret = -1;
}
if (ret == 1) {
RsaKey* key = (RsaKey*)rsa->internal;
/* Copy down modulus if available. */
if ((rsa->n != NULL) && (wolfssl_bn_get_value(rsa->n, &key->n) != 1)) {
WOLFSSL_ERROR_MSG("rsa n key error");
ret = -1;
}
/* Copy down public exponent if available. */
if ((ret == 1) && (rsa->e != NULL) &&
(wolfssl_bn_get_value(rsa->e, &key->e) != 1)) {
WOLFSSL_ERROR_MSG("rsa e key error");
ret = -1;
}
/* Enough numbers for public key */
key->type = RSA_PUBLIC;
/* Copy down private exponent if available. */
if ((ret == 1) && (rsa->d != NULL)) {
if (wolfssl_bn_get_value(rsa->d, &key->d) != 1) {
WOLFSSL_ERROR_MSG("rsa d key error");
ret = -1;
}
else {
/* Enough numbers for private key */
key->type = RSA_PRIVATE;
}
}
/* Copy down first prime if available. */
if ((ret == 1) && (rsa->p != NULL) &&
(wolfssl_bn_get_value(rsa->p, &key->p) != 1)) {
WOLFSSL_ERROR_MSG("rsa p key error");
ret = -1;
}
/* Copy down second prime if available. */
if ((ret == 1) && (rsa->q != NULL) &&
(wolfssl_bn_get_value(rsa->q, &key->q) != 1)) {
WOLFSSL_ERROR_MSG("rsa q key error");
ret = -1;
}
#ifndef RSA_LOW_MEM
/* Copy down d mod p-1 if available. */
if ((ret == 1) && (rsa->dmp1 != NULL) &&
(wolfssl_bn_get_value(rsa->dmp1, &key->dP) != 1)) {
WOLFSSL_ERROR_MSG("rsa dP key error");
ret = -1;
}
/* Copy down d mod q-1 if available. */
if ((ret == 1) && (rsa->dmp1 != NULL) &&
(wolfssl_bn_get_value(rsa->dmq1, &key->dQ) != 1)) {
WOLFSSL_ERROR_MSG("rsa dQ key error");
ret = -1;
}
/* Copy down 1/q mod p if available. */
if ((ret == 1) && (rsa->iqmp != NULL) &&
(wolfssl_bn_get_value(rsa->iqmp, &key->u) != 1)) {
WOLFSSL_ERROR_MSG("rsa u key error");
ret = -1;
}
#endif /* !RSA_LOW_MEM */
if (ret == 1) {
/* All available numbers have been set down. */
rsa->inSet = 1;
}
}
return ret;
}
#endif /* HAVE_USER_RSA */
/* Set the RSA method into object.
*
* @param [in, out] rsa RSA key.
* @param [in] meth RSA method.
* @return 1 always.
*/
int wolfSSL_RSA_set_method(WOLFSSL_RSA *rsa, WOLFSSL_RSA_METHOD *meth)
{
if (rsa != NULL) {
/* Store the method into object. */
rsa->meth = meth;
/* Copy over flags. */
rsa->flags = meth->flags;
}
/* OpenSSL always assumes it will work. */
return 1;
}
/* Get the RSA method from the RSA object.
*
* @param [in] rsa RSA key.
* @return RSA method on success.
* @return NULL when RSA is NULL or no method set.
*/
const WOLFSSL_RSA_METHOD* wolfSSL_RSA_get_method(const WOLFSSL_RSA *rsa)
{
return (rsa != NULL) ? rsa->meth : NULL;
}
/* Get the size in bytes of the RSA key.
*
* Return compliant with OpenSSL
*
* @param [in] rsa RSA key.
* @return RSA modulus size in bytes.
* @return 0 on error.
*/
int wolfSSL_RSA_size(const WOLFSSL_RSA* rsa)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_RSA_size");
if (rsa != NULL) {
/* Make sure we have set the RSA values into wolfCrypt RSA key. */
if (rsa->inSet || (SetRsaInternal((WOLFSSL_RSA*)rsa) == 1)) {
/* Get key size in bytes using wolfCrypt RSA key. */
ret = wc_RsaEncryptSize((RsaKey*)rsa->internal);
}
}
return ret;
}
/* Get the size in bits of the RSA key.
*
* Uses external modulus field.
*
* @param [in] rsa RSA key.
* @return RSA modulus size in bits.
* @return 0 on error.
*/
int wolfSSL_RSA_bits(const WOLFSSL_RSA* rsa)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_RSA_bits");
if (rsa != NULL) {
/* Get number of bits in external modulus. */
ret = wolfSSL_BN_num_bits(rsa->n);
}
return ret;
}
#ifndef HAVE_USER_RSA
/* Get the BN objects that are the Chinese-Remainder Theorem (CRT) parameters.
*
* Only for those that are not NULL parameters.
*
* @param [in] rsa RSA key.
* @param [out] dmp1 BN that is d mod (p - 1). May be NULL.
* @param [out] dmq1 BN that is d mod (q - 1). May be NULL.
* @param [out] iqmp BN that is 1/q mod p. May be NULL.
*/
void wolfSSL_RSA_get0_crt_params(const WOLFSSL_RSA *rsa,
const WOLFSSL_BIGNUM **dmp1, const WOLFSSL_BIGNUM **dmq1,
const WOLFSSL_BIGNUM **iqmp)
{
WOLFSSL_ENTER("wolfSSL_RSA_get0_crt_params");
/* For any parameters not NULL, return the BN from the key or NULL. */
if (dmp1 != NULL) {
*dmp1 = (rsa != NULL) ? rsa->dmp1 : NULL;
}
if (dmq1 != NULL) {
*dmq1 = (rsa != NULL) ? rsa->dmq1 : NULL;
}
if (iqmp != NULL) {
*iqmp = (rsa != NULL) ? rsa->iqmp : NULL;
}
}
/* Set the BN objects that are the Chinese-Remainder Theorem (CRT) parameters
* into RSA key.
*
* If CRT parameter is NULL then there must be one in the RSA key already.
*
* @param [in, out] rsa RSA key.
* @param [in] dmp1 BN that is d mod (p - 1). May be NULL.
* @param [in] dmq1 BN that is d mod (q - 1). May be NULL.
* @param [in] iqmp BN that is 1/q mod p. May be NULL.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_set0_crt_params(WOLFSSL_RSA *rsa, WOLFSSL_BIGNUM *dmp1,
WOLFSSL_BIGNUM *dmq1, WOLFSSL_BIGNUM *iqmp)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_RSA_set0_crt_params");
/* If a param is NULL in rsa then it must be non-NULL in the
* corresponding user input. */
if ((rsa == NULL) || ((rsa->dmp1 == NULL) && (dmp1 == NULL)) ||
((rsa->dmq1 == NULL) && (dmq1 == NULL)) ||
((rsa->iqmp == NULL) && (iqmp == NULL))) {
WOLFSSL_ERROR_MSG("Bad parameters");
ret = 0;
}
if (ret == 1) {
/* Replace the BNs. */
if (dmp1 != NULL) {
wolfSSL_BN_clear_free(rsa->dmp1);
rsa->dmp1 = dmp1;
}
if (dmq1 != NULL) {
wolfSSL_BN_clear_free(rsa->dmq1);
rsa->dmq1 = dmq1;
}
if (iqmp != NULL) {
wolfSSL_BN_clear_free(rsa->iqmp);
rsa->iqmp = iqmp;
}
/* Set the values into the wolfCrypt RSA key. */
if (SetRsaInternal(rsa) != 1) {
if (dmp1 != NULL) {
rsa->dmp1 = NULL;
}
if (dmq1 != NULL) {
rsa->dmq1 = NULL;
}
if (iqmp != NULL) {
rsa->iqmp = NULL;
}
ret = 0;
}
}
return ret;
}
/* Get the BN objects that are the factors of the RSA key (two primes p and q).
*
* @param [in] rsa RSA key.
* @param [out] p BN that is first prime. May be NULL.
* @param [out] q BN that is second prime. May be NULL.
*/
void wolfSSL_RSA_get0_factors(const WOLFSSL_RSA *rsa, const WOLFSSL_BIGNUM **p,
const WOLFSSL_BIGNUM **q)
{
WOLFSSL_ENTER("wolfSSL_RSA_get0_factors");
/* For any primes not NULL, return the BN from the key or NULL. */
if (p != NULL) {
*p = (rsa != NULL) ? rsa->p : NULL;
}
if (q != NULL) {
*q = (rsa != NULL) ? rsa->q : NULL;
}
}
/* Set the BN objects that are the factors of the RSA key (two primes p and q).
*
* If factor parameter is NULL then there must be one in the RSA key already.
*
* @param [in, out] rsa RSA key.
* @param [in] p BN that is first prime. May be NULL.
* @param [in] q BN that is second prime. May be NULL.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_set0_factors(WOLFSSL_RSA *rsa, WOLFSSL_BIGNUM *p,
WOLFSSL_BIGNUM *q)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_RSA_set0_factors");
/* If a param is null in r then it must be non-null in the
* corresponding user input. */
if (rsa == NULL || ((rsa->p == NULL) && (p == NULL)) ||
((rsa->q == NULL) && (q == NULL))) {
WOLFSSL_ERROR_MSG("Bad parameters");
ret = 0;
}
if (ret == 1) {
/* Replace the BNs. */
if (p != NULL) {
wolfSSL_BN_clear_free(rsa->p);
rsa->p = p;
}
if (q != NULL) {
wolfSSL_BN_clear_free(rsa->q);
rsa->q = q;
}
/* Set the values into the wolfCrypt RSA key. */
if (SetRsaInternal(rsa) != 1) {
if (p != NULL) {
rsa->p = NULL;
}
if (q != NULL) {
rsa->q = NULL;
}
ret = 0;
}
}
return ret;
}
/* Get the BN objects for the basic key numbers of the RSA key (modulus, public
* exponent, private exponent).
*
* @param [in] rsa RSA key.
* @param [out] n BN that is the modulus. May be NULL.
* @param [out] e BN that is the public exponent. May be NULL.
* @param [out] d BN that is the private exponent. May be NULL.
*/
void wolfSSL_RSA_get0_key(const WOLFSSL_RSA *rsa, const WOLFSSL_BIGNUM **n,
const WOLFSSL_BIGNUM **e, const WOLFSSL_BIGNUM **d)
{
WOLFSSL_ENTER("wolfSSL_RSA_get0_key");
/* For any parameters not NULL, return the BN from the key or NULL. */
if (n != NULL) {
*n = (rsa != NULL) ? rsa->n : NULL;
}
if (e != NULL) {
*e = (rsa != NULL) ? rsa->e : NULL;
}
if (d != NULL) {
*d = (rsa != NULL) ? rsa->d : NULL;
}
}
/* Set the BN objects for the basic key numbers into the RSA key (modulus,
* public exponent, private exponent).
*
* If BN parameter is NULL then there must be one in the RSA key already.
*
* @param [in,out] rsa RSA key.
* @param [in] n BN that is the modulus. May be NULL.
* @param [in] e BN that is the public exponent. May be NULL.
* @param [in] d BN that is the private exponent. May be NULL.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_set0_key(WOLFSSL_RSA *rsa, WOLFSSL_BIGNUM *n, WOLFSSL_BIGNUM *e,
WOLFSSL_BIGNUM *d)
{
int ret = 1;
/* If the fields n and e in r are NULL, the corresponding input
* parameters MUST be non-NULL for n and e. d may be
* left NULL (in case only the public key is used).
*/
if ((rsa == NULL) || ((rsa->n == NULL) && (n == NULL)) ||
((rsa->e == NULL) && (e == NULL))) {
ret = 0;
}
if (ret == 1) {
/* Replace the BNs. */
if (n != NULL) {
wolfSSL_BN_free(rsa->n);
rsa->n = n;
}
if (e != NULL) {
wolfSSL_BN_free(rsa->e);
rsa->e = e;
}
if (d != NULL) {
/* Private key is sensitive data. */
wolfSSL_BN_clear_free(rsa->d);
rsa->d = d;
}
/* Set the values into the wolfCrypt RSA key. */
if (SetRsaInternal(rsa) != 1) {
if (n != NULL) {
rsa->n = NULL;
}
if (e != NULL) {
rsa->e = NULL;
}
if (d != NULL) {
rsa->d = NULL;
}
ret = 0;
}
}
return ret;
}
#endif /* !HAVE_USER_RSA */
/* Get the flags of the RSA key.
*
* @param [in] rsa RSA key.
* @return Flags set in RSA key on success.
* @return 0 when RSA key is NULL.
*/
int wolfSSL_RSA_flags(const WOLFSSL_RSA *rsa)
{
int ret = 0;
/* Get flags from the RSA key if available. */
if (rsa != NULL) {
ret = rsa->flags;
}
return ret;
}
/* Set the flags into the RSA key.
*
* @param [in, out] rsa RSA key.
* @param [in] flags Flags to set.
*/
void wolfSSL_RSA_set_flags(WOLFSSL_RSA *rsa, int flags)
{
/* Add the flags into RSA key if available. */
if (rsa != NULL) {
rsa->flags |= flags;
}
}
/* Clear the flags in the RSA key.
*
* @param [in, out] rsa RSA key.
* @param [in] flags Flags to clear.
*/
void wolfSSL_RSA_clear_flags(WOLFSSL_RSA *rsa, int flags)
{
/* Clear the flags passed in that are on the RSA key if available. */
if (rsa != NULL) {
rsa->flags &= ~flags;
}
}
/* Test the flags in the RSA key.
*
* @param [in] rsa RSA key.
* @return Matching flags of RSA key on success.
* @return 0 when RSA key is NULL.
*/
int wolfSSL_RSA_test_flags(const WOLFSSL_RSA *rsa, int flags)
{
/* Return the flags passed in that are set on the RSA key if available. */
return (rsa != NULL) ? (rsa->flags & flags) : 0;
}
/* Get the extra data, by index, associated with the RSA key.
*
* @param [in] rsa RSA key.
* @param [in] idx Index of extra data.
* @return Extra data (anonymous type) on success.
* @return NULL on failure.
*/
void* wolfSSL_RSA_get_ex_data(const WOLFSSL_RSA *rsa, int idx)
{
WOLFSSL_ENTER("wolfSSL_RSA_get_ex_data");
#ifdef HAVE_EX_DATA
return (rsa == NULL) ? NULL :
wolfSSL_CRYPTO_get_ex_data(&rsa->ex_data, idx);
#else
(void)rsa;
(void)idx;
return NULL;
#endif
}
/* Set extra data against the RSA key at an index.
*
* @param [in, out] rsa RSA key.
* @param [in] idx Index set set extra data at.
* @param [in] data Extra data of anonymous type.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_set_ex_data(WOLFSSL_RSA *rsa, int idx, void *data)
{
WOLFSSL_ENTER("wolfSSL_RSA_set_ex_data");
#ifdef HAVE_EX_DATA
return (rsa == NULL) ? 0 :
wolfSSL_CRYPTO_set_ex_data(&rsa->ex_data, idx, data);
#else
(void)rsa;
(void)idx;
(void)data;
return 0;
#endif
}
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
/* Set the extra data and cleanup callback against the RSA key at an index.
*
* Not OpenSSL API.
*
* @param [in, out] rsa RSA key.
* @param [in] idx Index set set extra data at.
* @param [in] data Extra data of anonymous type.
* @param [in] freeCb Callback function to free extra data.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_set_ex_data_with_cleanup(WOLFSSL_RSA *rsa, int idx, void *data,
wolfSSL_ex_data_cleanup_routine_t freeCb)
{
WOLFSSL_ENTER("wolfSSL_RSA_set_ex_data_with_cleanup");
return (rsa == NULL) ? 0 :
wolfSSL_CRYPTO_set_ex_data_with_cleanup(&rsa->ex_data, idx, data,
freeCb);
}
#endif /* HAVE_EX_DATA_CLEANUP_HOOKS */
/*
* RSA check key APIs
*/
#ifdef WOLFSSL_RSA_KEY_CHECK
/* Check that the RSA key is valid using wolfCrypt.
*
* @param [in] rsa RSA key.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_check_key(const WOLFSSL_RSA* rsa)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_RSA_check_key");
/* Validate parameters. */
if ((rsa == NULL) || (rsa->internal == NULL)) {
ret = 0;
}
/* Constant RSA - assume internal data has been set. */
/* Check wolfCrypt RSA key. */
if ((ret == 1) && (wc_CheckRsaKey((RsaKey*)rsa->internal) != 0)) {
ret = 0;
}
WOLFSSL_LEAVE("wolfSSL_RSA_check_key", ret);
return ret;
}
#endif /* WOLFSSL_RSA_KEY_CHECK */
/*
* RSA generate APIs
*/
#if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
/* Get a random number generator associated with the RSA key.
*
* If not able, then get the global if possible.
* *tmpRng must not be an initialized RNG.
* *tmpRng is allocated when WOLFSSL_SMALL_STACK is defined and an RNG isn't
* associated with the wolfCrypt RSA key.
*
* @param [in] rsa RSA key.
* @param [out] tmpRng Temporary random number generator.
* @param [out] initTmpRng Temporary random number generator was initialized.
*
* @return A wolfCrypt RNG to use on success.
* @return NULL on error.
*/
WC_RNG* WOLFSSL_RSA_GetRNG(WOLFSSL_RSA* rsa, WC_RNG** tmpRng, int* initTmpRng)
{
WC_RNG* rng = NULL;
int err = 0;
/* Check validity of parameters. */
if ((rsa == NULL) || (initTmpRng == NULL)) {
err = 1;
}
if (!err) {
/* Haven't initialized any RNG passed through tmpRng. */
*initTmpRng = 0;
#if !defined(HAVE_FIPS) && defined(WC_RSA_BLINDING)
/* Use wolfCrypt RSA key's RNG if available/set. */
rng = ((RsaKey*)rsa->internal)->rng;
#endif
}
if ((!err) && (rng == NULL) && (tmpRng != NULL)) {
/* Make an RNG with tmpRng or get global. */
rng = wolfssl_make_rng(*tmpRng, initTmpRng);
if ((rng != NULL) && *initTmpRng) {
*tmpRng = rng;
}
}
return rng;
}
#endif
/* Use the wolfCrypt RSA APIs to generate a new RSA key.
*
* @param [in, out] rsa RSA key.
* @param [in] bits Number of bits that the modulus must have.
* @param [in] e A BN object holding the public exponent to use.
* @param [in] cb Status callback. Unused.
* @return 0 on success.
* @return wolfSSL native error code on error.
*/
static int wolfssl_rsa_generate_key_native(WOLFSSL_RSA* rsa, int bits,
WOLFSSL_BIGNUM* e, void* cb)
{
#ifdef WOLFSSL_KEY_GEN
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG _tmpRng[1];
WC_RNG* tmpRng = _tmpRng;
#endif
int initTmpRng = 0;
WC_RNG* rng = NULL;
#endif
(void)cb;
WOLFSSL_ENTER("wolfssl_rsa_generate_key_native");
#ifdef WOLFSSL_KEY_GEN
/* Get RNG in wolfCrypt RSA key or initialize a new one (or global). */
rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng);
if (rng == NULL) {
/* Something went wrong so return memory error. */
ret = MEMORY_E;
}
if (ret == 0) {
/* Generate an RSA key. */
ret = wc_MakeRsaKey((RsaKey*)rsa->internal, bits,
(long)wolfSSL_BN_get_word(e), rng);
if (ret != MP_OKAY) {
WOLFSSL_ERROR_MSG("wc_MakeRsaKey failed");
}
}
if (ret == 0) {
/* Get the values from wolfCrypt RSA key into external RSA key. */
ret = SetRsaExternal(rsa);
if (ret == 1) {
/* Internal matches external. */
rsa->inSet = 1;
/* Return success. */
ret = 0;
}
else {
/* Something went wrong so return memory error. */
ret = MEMORY_E;
}
}
/* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */
if (initTmpRng) {
wc_FreeRng(tmpRng);
}
#ifdef WOLFSSL_SMALL_STACK
/* Dispose of any allocated RNG. */
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
#else
WOLFSSL_ERROR_MSG("No Key Gen built in");
(void)rsa;
(void)e;
(void)bits;
return NOT_COMPILED_IN;
#endif
}
/* Generate an RSA key that has the specified modulus size and public exponent.
*
* Note: Because of wc_MakeRsaKey an RSA key size generated can be rounded
* down to nearest multiple of 8. For example generating a key of size
* 2999 bits will make a key of size 374 bytes instead of 375 bytes.
*
* @param [in] bits Number of bits that the modulus must have i.e. 2048.
* @param [in] e Public exponent to use i.e. 65537.
* @param [in] cb Status callback. Unused.
* @param [in] data Data to pass to status callback. Unused.
* @return A new RSA key on success.
* @return NULL on failure.
*/
WOLFSSL_RSA* wolfSSL_RSA_generate_key(int bits, unsigned long e,
void(*cb)(int, int, void*), void* data)
{
WOLFSSL_RSA* rsa = NULL;
WOLFSSL_BIGNUM* bn = NULL;
int err = 0;
WOLFSSL_ENTER("wolfSSL_RSA_generate_key");
(void)cb;
(void)data;
/* Validate bits. */
if (bits < 0) {
WOLFSSL_ERROR_MSG("Bad argument: bits was less than 0");
err = 1;
}
/* Create a new BN to hold public exponent - for when wolfCrypt supports
* longer values. */
if ((!err) && ((bn = wolfSSL_BN_new()) == NULL)) {
WOLFSSL_ERROR_MSG("Error creating big number");
err = 1;
}
/* Set public exponent. */
if ((!err) && (wolfSSL_BN_set_word(bn, e) != 1)) {
WOLFSSL_ERROR_MSG("Error using e value");
err = 1;
}
/* Create an RSA key object to hold generated key. */
if ((!err) && ((rsa = wolfSSL_RSA_new()) == NULL)) {
WOLFSSL_ERROR_MSG("memory error");
err = 1;
}
while (!err) {
int ret;
/* Use wolfCrypt to generate RSA key. */
ret = wolfssl_rsa_generate_key_native(rsa, bits, bn, NULL);
#ifdef HAVE_FIPS
/* Keep trying if failed to find a prime. */
if (ret == PRIME_GEN_E) {
continue;
}
#endif
if (ret != WOLFSSL_ERROR_NONE) {
/* Unrecoverable error in generation. */
err = 1;
}
/* Done generating - unrecoverable error or success. */
break;
}
if (err) {
/* Dispose of RSA key object if generation didn't work. */
wolfSSL_RSA_free(rsa);
/* Returning NULL on error. */
rsa = NULL;
}
/* Dispose of the temporary BN used for the public exponent. */
wolfSSL_BN_free(bn);
return rsa;
}
/* Generate an RSA key that has the specified modulus size and public exponent.
*
* Note: Because of wc_MakeRsaKey an RSA key size generated can be rounded
* down to nearest multiple of 8. For example generating a key of size
* 2999 bits will make a key of size 374 bytes instead of 375 bytes.
*
* @param [in] bits Number of bits that the modulus must have i.e. 2048.
* @param [in] e Public exponent to use, i.e. 65537, as a BN.
* @param [in] cb Status callback. Unused.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_generate_key_ex(WOLFSSL_RSA* rsa, int bits, WOLFSSL_BIGNUM* e,
void* cb)
{
int ret = 1;
/* Validate parameters. */
if ((rsa == NULL) || (rsa->internal == NULL)) {
WOLFSSL_ERROR_MSG("bad arguments");
ret = 0;
}
else {
for (;;) {
/* Use wolfCrypt to generate RSA key. */
int gen_ret = wolfssl_rsa_generate_key_native(rsa, bits, e, cb);
#ifdef HAVE_FIPS
/* Keep trying again if public key value didn't work. */
if (gen_ret == PRIME_GEN_E) {
continue;
}
#endif
if (gen_ret != WOLFSSL_ERROR_NONE) {
/* Unrecoverable error in generation. */
ret = 0;
}
/* Done generating - unrecoverable error or success. */
break;
}
}
return ret;
}
#endif /* OPENSSL_EXTRA */
/*
* RSA padding APIs
*/
#if defined(WC_RSA_PSS) && (defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_NGINX))
#if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)
/* Add PKCS#1 PSS padding to hash.
*
*
* +-----------+
* | M |
* +-----------+
* |
* V
* Hash
* |
* V
* +--------+----------+----------+
* M' = |Padding1| mHash | salt |
* +--------+----------+----------+
* |
* +--------+----------+ V
* DB = |Padding2|maskedseed| Hash
* +--------+----------+ |
* | |
* V | +--+
* xor <--- MGF <---| |bc|
* | | +--+
* | | |
* V V V
* +-------------------+----------+--+
* EM = | maskedDB |maskedseed|bc|
* +-------------------+----------+--+
* Diagram taken from https://tools.ietf.org/html/rfc3447#section-9.1
*
* @param [in] rsa RSA key.
* @param [out] em Encoded message.
* @param [in[ mHash Message hash.
* @param [in] hashAlg Hash algorithm.
* @param [in] saltLen Length of salt to generate.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_padding_add_PKCS1_PSS(WOLFSSL_RSA *rsa, unsigned char *em,
const unsigned char *mHash, const WOLFSSL_EVP_MD *hashAlg, int saltLen)
{
int ret = 1;
enum wc_HashType hashType;
int hashLen = 0;
int emLen = 0;
int mgf = 0;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG _tmpRng[1];
WC_RNG* tmpRng = _tmpRng;
#endif
WOLFSSL_ENTER("wolfSSL_RSA_padding_add_PKCS1_PSS");
/* Validate parameters. */
if ((rsa == NULL) || (em == NULL) || (mHash == NULL) || (hashAlg == NULL)) {
ret = 0;
}
if (ret == 1) {
/* Get/create an RNG. */
rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng);
if (rng == NULL) {
WOLFSSL_ERROR_MSG("WOLFSSL_RSA_GetRNG error");
ret = 0;
}
}
/* TODO: use wolfCrypt RSA key to get emLen and bits? */
/* Set the external data from the wolfCrypt RSA key if not done. */
if ((ret == 1) && (!rsa->exSet)) {
ret = SetRsaExternal(rsa);
}
if (ret == 1) {
/* Get the wolfCrypt hash algorithm type. */
hashType = EvpMd2MacType(hashAlg);
if (hashType > WC_HASH_TYPE_MAX) {
WOLFSSL_ERROR_MSG("EvpMd2MacType error");
ret = 0;
}
}
if (ret == 1) {
/* Get the wolfCrypt MGF algorithm from hash algorithm. */
mgf = wc_hash2mgf(hashType);
if (mgf == WC_MGF1NONE) {
WOLFSSL_ERROR_MSG("wc_hash2mgf error");
ret = 0;
}
}
if (ret == 1) {
/* Get the length of the hash output. */
hashLen = wolfSSL_EVP_MD_size(hashAlg);
if (hashLen < 0) {
WOLFSSL_ERROR_MSG("wolfSSL_EVP_MD_size error");
ret = 0;
}
}
if (ret == 1) {
/* Get length of RSA key - encrypted message length. */
emLen = wolfSSL_RSA_size(rsa);
if (ret <= 0) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_size error");
ret = 0;
}
}
if (ret == 1) {
/* Calculate the salt length to use for special cases. */
/* TODO: use special case wolfCrypt values? */
switch (saltLen) {
/* Negative saltLen values are treated differently. */
case RSA_PSS_SALTLEN_DIGEST:
saltLen = hashLen;
break;
case RSA_PSS_SALTLEN_MAX_SIGN:
case RSA_PSS_SALTLEN_MAX:
#ifdef WOLFSSL_PSS_LONG_SALT
saltLen = emLen - hashLen - 2;
#else
saltLen = hashLen;
#endif
break;
default:
if (saltLen < 0) {
/* No other negative values implemented. */
WOLFSSL_ERROR_MSG("invalid saltLen");
ret = 0;
}
}
}
if (ret == 1) {
/* Generate RSA PKCS#1 PSS padding for hash using wolfCrypt. */
if (wc_RsaPad_ex(mHash, (word32)hashLen, em, (word32)emLen,
RSA_BLOCK_TYPE_1, rng, WC_RSA_PSS_PAD, hashType, mgf, NULL, 0,
saltLen, wolfSSL_BN_num_bits(rsa->n), NULL) != MP_OKAY) {
WOLFSSL_ERROR_MSG("wc_RsaPad_ex error");
ret = 0;
}
}
/* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */
if (initTmpRng) {
wc_FreeRng(tmpRng);
}
#ifdef WOLFSSL_SMALL_STACK
/* Dispose of any allocated RNG. */
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
/* Checks that the hash is valid for the RSA PKCS#1 PSS encoded message.
*
* Refer to wolfSSL_RSA_padding_add_PKCS1_PSS for a diagram.
*
* @param [in] rsa RSA key.
* @param [in[ mHash Message hash.
* @param [in] hashAlg Hash algorithm.
* @param [in] em Encoded message.
* @param [in] saltLen Length of salt to generate.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_verify_PKCS1_PSS(WOLFSSL_RSA *rsa, const unsigned char *mHash,
const WOLFSSL_EVP_MD *hashAlg,
const unsigned char *em, int saltLen)
{
int ret = 1;
int hashLen = 0;
int mgf = 0;
int emLen = 0;
int mPrimeLen = 0;
enum wc_HashType hashType = WC_HASH_TYPE_NONE;
byte *mPrime = NULL;
byte *buf = NULL;
WOLFSSL_ENTER("wolfSSL_RSA_verify_PKCS1_PSS");
/* Validate parameters. */
if ((rsa == NULL) || (mHash == NULL) || (hashAlg == NULL) || (em == NULL)) {
ret = 0;
}
/* TODO: use wolfCrypt RSA key to get emLen and bits? */
/* Set the external data from the wolfCrypt RSA key if not done. */
if ((ret == 1) && (!rsa->exSet)) {
ret = SetRsaExternal(rsa);
}
if (ret == 1) {
/* Get hash length for hash algorithm. */
hashLen = wolfSSL_EVP_MD_size(hashAlg);
if (hashLen < 0) {
ret = 0;
}
}
if (ret == 1) {
/* Get length of RSA key - encrypted message length. */
emLen = wolfSSL_RSA_size(rsa);
if (emLen <= 0) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_size error");
ret = 0;
}
}
if (ret == 1) {
/* Calculate the salt length to use for special cases. */
switch (saltLen) {
/* Negative saltLen values are treated differently */
case RSA_PSS_SALTLEN_DIGEST:
saltLen = hashLen;
break;
case RSA_PSS_SALTLEN_AUTO:
#ifdef WOLFSSL_PSS_SALT_LEN_DISCOVER
saltLen = RSA_PSS_SALT_LEN_DISCOVER;
break;
#endif
case RSA_PSS_SALTLEN_MAX:
#ifdef WOLFSSL_PSS_LONG_SALT
saltLen = emLen - hashLen - 2;
#else
saltLen = hashLen;
#endif
break;
default:
if (saltLen < 0) {
/* No other negative values implemented. */
WOLFSSL_ERROR_MSG("invalid saltLen");
ret = 0;
}
}
}
if (ret == 1) {
/* Get the wolfCrypt hash algorithm type. */
hashType = EvpMd2MacType(hashAlg);
if (hashType > WC_HASH_TYPE_MAX) {
WOLFSSL_ERROR_MSG("EvpMd2MacType error");
ret = 0;
}
}
if (ret == 1) {
/* Get the wolfCrypt MGF algorithm from hash algorithm. */
if ((mgf = wc_hash2mgf(hashType)) == WC_MGF1NONE) {
WOLFSSL_ERROR_MSG("wc_hash2mgf error");
ret = 0;
}
}
if (ret == 1) {
/* Allocate buffer to unpad inline with. */
buf = (byte*)XMALLOC((size_t)emLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
WOLFSSL_ERROR_MSG("malloc error");
ret = 0;
}
}
if (ret == 1) {
/* Copy encrypted message to temp for inline unpadding. */
XMEMCPY(buf, em, (size_t)emLen);
/* Remove and verify the PSS padding. */
mPrimeLen = wc_RsaUnPad_ex(buf, (word32)emLen, &mPrime,
RSA_BLOCK_TYPE_1, WC_RSA_PSS_PAD, hashType, mgf, NULL, 0, saltLen,
wolfSSL_BN_num_bits(rsa->n), NULL);
if (mPrimeLen < 0) {
WOLFSSL_ERROR_MSG("wc_RsaPad_ex error");
ret = 0;
}
}
if (ret == 1) {
/* Verify the hash is correct. */
if (wc_RsaPSS_CheckPadding_ex(mHash, (word32)hashLen, mPrime,
(word32)mPrimeLen, hashType, saltLen,
wolfSSL_BN_num_bits(rsa->n)) != MP_OKAY) {
WOLFSSL_ERROR_MSG("wc_RsaPSS_CheckPadding_ex error");
ret = 0;
}
}
/* Dispose of any allocated buffer. */
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif /* !HAVE_FIPS || FIPS_VERSION_GT(2,0) */
#endif /* WC_RSA_PSS && (OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY ||
* WOLFSSL_NGINX) */
/*
* RSA sign/verify APIs
*/
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
#define DEF_PSS_SALT_LEN RSA_PSS_SALT_LEN_DEFAULT
#else
#define DEF_PSS_SALT_LEN RSA_PSS_SALT_LEN_DISCOVER
#endif
#if defined(OPENSSL_EXTRA)
#if !defined(HAVE_USER_RSA)
/* Encode the message hash.
*
* Used by signing and verification.
*
* @param [in] hashAlg Hash algorithm OID.
* @param [in] hash Hash of message to encode for signing.
* @param [in] hLen Length of hash of message.
* @param [out] enc Encoded message hash.
* @param [out] encLen Length of encoded message hash.
* @param [in] padding Which padding scheme is being used.
* @return 1 on success.
* @return 0 on failure.
*/
static int wolfssl_rsa_sig_encode(int hashAlg, const unsigned char* hash,
unsigned int hLen, unsigned char* enc, unsigned int* encLen, int padding)
{
int ret = 1;
int hType = WC_HASH_TYPE_NONE;
/* Validate parameters. */
if ((hash == NULL) || (enc == NULL) || (encLen == NULL)) {
ret = 0;
}
if ((ret == 1) && (hashAlg != NID_undef) &&
(padding == RSA_PKCS1_PADDING)) {
/* Convert hash algorithm to hash type for PKCS#1.5 padding. */
hType = (int)nid2oid(hashAlg, oidHashType);
if (hType == -1) {
ret = 0;
}
}
if ((ret == 1) && (padding == RSA_PKCS1_PADDING)) {
/* PKCS#1.5 encoding. */
word32 encSz = wc_EncodeSignature(enc, hash, hLen, hType);
if (encSz == 0) {
WOLFSSL_ERROR_MSG("Bad Encode Signature");
ret = 0;
}
else {
*encLen = (unsigned int)encSz;
}
}
/* Other padding schemes require the hash as is. */
if ((ret == 1) && (padding != RSA_PKCS1_PADDING)) {
XMEMCPY(enc, hash, hLen);
*encLen = hLen;
}
return ret;
}
/* Sign the message hash using hash algorithm and RSA key.
*
* @param [in] hashAlg Hash algorithm OID.
* @param [in] hash Hash of message to encode for signing.
* @param [in] hLen Length of hash of message.
* @param [out] enc Encoded message hash.
* @param [out] encLen Length of encoded message hash.
* @param [in] rsa RSA key.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_sign(int hashAlg, const unsigned char* hash, unsigned int hLen,
unsigned char* sigRet, unsigned int* sigLen, WOLFSSL_RSA* rsa)
{
if (sigLen != NULL) {
/* No size checking in this API */
*sigLen = RSA_MAX_SIZE / CHAR_BIT;
}
/* flag is 1: output complete signature. */
return wolfSSL_RSA_sign_generic_padding(hashAlg, hash, hLen, sigRet,
sigLen, rsa, 1, RSA_PKCS1_PADDING);
}
/* Sign the message hash using hash algorithm and RSA key.
*
* Not OpenSSL API.
*
* @param [in] hashAlg Hash algorithm NID.
* @param [in] hash Hash of message to encode for signing.
* @param [in] hLen Length of hash of message.
* @param [out] enc Encoded message hash.
* @param [out] encLen Length of encoded message hash.
* @param [in] rsa RSA key.
* @param [in] flag When 1: Output encrypted signature.
* When 0: Output encoded hash.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_sign_ex(int hashAlg, const unsigned char* hash,
unsigned int hLen, unsigned char* sigRet, unsigned int* sigLen,
WOLFSSL_RSA* rsa, int flag)
{
int ret = 0;
if ((flag == 0) || (flag == 1)) {
if (sigLen != NULL) {
/* No size checking in this API */
*sigLen = RSA_MAX_SIZE / CHAR_BIT;
}
ret = wolfSSL_RSA_sign_generic_padding(hashAlg, hash, hLen, sigRet,
sigLen, rsa, flag, RSA_PKCS1_PADDING);
}
return ret;
}
/**
* Sign a message hash with the chosen message digest, padding, and RSA key.
*
* Not OpenSSL API.
*
* @param [in] hashAlg Hash NID
* @param [in] hash Message hash to sign.
* @param [in] mLen Length of message hash to sign.
* @param [out] sigRet Output buffer.
* @param [in, out] sigLen On Input: length of sigRet buffer.
* On Output: length of data written to sigRet.
* @param [in] rsa RSA key used to sign the input.
* @param [in] flag 1: Output the signature.
* 0: Output the value that the unpadded signature
* should be compared to.
* @param [in] padding Padding to use. Only RSA_PKCS1_PSS_PADDING and
* RSA_PKCS1_PADDING are currently supported for
* signing.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_sign_generic_padding(int hashAlg, const unsigned char* hash,
unsigned int hLen, unsigned char* sigRet, unsigned int* sigLen,
WOLFSSL_RSA* rsa, int flag, int padding)
{
int ret = 1;
word32 outLen = 0;
int signSz = 0;
WC_RNG* rng = NULL;
int initTmpRng = 0;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
byte* encodedSig = NULL;
#else
WC_RNG _tmpRng[1];
WC_RNG* tmpRng = _tmpRng;
byte encodedSig[MAX_ENCODED_SIG_SZ];
#endif
unsigned int encSz = 0;
WOLFSSL_ENTER("wolfSSL_RSA_sign_generic_padding");
if (flag == 0) {
/* Only encode message. */
return wolfssl_rsa_sig_encode(hashAlg, hash, hLen, sigRet, sigLen,
padding);
}
/* Validate parameters. */
if ((hash == NULL) || (sigRet == NULL) || sigLen == NULL || rsa == NULL) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
/* Set wolfCrypt RSA key data from external if not already done. */
if ((ret == 1) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) {
ret = 0;
}
if (ret == 1) {
/* Get the maximum signature length. */
outLen = (word32)wolfSSL_BN_num_bytes(rsa->n);
/* Check not an error return. */
if (outLen == 0) {
WOLFSSL_ERROR_MSG("Bad RSA size");
ret = 0;
}
/* Check signature buffer is big enough. */
else if (outLen > *sigLen) {
WOLFSSL_ERROR_MSG("Output buffer too small");
ret = 0;
}
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 1) {
/* Allocate encoded signature buffer if doing PKCS#1 padding. */
encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ, NULL,
DYNAMIC_TYPE_SIGNATURE);
if (encodedSig == NULL) {
ret = 0;
}
}
#endif
if (ret == 1) {
/* Get/create an RNG. */
rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng);
if (rng == NULL) {
WOLFSSL_ERROR_MSG("WOLFSSL_RSA_GetRNG error");
ret = 0;
}
}
/* Either encodes with PKCS#1.5 or copies hash into encodedSig. */
if ((ret == 1) && (wolfssl_rsa_sig_encode(hashAlg, hash, hLen, encodedSig,
&encSz, padding) == 0)) {
WOLFSSL_ERROR_MSG("Bad Encode Signature");
ret = 0;
}
if (ret == 1) {
switch (padding) {
#if defined(WC_RSA_NO_PADDING) || defined(WC_RSA_DIRECT)
case RSA_NO_PADDING:
if ((signSz = wc_RsaDirect(encodedSig, encSz, sigRet, &outLen,
(RsaKey*)rsa->internal, RSA_PRIVATE_ENCRYPT, rng)) <= 0) {
WOLFSSL_ERROR_MSG("Bad Rsa Sign no pad");
ret = 0;
}
break;
#endif
#if defined(WC_RSA_PSS) && !defined(HAVE_SELFTEST) && \
(!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,1))
case RSA_PKCS1_PSS_PADDING:
{
enum wc_HashType hType =
wc_OidGetHash((int)nid2oid(hashAlg, oidHashType));
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
WOLFSSL_MSG("Using RSA-PSS with hash length salt. "
"OpenSSL uses max length by default.");
#endif
/* Create RSA PSS signature. */
if ((signSz = wc_RsaPSS_Sign_ex(encodedSig, encSz, sigRet, outLen,
hType, wc_hash2mgf(hType), DEF_PSS_SALT_LEN,
(RsaKey*)rsa->internal, rng)) <= 0) {
WOLFSSL_ERROR_MSG("Bad Rsa Sign");
ret = 0;
}
break;
}
#endif
#ifndef WC_NO_RSA_OAEP
case RSA_PKCS1_OAEP_PADDING:
/* Not a signature padding scheme. */
WOLFSSL_ERROR_MSG("RSA_PKCS1_OAEP_PADDING not supported for "
"signing");
ret = 0;
break;
#endif
case RSA_PKCS1_PADDING:
{
/* Sign (private encrypt) PKCS#1 encoded signature. */
if ((signSz = wc_RsaSSL_Sign(encodedSig, encSz, sigRet, outLen,
(RsaKey*)rsa->internal, rng)) <= 0) {
WOLFSSL_ERROR_MSG("Bad Rsa Sign");
ret = 0;
}
break;
}
default:
WOLFSSL_ERROR_MSG("Unsupported padding");
ret = 0;
break;
}
}
if (ret == 1) {
/* Return the size of signature generated. */
*sigLen = (unsigned int)signSz;
}
/* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */
if (initTmpRng) {
wc_FreeRng(tmpRng);
}
#ifdef WOLFSSL_SMALL_STACK
/* Dispose of any allocated RNG and encoded signature. */
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
XFREE(encodedSig, NULL, DYNAMIC_TYPE_SIGNATURE);
#endif
WOLFSSL_LEAVE("wolfSSL_RSA_sign_generic_padding", ret);
return ret;
}
/**
* Verify a message hash with the chosen message digest, padding, and RSA key.
*
* @param [in] hashAlg Hash NID
* @param [in] hash Message hash.
* @param [in] mLen Length of message hash.
* @param [in] sigRet Signature data.
* @param [in] sigLen Length of signature data.
* @param [in] rsa RSA key used to sign the input
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_verify(int hashAlg, const unsigned char* hash,
unsigned int hLen, const unsigned char* sig, unsigned int sigLen,
WOLFSSL_RSA* rsa)
{
return wolfSSL_RSA_verify_ex(hashAlg, hash, hLen, sig, sigLen, rsa,
RSA_PKCS1_PADDING);
}
/**
* Verify a message hash with the chosen message digest, padding, and RSA key.
*
* Not OpenSSL API.
*
* @param [in] hashAlg Hash NID
* @param [in] hash Message hash.
* @param [in] mLen Length of message hash.
* @param [in] sigRet Signature data.
* @param [in] sigLen Length of signature data.
* @param [in] rsa RSA key used to sign the input
* @param [in] padding Padding to use. Only RSA_PKCS1_PSS_PADDING and
* RSA_PKCS1_PADDING are currently supported for
* signing.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_RSA_verify_ex(int hashAlg, const unsigned char* hash,
unsigned int hLen, const unsigned char* sig, unsigned int sigLen,
WOLFSSL_RSA* rsa, int padding)
{
int ret = 1;
#ifdef WOLFSSL_SMALL_STACK
unsigned char* encodedSig = NULL;
#else
unsigned char encodedSig[MAX_ENCODED_SIG_SZ];
#endif
unsigned char* sigDec = NULL;
unsigned int len = MAX_ENCODED_SIG_SZ;
int verLen = 0;
#if (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5, 1)) && !defined(HAVE_SELFTEST)
enum wc_HashType hType = WC_HASH_TYPE_NONE;
#endif
WOLFSSL_ENTER("wolfSSL_RSA_verify");
/* Validate parameters. */
if ((hash == NULL) || (sig == NULL) || (rsa == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
if (ret == 1) {
/* Allocate memory for decrypted signature. */
sigDec = (unsigned char *)XMALLOC(sigLen, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (sigDec == NULL) {
WOLFSSL_ERROR_MSG("Memory allocation failure");
ret = 0;
}
}
#ifdef WOLFSSL_SMALL_STACK
if ((ret == 1) && (padding != RSA_PKCS1_PSS_PADDING)) {
/* Allocate memory for encoded signature. */
encodedSig = (unsigned char *)XMALLOC(len, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (encodedSig == NULL) {
WOLFSSL_ERROR_MSG("Memory allocation failure");
ret = 0;
}
}
#endif
if ((ret == 1) && (padding != RSA_PKCS1_PSS_PADDING)) {
/* Make encoded signature to compare with decrypted signature. */
if (wolfssl_rsa_sig_encode(hashAlg, hash, hLen, encodedSig, &len,
padding) <= 0) {
WOLFSSL_ERROR_MSG("Message Digest Error");
ret = 0;
}
}
if (ret == 1) {
/* Decrypt signature */
#if (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5, 1)) && \
!defined(HAVE_SELFTEST)
hType = wc_OidGetHash((int)nid2oid(hashAlg, oidHashType));
if ((verLen = wc_RsaSSL_Verify_ex2(sig, sigLen, (unsigned char *)sigDec,
sigLen, (RsaKey*)rsa->internal, padding, hType)) <= 0) {
WOLFSSL_ERROR_MSG("RSA Decrypt error");
ret = 0;
}
#else
verLen = wc_RsaSSL_Verify(sig, sigLen, (unsigned char *)sigDec, sigLen,
(RsaKey*)rsa->internal);
if (verLen < 0) {
ret = 0;
}
#endif
}
if (ret == 1) {
#if defined(WC_RSA_PSS) && !defined(HAVE_SELFTEST) && \
(!defined(HAVE_FIPS) || FIPS_VERSION_GE(5, 1))
if (padding == RSA_PKCS1_PSS_PADDING) {
/* Check PSS padding is valid. */
if (wc_RsaPSS_CheckPadding_ex(hash, hLen, sigDec, (word32)verLen,
hType, DEF_PSS_SALT_LEN,
mp_count_bits(&((RsaKey*)rsa->internal)->n)) != 0) {
WOLFSSL_ERROR_MSG("wc_RsaPSS_CheckPadding_ex error");
ret = 0;
}
}
else
#endif /* WC_RSA_PSS && !HAVE_SELFTEST && (!HAVE_FIPS ||
* FIPS_VERSION >= 5.1) */
/* Compare decrypted signature to encoded signature. */
if (((int)len != verLen) ||
(XMEMCMP(encodedSig, sigDec, (size_t)verLen) != 0)) {
WOLFSSL_ERROR_MSG("wolfSSL_RSA_verify_ex failed");
ret = 0;
}
}
/* Dispose of any allocated data. */
#ifdef WOLFSSL_SMALL_STACK
XFREE(encodedSig, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
XFREE(sigDec, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/*
* RSA public/private encrypt/decrypt APIs
*/
#if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
/* Encrypt with the RSA public key.
*
* Return compliant with OpenSSL.
*
* @param [in] len Length of data to encrypt.
* @param [in] from Data to encrypt.
* @param [out] to Encrypted data.
* @param [in] rsa RSA key.
* @param [in] padding Type of padding to place around plaintext.
* @return Size of encrypted data on success.
* @return -1 on failure.
*/
int wolfSSL_RSA_public_encrypt(int len, const unsigned char* from,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int ret = 0;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG _tmpRng[1];
WC_RNG* tmpRng = _tmpRng;
#endif
#if !defined(HAVE_FIPS)
int mgf = WC_MGF1NONE;
enum wc_HashType hash = WC_HASH_TYPE_NONE;
int pad_type = WC_RSA_NO_PAD;
#endif
int outLen = 0;
WOLFSSL_ENTER("wolfSSL_RSA_public_encrypt");
/* Validate parameters. */
if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) ||
(from == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
if (ret == 0) {
#if !defined(HAVE_FIPS)
/* Convert to wolfCrypt padding, hash and MGF. */
switch (padding) {
case RSA_PKCS1_PADDING:
pad_type = WC_RSA_PKCSV15_PAD;
break;
case RSA_PKCS1_OAEP_PADDING:
pad_type = WC_RSA_OAEP_PAD;
hash = WC_HASH_TYPE_SHA;
mgf = WC_MGF1SHA1;
break;
case RSA_NO_PADDING:
pad_type = WC_RSA_NO_PAD;
break;
default:
WOLFSSL_ERROR_MSG("RSA_public_encrypt doesn't support padding "
"scheme");
ret = -1;
}
#else
/* Check for supported padding schemes in FIPS. */
/* TODO: Do we support more schemes in later versions of FIPS? */
if (padding != RSA_PKCS1_PADDING) {
WOLFSSL_ERROR_MSG("RSA_public_encrypt pad type not supported in "
"FIPS");
ret = -1;
}
#endif
}
/* Set wolfCrypt RSA key data from external if not already done. */
if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) {
ret = -1;
}
if (ret == 0) {
/* Calculate maximum length of encrypted data. */
outLen = wolfSSL_RSA_size(rsa);
if (outLen == 0) {
WOLFSSL_ERROR_MSG("Bad RSA size");
ret = -1;
}
}
if (ret == 0) {
/* Get an RNG. */
rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng);
if (rng == NULL) {
ret = -1;
}
}
if (ret == 0) {
/* Use wolfCrypt to public-encrypt with RSA key. */
#if !defined(HAVE_FIPS)
ret = wc_RsaPublicEncrypt_ex(from, (word32)len, to, (word32)outLen,
(RsaKey*)rsa->internal, rng, pad_type, hash, mgf, NULL, 0);
#else
ret = wc_RsaPublicEncrypt(from, (word32)len, to, (word32)outLen,
(RsaKey*)rsa->internal, rng);
#endif
}
/* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */
if (initTmpRng) {
wc_FreeRng(tmpRng);
}
#ifdef WOLFSSL_SMALL_STACK
/* Dispose of any allocated RNG. */
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
#endif
/* wolfCrypt error means return -1. */
if (ret <= 0) {
ret = -1;
}
WOLFSSL_LEAVE("wolfSSL_RSA_public_encrypt", ret);
return ret;
}
/* Decrypt with the RSA public key.
*
* Return compliant with OpenSSL.
*
* @param [in] len Length of encrypted data.
* @param [in] from Encrypted data.
* @param [out] to Decrypted data.
* @param [in] rsa RSA key.
* @param [in] padding Type of padding to around plaintext to remove.
* @return Size of decrypted data on success.
* @return -1 on failure.
*/
int wolfSSL_RSA_private_decrypt(int len, const unsigned char* from,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int ret = 0;
#if !defined(HAVE_FIPS)
int mgf = WC_MGF1NONE;
enum wc_HashType hash = WC_HASH_TYPE_NONE;
int pad_type = WC_RSA_NO_PAD;
#endif
int outLen = 0;
WOLFSSL_ENTER("wolfSSL_RSA_private_decrypt");
/* Validate parameters. */
if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) ||
(from == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
if (ret == 0) {
#if !defined(HAVE_FIPS)
switch (padding) {
case RSA_PKCS1_PADDING:
pad_type = WC_RSA_PKCSV15_PAD;
break;
case RSA_PKCS1_OAEP_PADDING:
pad_type = WC_RSA_OAEP_PAD;
hash = WC_HASH_TYPE_SHA;
mgf = WC_MGF1SHA1;
break;
case RSA_NO_PADDING:
pad_type = WC_RSA_NO_PAD;
break;
default:
WOLFSSL_ERROR_MSG("RSA_private_decrypt unsupported padding");
ret = -1;
}
#else
/* Check for supported padding schemes in FIPS. */
/* TODO: Do we support more schemes in later versions of FIPS? */
if (padding != RSA_PKCS1_PADDING) {
WOLFSSL_ERROR_MSG("RSA_public_encrypt pad type not supported in "
"FIPS");
ret = -1;
}
#endif
}
/* Set wolfCrypt RSA key data from external if not already done. */
if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) {
ret = -1;
}
if (ret == 0) {
/* Calculate maximum length of decrypted data. */
outLen = wolfSSL_RSA_size(rsa);
if (outLen == 0) {
WOLFSSL_ERROR_MSG("Bad RSA size");
ret = -1;
}
}
if (ret == 0) {
/* Use wolfCrypt to private-decrypt with RSA key.
* Size of 'to' buffer must be size of RSA key */
#if !defined(HAVE_FIPS)
ret = wc_RsaPrivateDecrypt_ex(from, (word32)len, to, (word32)outLen,
(RsaKey*)rsa->internal, pad_type, hash, mgf, NULL, 0);
#else
ret = wc_RsaPrivateDecrypt(from, (word32)len, to, (word32)outLen,
(RsaKey*)rsa->internal);
#endif
}
/* wolfCrypt error means return -1. */
if (ret <= 0) {
ret = -1;
}
WOLFSSL_LEAVE("wolfSSL_RSA_private_decrypt", ret);
return ret;
}
/* Decrypt with the RSA public key.
*
* @param [in] len Length of encrypted data.
* @param [in] from Encrypted data.
* @param [out] to Decrypted data.
* @param [in] rsa RSA key.
* @param [in] padding Type of padding to around plaintext to remove.
* @return Size of decrypted data on success.
* @return -1 on failure.
*/
int wolfSSL_RSA_public_decrypt(int len, const unsigned char* from,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int ret = 0;
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
int pad_type = WC_RSA_NO_PAD;
#endif
int outLen = 0;
WOLFSSL_ENTER("wolfSSL_RSA_public_decrypt");
/* Validate parameters. */
if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) ||
(from == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
if (ret == 0) {
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
switch (padding) {
case RSA_PKCS1_PADDING:
pad_type = WC_RSA_PKCSV15_PAD;
break;
case RSA_NO_PADDING:
pad_type = WC_RSA_NO_PAD;
break;
/* TODO: RSA_X931_PADDING not supported */
default:
WOLFSSL_ERROR_MSG("RSA_public_decrypt unsupported padding");
ret = -1;
}
#else
if (padding != RSA_PKCS1_PADDING) {
WOLFSSL_ERROR_MSG("RSA_public_decrypt pad type not supported in "
"FIPS");
ret = -1;
}
#endif
}
/* Set wolfCrypt RSA key data from external if not already done. */
if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) {
ret = -1;
}
if (ret == 0) {
/* Calculate maximum length of encrypted data. */
outLen = wolfSSL_RSA_size(rsa);
if (outLen == 0) {
WOLFSSL_ERROR_MSG("Bad RSA size");
ret = -1;
}
}
if (ret == 0) {
/* Use wolfCrypt to public-decrypt with RSA key. */
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
/* Size of 'to' buffer must be size of RSA key. */
ret = wc_RsaSSL_Verify_ex(from, (word32)len, to, (word32)outLen,
(RsaKey*)rsa->internal, pad_type);
#else
/* For FIPS v1/v2 only PKCSV15 padding is supported */
ret = wc_RsaSSL_Verify(from, (word32)len, to, (word32)outLen,
(RsaKey*)rsa->internal);
#endif
}
/* wolfCrypt error means return -1. */
if (ret <= 0) {
ret = -1;
}
WOLFSSL_LEAVE("wolfSSL_RSA_public_decrypt", ret);
return ret;
}
/* Encrypt with the RSA private key.
*
* Calls wc_RsaSSL_Sign.
*
* @param [in] len Length of data to encrypt.
* @param [in] from Data to encrypt.
* @param [out] to Encrypted data.
* @param [in] rsa RSA key.
* @param [in] padding Type of padding to place around plaintext.
* @return Size of encrypted data on success.
* @return -1 on failure.
*/
int wolfSSL_RSA_private_encrypt(int len, const unsigned char* from,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int ret = 0;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG _tmpRng[1];
WC_RNG* tmpRng = _tmpRng;
#endif
WOLFSSL_ENTER("wolfSSL_RSA_private_encrypt");
/* Validate parameters. */
if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) ||
(from == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
if (ret == 0) {
switch (padding) {
case RSA_PKCS1_PADDING:
#ifdef WC_RSA_NO_PADDING
case RSA_NO_PADDING:
#endif
break;
/* TODO: RSA_X931_PADDING not supported */
default:
WOLFSSL_ERROR_MSG("RSA_private_encrypt unsupported padding");
ret = -1;
}
}
/* Set wolfCrypt RSA key data from external if not already done. */
if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) {
ret = -1;
}
if (ret == 0) {
/* Get an RNG. */
rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng);
if (rng == NULL) {
ret = -1;
}
}
if (ret == 0) {
/* Use wolfCrypt to private-encrypt with RSA key.
* Size of output buffer must be size of RSA key. */
if (padding == RSA_PKCS1_PADDING) {
ret = wc_RsaSSL_Sign(from, (word32)len, to,
(word32)wolfSSL_RSA_size(rsa), (RsaKey*)rsa->internal, rng);
}
#ifdef WC_RSA_NO_PADDING
else if (padding == RSA_NO_PADDING) {
word32 outLen = (word32)wolfSSL_RSA_size(rsa);
ret = wc_RsaFunction(from, (word32)len, to, &outLen,
RSA_PRIVATE_ENCRYPT, (RsaKey*)rsa->internal, rng);
if (ret == 0)
ret = (int)outLen;
}
#endif
}
/* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */
if (initTmpRng) {
wc_FreeRng(tmpRng);
}
#ifdef WOLFSSL_SMALL_STACK
/* Dispose of any allocated RNG. */
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
#endif
/* wolfCrypt error means return -1. */
if (ret <= 0) {
ret = -1;
}
WOLFSSL_LEAVE("wolfSSL_RSA_private_encrypt", ret);
return ret;
}
#endif /* !HAVE_USER_RSA && !HAVE_FAST_RSA */
/*
* RSA misc operation APIs
*/
/* Calculate d mod p-1 and q-1 into BNs.
*
* Not OpenSSL API.
*
* @param [in, out] rsa RSA key.
* @return 1 on success.
* @return -1 on failure.
*/
int wolfSSL_RSA_GenAdd(WOLFSSL_RSA* rsa)
{
int ret = 1;
int err;
mp_int* t = NULL;
#ifdef WOLFSSL_SMALL_STACK
mp_int *tmp = NULL;
#else
mp_int tmp[1];
#endif
WOLFSSL_ENTER("wolfSSL_RsaGenAdd");
/* Validate parameters. */
if ((rsa == NULL) || (rsa->p == NULL) || (rsa->q == NULL) ||
(rsa->d == NULL) || (rsa->dmp1 == NULL) || (rsa->dmq1 == NULL)) {
WOLFSSL_ERROR_MSG("rsa no init error");
ret = -1;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 1) {
tmp = (mp_int *)XMALLOC(sizeof(*tmp), rsa->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (tmp == NULL) {
WOLFSSL_ERROR_MSG("Memory allocation failure");
ret = -1;
}
}
#endif
if (ret == 1) {
/* Initialize temp MP integer. */
if (mp_init(tmp) != MP_OKAY) {
WOLFSSL_ERROR_MSG("mp_init error");
ret = -1;
}
}
if (ret == 1) {
t = tmp;
/* Sub 1 from p into temp. */
err = mp_sub_d((mp_int*)rsa->p->internal, 1, tmp);
if (err != MP_OKAY) {
WOLFSSL_ERROR_MSG("mp_sub_d error");
ret = -1;
}
}
if (ret == 1) {
/* Calculate d mod (p - 1) into dmp1 MP integer of BN. */
err = mp_mod((mp_int*)rsa->d->internal, tmp,
(mp_int*)rsa->dmp1->internal);
if (err != MP_OKAY) {
WOLFSSL_ERROR_MSG("mp_mod error");
ret = -1;
}
}
if (ret == 1) {
/* Sub 1 from q into temp. */
err = mp_sub_d((mp_int*)rsa->q->internal, 1, tmp);
if (err != MP_OKAY) {
WOLFSSL_ERROR_MSG("mp_sub_d error");
ret = -1;
}
}
if (ret == 1) {
/* Calculate d mod (q - 1) into dmq1 MP integer of BN. */
err = mp_mod((mp_int*)rsa->d->internal, tmp,
(mp_int*)rsa->dmq1->internal);
if (err != MP_OKAY) {
WOLFSSL_ERROR_MSG("mp_mod error");
ret = -1;
}
}
mp_clear(t);
#ifdef WOLFSSL_SMALL_STACK
if (tmp != NULL)
XFREE(tmp, rsa->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#endif /* !HAVE_USER_RSA */
#ifndef NO_WOLFSSL_STUB
/* Enable blinding for RSA key operations.
*
* Blinding is a compile time option in wolfCrypt.
*
* @param [in] rsa RSA key. Unused.
* @param [in] bnCtx BN context to use for blinding. Unused.
* @return 1 always.
*/
int wolfSSL_RSA_blinding_on(WOLFSSL_RSA* rsa, WOLFSSL_BN_CTX* bnCtx)
{
WOLFSSL_STUB("RSA_blinding_on");
WOLFSSL_ENTER("wolfSSL_RSA_blinding_on");
(void)rsa;
(void)bnCtx;
return 1; /* on by default */
}
#endif
#endif /* OPENSSL_EXTRA */
#endif /* !NO_RSA */
/*******************************************************************************
* END OF RSA API
******************************************************************************/
/*******************************************************************************
* START OF DSA API
******************************************************************************/
#ifndef NO_DSA
#if defined(OPENSSL_EXTRA) && defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \
!defined(NO_STDIO_FILESYSTEM)
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DSA_print_fp(XFILE fp, WOLFSSL_DSA* dsa, int indent)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_DSA_print_fp");
if (fp == XBADFILE || dsa == NULL) {
ret = 0;
}
if (ret == 1 && dsa->p != NULL) {
int pBits = wolfSSL_BN_num_bits(dsa->p);
if (pBits == 0) {
ret = 0;
}
else {
if (XFPRINTF(fp, "%*s", indent, "") < 0)
ret = 0;
else if (XFPRINTF(fp, "Private-Key: (%d bit)\n", pBits) < 0)
ret = 0;
}
}
if (ret == 1 && dsa->priv_key != NULL) {
ret = pk_bn_field_print_fp(fp, indent, "priv", dsa->priv_key);
}
if (ret == 1 && dsa->pub_key != NULL) {
ret = pk_bn_field_print_fp(fp, indent, "pub", dsa->pub_key);
}
if (ret == 1 && dsa->p != NULL) {
ret = pk_bn_field_print_fp(fp, indent, "P", dsa->p);
}
if (ret == 1 && dsa->q != NULL) {
ret = pk_bn_field_print_fp(fp, indent, "Q", dsa->q);
}
if (ret == 1 && dsa->g != NULL) {
ret = pk_bn_field_print_fp(fp, indent, "G", dsa->g);
}
WOLFSSL_LEAVE("wolfSSL_DSA_print_fp", ret);
return ret;
}
#endif /* OPENSSL_EXTRA && XSNPRINTF && !NO_FILESYSTEM && NO_STDIO_FILESYSTEM */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
static void InitwolfSSL_DSA(WOLFSSL_DSA* dsa)
{
if (dsa) {
dsa->p = NULL;
dsa->q = NULL;
dsa->g = NULL;
dsa->pub_key = NULL;
dsa->priv_key = NULL;
dsa->internal = NULL;
dsa->inSet = 0;
dsa->exSet = 0;
}
}
WOLFSSL_DSA* wolfSSL_DSA_new(void)
{
WOLFSSL_DSA* external;
DsaKey* key;
WOLFSSL_MSG("wolfSSL_DSA_new");
key = (DsaKey*) XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_new malloc DsaKey failure");
return NULL;
}
external = (WOLFSSL_DSA*) XMALLOC(sizeof(WOLFSSL_DSA), NULL,
DYNAMIC_TYPE_DSA);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_new malloc WOLFSSL_DSA failure");
XFREE(key, NULL, DYNAMIC_TYPE_DSA);
return NULL;
}
InitwolfSSL_DSA(external);
if (wc_InitDsaKey(key) != 0) {
WOLFSSL_MSG("wolfSSL_DSA_new InitDsaKey failure");
XFREE(key, NULL, DYNAMIC_TYPE_DSA);
wolfSSL_DSA_free(external);
return NULL;
}
external->internal = key;
return external;
}
void wolfSSL_DSA_free(WOLFSSL_DSA* dsa)
{
WOLFSSL_MSG("wolfSSL_DSA_free");
if (dsa) {
if (dsa->internal) {
FreeDsaKey((DsaKey*)dsa->internal);
XFREE(dsa->internal, NULL, DYNAMIC_TYPE_DSA);
dsa->internal = NULL;
}
wolfSSL_BN_free(dsa->priv_key);
wolfSSL_BN_free(dsa->pub_key);
wolfSSL_BN_free(dsa->g);
wolfSSL_BN_free(dsa->q);
wolfSSL_BN_free(dsa->p);
InitwolfSSL_DSA(dsa); /* set back to NULLs for safety */
XFREE(dsa, NULL, DYNAMIC_TYPE_DSA);
/* dsa = NULL, don't try to access or double free it */
}
}
/* wolfSSL -> OpenSSL */
int SetDsaExternal(WOLFSSL_DSA* dsa)
{
DsaKey* key;
WOLFSSL_MSG("Entering SetDsaExternal");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("dsa key NULL error");
return -1;
}
key = (DsaKey*)dsa->internal;
if (wolfssl_bn_set_value(&dsa->p, &key->p) != 1) {
WOLFSSL_MSG("dsa p key error");
return -1;
}
if (wolfssl_bn_set_value(&dsa->q, &key->q) != 1) {
WOLFSSL_MSG("dsa q key error");
return -1;
}
if (wolfssl_bn_set_value(&dsa->g, &key->g) != 1) {
WOLFSSL_MSG("dsa g key error");
return -1;
}
if (wolfssl_bn_set_value(&dsa->pub_key, &key->y) != 1) {
WOLFSSL_MSG("dsa y key error");
return -1;
}
if (wolfssl_bn_set_value(&dsa->priv_key, &key->x) != 1) {
WOLFSSL_MSG("dsa x key error");
return -1;
}
dsa->exSet = 1;
return 1;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_EXTRA
/* Openssl -> WolfSSL */
int SetDsaInternal(WOLFSSL_DSA* dsa)
{
DsaKey* key;
WOLFSSL_MSG("Entering SetDsaInternal");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("dsa key NULL error");
return -1;
}
key = (DsaKey*)dsa->internal;
if (dsa->p != NULL &&
wolfssl_bn_get_value(dsa->p, &key->p) != 1) {
WOLFSSL_MSG("rsa p key error");
return -1;
}
if (dsa->q != NULL &&
wolfssl_bn_get_value(dsa->q, &key->q) != 1) {
WOLFSSL_MSG("rsa q key error");
return -1;
}
if (dsa->g != NULL &&
wolfssl_bn_get_value(dsa->g, &key->g) != 1) {
WOLFSSL_MSG("rsa g key error");
return -1;
}
if (dsa->pub_key != NULL) {
if (wolfssl_bn_get_value(dsa->pub_key, &key->y) != 1) {
WOLFSSL_MSG("rsa pub_key error");
return -1;
}
/* public key */
key->type = DSA_PUBLIC;
}
if (dsa->priv_key != NULL) {
if (wolfssl_bn_get_value(dsa->priv_key, &key->x) != 1) {
WOLFSSL_MSG("rsa priv_key error");
return -1;
}
/* private key */
key->type = DSA_PRIVATE;
}
dsa->inSet = 1;
return 1;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DSA_generate_key(WOLFSSL_DSA* dsa)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_DSA_generate_key");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad arguments");
return 0;
}
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != 1) {
WOLFSSL_MSG("SetDsaInternal failed");
return ret;
}
}
#ifdef WOLFSSL_KEY_GEN
{
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRng;
#else
WC_RNG tmpRng[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
tmpRng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRng == NULL)
return -1;
#endif
if (wc_InitRng(tmpRng) == 0) {
rng = tmpRng;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
rng = wolfssl_get_global_rng();
}
if (rng) {
/* These were allocated above by SetDsaInternal(). They should
* be cleared before wc_MakeDsaKey() which reinitializes
* x and y. */
mp_clear(&((DsaKey*)dsa->internal)->x);
mp_clear(&((DsaKey*)dsa->internal)->y);
if (wc_MakeDsaKey(rng, (DsaKey*)dsa->internal) != MP_OKAY)
WOLFSSL_MSG("wc_MakeDsaKey failed");
else if (SetDsaExternal(dsa) != 1)
WOLFSSL_MSG("SetDsaExternal failed");
else
ret = 1;
}
if (initTmpRng)
wc_FreeRng(tmpRng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else /* WOLFSSL_KEY_GEN */
WOLFSSL_MSG("No Key Gen built in");
#endif
return ret;
}
/* Returns a pointer to a new WOLFSSL_DSA structure on success and NULL on fail
*/
WOLFSSL_DSA* wolfSSL_DSA_generate_parameters(int bits, unsigned char* seed,
int seedLen, int* counterRet, unsigned long* hRet,
WOLFSSL_BN_CB cb, void* CBArg)
{
WOLFSSL_DSA* dsa;
WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters");
(void)cb;
(void)CBArg;
dsa = wolfSSL_DSA_new();
if (dsa == NULL) {
return NULL;
}
if (wolfSSL_DSA_generate_parameters_ex(dsa, bits, seed, seedLen,
counterRet, hRet, NULL) != 1) {
wolfSSL_DSA_free(dsa);
return NULL;
}
return dsa;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DSA_generate_parameters_ex(WOLFSSL_DSA* dsa, int bits,
unsigned char* seed, int seedLen,
int* counterRet,
unsigned long* hRet, void* cb)
{
int ret = 0;
(void)bits;
(void)seed;
(void)seedLen;
(void)counterRet;
(void)hRet;
(void)cb;
WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters_ex");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad arguments");
return 0;
}
#ifdef WOLFSSL_KEY_GEN
{
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRng;
#else
WC_RNG tmpRng[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
tmpRng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRng == NULL)
return -1;
#endif
if (wc_InitRng(tmpRng) == 0) {
rng = tmpRng;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
rng = wolfssl_get_global_rng();
}
if (rng) {
if (wc_MakeDsaParameters(rng, bits,
(DsaKey*)dsa->internal) != MP_OKAY)
WOLFSSL_MSG("wc_MakeDsaParameters failed");
else if (SetDsaExternal(dsa) != 1)
WOLFSSL_MSG("SetDsaExternal failed");
else
ret = 1;
}
if (initTmpRng)
wc_FreeRng(tmpRng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else /* WOLFSSL_KEY_GEN */
WOLFSSL_MSG("No Key Gen built in");
#endif
return ret;
}
void wolfSSL_DSA_get0_pqg(const WOLFSSL_DSA *d, const WOLFSSL_BIGNUM **p,
const WOLFSSL_BIGNUM **q, const WOLFSSL_BIGNUM **g)
{
WOLFSSL_ENTER("wolfSSL_DSA_get0_pqg");
if (d != NULL) {
if (p != NULL)
*p = d->p;
if (q != NULL)
*q = d->q;
if (g != NULL)
*g = d->g;
}
}
int wolfSSL_DSA_set0_pqg(WOLFSSL_DSA *d, WOLFSSL_BIGNUM *p,
WOLFSSL_BIGNUM *q, WOLFSSL_BIGNUM *g)
{
WOLFSSL_ENTER("wolfSSL_DSA_set0_pqg");
if (d == NULL || p == NULL || q == NULL || g == NULL) {
WOLFSSL_MSG("Bad parameter");
return 0;
}
wolfSSL_BN_free(d->p);
wolfSSL_BN_free(d->q);
wolfSSL_BN_free(d->g);
d->p = p;
d->q = q;
d->g = g;
return 1;
}
void wolfSSL_DSA_get0_key(const WOLFSSL_DSA *d,
const WOLFSSL_BIGNUM **pub_key, const WOLFSSL_BIGNUM **priv_key)
{
WOLFSSL_ENTER("wolfSSL_DSA_get0_key");
if (d != NULL) {
if (pub_key != NULL)
*pub_key = d->pub_key;
if (priv_key != NULL)
*priv_key = d->priv_key;
}
}
int wolfSSL_DSA_set0_key(WOLFSSL_DSA *d, WOLFSSL_BIGNUM *pub_key,
WOLFSSL_BIGNUM *priv_key)
{
WOLFSSL_ENTER("wolfSSL_DSA_set0_key");
/* The private key may be NULL */
if (pub_key == NULL) {
WOLFSSL_MSG("Bad parameter");
return 0;
}
wolfSSL_BN_free(d->pub_key);
wolfSSL_BN_free(d->priv_key);
d->pub_key = pub_key;
d->priv_key = priv_key;
return 1;
}
WOLFSSL_DSA_SIG* wolfSSL_DSA_SIG_new(void)
{
WOLFSSL_DSA_SIG* sig;
WOLFSSL_ENTER("wolfSSL_DSA_SIG_new");
sig = (WOLFSSL_DSA_SIG*)XMALLOC(sizeof(WOLFSSL_DSA_SIG), NULL,
DYNAMIC_TYPE_OPENSSL);
if (sig)
XMEMSET(sig, 0, sizeof(WOLFSSL_DSA_SIG));
return sig;
}
void wolfSSL_DSA_SIG_free(WOLFSSL_DSA_SIG *sig)
{
WOLFSSL_ENTER("wolfSSL_DSA_SIG_free");
if (sig) {
if (sig->r) {
wolfSSL_BN_free(sig->r);
}
if (sig->s) {
wolfSSL_BN_free(sig->s);
}
XFREE(sig, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
void wolfSSL_DSA_SIG_get0(const WOLFSSL_DSA_SIG *sig,
const WOLFSSL_BIGNUM **r, const WOLFSSL_BIGNUM **s)
{
WOLFSSL_ENTER("wolfSSL_DSA_SIG_get0");
if (sig != NULL) {
*r = sig->r;
*s = sig->s;
}
}
int wolfSSL_DSA_SIG_set0(WOLFSSL_DSA_SIG *sig, WOLFSSL_BIGNUM *r,
WOLFSSL_BIGNUM *s)
{
WOLFSSL_ENTER("wolfSSL_DSA_SIG_set0");
if (r == NULL || s == NULL) {
WOLFSSL_MSG("Bad parameter");
return 0;
}
wolfSSL_BN_clear_free(sig->r);
wolfSSL_BN_clear_free(sig->s);
sig->r = r;
sig->s = s;
return 1;
}
#ifndef HAVE_SELFTEST
/**
*
* @param sig The input signature to encode
* @param out The output buffer. If *out is NULL then a new buffer is
* allocated. Otherwise the output is written to the buffer.
* @return length on success and -1 on error
*/
int wolfSSL_i2d_DSA_SIG(const WOLFSSL_DSA_SIG *sig, byte **out)
{
/* Space for sequence + two asn ints */
byte buf[MAX_SEQ_SZ + 2*(ASN_TAG_SZ + MAX_LENGTH_SZ + DSA_MAX_HALF_SIZE)];
word32 bufLen = sizeof(buf);
WOLFSSL_ENTER("wolfSSL_i2d_DSA_SIG");
if (sig == NULL || sig->r == NULL || sig->s == NULL ||
out == NULL) {
WOLFSSL_MSG("Bad function arguments");
return -1;
}
if (StoreECC_DSA_Sig(buf, &bufLen,
(mp_int*)sig->r->internal, (mp_int*)sig->s->internal) != 0) {
WOLFSSL_MSG("StoreECC_DSA_Sig error");
return -1;
}
if (*out == NULL) {
byte* tmp = (byte*)XMALLOC(bufLen, NULL, DYNAMIC_TYPE_ASN1);
if (tmp == NULL) {
WOLFSSL_MSG("malloc error");
return -1;
}
*out = tmp;
}
XMEMCPY(*out, buf, bufLen);
return (int)bufLen;
}
/**
* Same as wolfSSL_DSA_SIG_new but also initializes the internal bignums as well.
* @return New WOLFSSL_DSA_SIG with r and s created as well
*/
static WOLFSSL_DSA_SIG* wolfSSL_DSA_SIG_new_bn(void)
{
WOLFSSL_DSA_SIG* ret;
if ((ret = wolfSSL_DSA_SIG_new()) == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_SIG_new error");
return NULL;
}
if ((ret->r = wolfSSL_BN_new()) == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new error");
wolfSSL_DSA_SIG_free(ret);
return NULL;
}
if ((ret->s = wolfSSL_BN_new()) == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new error");
wolfSSL_DSA_SIG_free(ret);
return NULL;
}
return ret;
}
/**
* This parses a DER encoded ASN.1 structure. The ASN.1 encoding is:
* ASN1_SEQUENCE
* ASN1_INTEGER (DSA r)
* ASN1_INTEGER (DSA s)
* Alternatively, if the input is DSA_160_SIG_SIZE or DSA_256_SIG_SIZE in
* length then this API interprets this as two unsigned binary numbers.
* @param sig If non-null then free'd first and then newly created
* WOLFSSL_DSA_SIG is assigned
* @param pp Input buffer that is moved forward on success
* @param length Length of input buffer
* @return Newly created WOLFSSL_DSA_SIG on success or NULL on failure
*/
WOLFSSL_DSA_SIG* wolfSSL_d2i_DSA_SIG(WOLFSSL_DSA_SIG **sig,
const unsigned char **pp, long length)
{
WOLFSSL_DSA_SIG* ret;
mp_int* r;
mp_int* s;
WOLFSSL_ENTER("wolfSSL_d2i_DSA_SIG");
if (pp == NULL || *pp == NULL || length < 0) {
WOLFSSL_MSG("Bad function arguments");
return NULL;
}
if ((ret = wolfSSL_DSA_SIG_new_bn()) == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_SIG_new_bn error");
return NULL;
}
r = (mp_int*)ret->r->internal;
s = (mp_int*)ret->s->internal;
if (DecodeECC_DSA_Sig(*pp, (word32)length, r, s) != 0) {
if (length == DSA_160_SIG_SIZE || length == DSA_256_SIG_SIZE) {
/* Two raw numbers of length/2 size each */
if (mp_read_unsigned_bin(r, *pp, (word32)length/2) != 0) {
WOLFSSL_MSG("r mp_read_unsigned_bin error");
wolfSSL_DSA_SIG_free(ret);
return NULL;
}
if (mp_read_unsigned_bin(s, *pp + (length/2), (word32)length/2) !=
0) {
WOLFSSL_MSG("s mp_read_unsigned_bin error");
wolfSSL_DSA_SIG_free(ret);
return NULL;
}
*pp += length;
}
else {
WOLFSSL_MSG("DecodeECC_DSA_Sig error");
wolfSSL_DSA_SIG_free(ret);
return NULL;
}
}
else {
/* DecodeECC_DSA_Sig success move pointer forward */
#ifndef NO_STRICT_ECDSA_LEN
*pp += length;
#else
{
/* We need to figure out how much to move by ourselves */
word32 idx = 0;
int len = 0;
if (GetSequence(*pp, &idx, &len, (word32)length) < 0) {
WOLFSSL_MSG("GetSequence error");
wolfSSL_DSA_SIG_free(ret);
return NULL;
}
*pp += len;
}
#endif
}
if (sig != NULL) {
if (*sig != NULL)
wolfSSL_DSA_SIG_free(*sig);
*sig = ret;
}
return ret;
}
#endif /* HAVE_SELFTEST */
/* return 1 on success, < 0 otherwise */
int wolfSSL_DSA_do_sign(const unsigned char* d, unsigned char* sigRet,
WOLFSSL_DSA* dsa)
{
int ret = -1;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG tmpRng[1];
#endif
WOLFSSL_ENTER("wolfSSL_DSA_do_sign");
if (d == NULL || sigRet == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return ret;
}
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != 1) {
WOLFSSL_MSG("SetDsaInternal failed");
return ret;
}
}
#ifdef WOLFSSL_SMALL_STACK
tmpRng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRng == NULL)
return -1;
#endif
if (wc_InitRng(tmpRng) == 0) {
rng = tmpRng;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
rng = wolfssl_get_global_rng();
}
if (rng) {
if (wc_DsaSign(d, sigRet, (DsaKey*)dsa->internal, rng) < 0)
WOLFSSL_MSG("DsaSign failed");
else
ret = 1;
}
if (initTmpRng)
wc_FreeRng(tmpRng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
#ifndef HAVE_SELFTEST
WOLFSSL_DSA_SIG* wolfSSL_DSA_do_sign_ex(const unsigned char* digest,
int inLen, WOLFSSL_DSA* dsa)
{
byte sigBin[DSA_MAX_SIG_SIZE];
const byte *tmp = sigBin;
int sigLen;
WOLFSSL_ENTER("wolfSSL_DSA_do_sign_ex");
if (!digest || !dsa || inLen != WC_SHA_DIGEST_SIZE) {
WOLFSSL_MSG("Bad function arguments");
return NULL;
}
if (wolfSSL_DSA_do_sign(digest, sigBin, dsa) != 1) {
WOLFSSL_MSG("wolfSSL_DSA_do_sign error");
return NULL;
}
if (dsa->internal == NULL) {
WOLFSSL_MSG("dsa->internal is null");
return NULL;
}
sigLen = mp_unsigned_bin_size(&((DsaKey*)dsa->internal)->q);
if (sigLen <= 0) {
WOLFSSL_MSG("mp_unsigned_bin_size error");
return NULL;
}
/* 2 * sigLen for the two points r and s */
return wolfSSL_d2i_DSA_SIG(NULL, &tmp, 2 * sigLen);
}
#endif /* !HAVE_SELFTEST */
int wolfSSL_DSA_do_verify(const unsigned char* d, unsigned char* sig,
WOLFSSL_DSA* dsa, int *dsacheck)
{
int ret = -1;
WOLFSSL_ENTER("wolfSSL_DSA_do_verify");
if (d == NULL || sig == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return -1;
}
if (dsa->inSet == 0)
{
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != 1) {
WOLFSSL_MSG("SetDsaInternal failed");
return -1;
}
}
ret = DsaVerify(d, sig, (DsaKey*)dsa->internal, dsacheck);
if (ret != 0 || *dsacheck != 1) {
WOLFSSL_MSG("DsaVerify failed");
return ret;
}
return 1;
}
int wolfSSL_DSA_bits(const WOLFSSL_DSA *d)
{
if (!d)
return 0;
if (!d->exSet && SetDsaExternal((WOLFSSL_DSA*)d) != 1)
return 0;
return wolfSSL_BN_num_bits(d->p);
}
#ifndef HAVE_SELFTEST
int wolfSSL_DSA_do_verify_ex(const unsigned char* digest, int digest_len,
WOLFSSL_DSA_SIG* sig, WOLFSSL_DSA* dsa)
{
int dsacheck, sz;
byte sigBin[DSA_MAX_SIG_SIZE];
byte* sigBinPtr = sigBin;
DsaKey* key;
int qSz;
WOLFSSL_ENTER("wolfSSL_DSA_do_verify_ex");
if (!digest || !sig || !dsa || digest_len != WC_SHA_DIGEST_SIZE) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
if (!sig->r || !sig->s) {
WOLFSSL_MSG("No signature found in DSA_SIG");
return 0;
}
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != 1) {
WOLFSSL_MSG("SetDsaInternal failed");
return 0;
}
}
key = (DsaKey*)dsa->internal;
if (key == NULL) {
WOLFSSL_MSG("dsa->internal is null");
return 0;
}
qSz = mp_unsigned_bin_size(&key->q);
if (qSz < 0 || qSz > DSA_MAX_HALF_SIZE) {
WOLFSSL_MSG("mp_unsigned_bin_size error");
return 0;
}
/* read r */
/* front pad with zeros */
if ((sz = wolfSSL_BN_num_bytes(sig->r)) < 0 || sz > DSA_MAX_HALF_SIZE)
return 0;
while (sz++ < qSz)
*sigBinPtr++ = 0;
if (wolfSSL_BN_bn2bin(sig->r, sigBinPtr) == -1)
return 0;
/* Move to s */
sigBinPtr = sigBin + qSz;
/* read s */
/* front pad with zeros */
if ((sz = wolfSSL_BN_num_bytes(sig->s)) < 0 || sz > DSA_MAX_HALF_SIZE)
return 0;
while (sz++ < qSz)
*sigBinPtr++ = 0;
if (wolfSSL_BN_bn2bin(sig->s, sigBinPtr) == -1)
return 0;
if ((wolfSSL_DSA_do_verify(digest, sigBin, dsa, &dsacheck)
!= 1) || dsacheck != 1) {
return 0;
}
return 1;
}
#endif /* !HAVE_SELFTEST */
WOLFSSL_API int wolfSSL_i2d_DSAparams(const WOLFSSL_DSA* dsa,
unsigned char** out)
{
int ret = 0;
word32 derLen = 0;
int preAllocated = 1;
DsaKey* key = NULL;
WOLFSSL_ENTER("wolfSSL_i2d_DSAparams");
if (dsa == NULL || dsa->internal == NULL || out == NULL) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
key = (DsaKey*)dsa->internal;
ret = wc_DsaKeyToParamsDer_ex(key, NULL, &derLen);
if (ret == LENGTH_ONLY_E) {
ret = 0;
}
}
if (ret == 0 && *out == NULL) {
/* If we're allocating out for the caller, we don't increment out just
past the end of the DER buffer. If out is already allocated, we do.
(OpenSSL convention) */
preAllocated = 0;
*out = (unsigned char*)XMALLOC(derLen, key->heap, DYNAMIC_TYPE_OPENSSL);
if (*out == NULL) {
ret = MEMORY_E;
}
}
if (ret == 0) {
ret = wc_DsaKeyToParamsDer_ex(key, *out, &derLen);
}
if (ret >= 0 && preAllocated == 1) {
*out += derLen;
}
if (ret < 0 && preAllocated == 0) {
XFREE(*out, key ? key->heap : NULL, DYNAMIC_TYPE_OPENSSL);
}
WOLFSSL_LEAVE("wolfSSL_i2d_DSAparams", ret);
return ret;
}
WOLFSSL_DSA* wolfSSL_d2i_DSAparams(WOLFSSL_DSA** dsa, const unsigned char** der,
long derLen)
{
WOLFSSL_DSA* ret = NULL;
int err = 0;
word32 idx = 0;
int asnLen;
DsaKey* internalKey = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_DSAparams");
if (der == NULL || *der == NULL || derLen <= 0) {
err = 1;
}
if (err == 0) {
ret = wolfSSL_DSA_new();
err = ret == NULL;
}
if (err == 0) {
err = GetSequence(*der, &idx, &asnLen, (word32)derLen) <= 0;
}
if (err == 0) {
internalKey = (DsaKey*)ret->internal;
err = GetInt(&internalKey->p, *der, &idx, (word32)derLen) != 0;
}
if (err == 0) {
err = GetInt(&internalKey->q, *der, &idx, (word32)derLen) != 0;
}
if (err == 0) {
err = GetInt(&internalKey->g, *der, &idx, (word32)derLen) != 0;
}
if (err == 0) {
err = wolfssl_bn_set_value(&ret->p, &internalKey->p)
!= 1;
}
if (err == 0) {
err = wolfssl_bn_set_value(&ret->q, &internalKey->q)
!= 1;
}
if (err == 0) {
err = wolfssl_bn_set_value(&ret->g, &internalKey->g)
!= 1;
}
if (err == 0 && dsa != NULL) {
*dsa = ret;
}
if (err != 0 && ret != NULL) {
wolfSSL_DSA_free(ret);
ret = NULL;
}
return ret;
}
#if defined(WOLFSSL_KEY_GEN)
#ifndef NO_BIO
/* Takes a DSA Privatekey and writes it out to a WOLFSSL_BIO
* Returns 1 or 0
*/
int wolfSSL_PEM_write_bio_DSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
wc_pem_password_cb* cb, void* arg)
{
int ret = 0, der_max_len = 0, derSz = 0;
byte *derBuf;
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_DSAPrivateKey");
if (bio == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return 0;
}
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return 0;
}
pkey->type = EVP_PKEY_DSA;
pkey->dsa = dsa;
pkey->ownDsa = 0;
/* 4 > size of pub, priv, p, q, g + ASN.1 additional information */
der_max_len = MAX_DSA_PRIVKEY_SZ;
derBuf = (byte*)XMALLOC((size_t)der_max_len, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (derBuf == NULL) {
WOLFSSL_MSG("Malloc failed");
wolfSSL_EVP_PKEY_free(pkey);
return 0;
}
/* convert key to der format */
derSz = wc_DsaKeyToDer((DsaKey*)dsa->internal, derBuf, (word32)der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_DsaKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
wolfSSL_EVP_PKEY_free(pkey);
return 0;
}
pkey->pkey.ptr = (char*)XMALLOC((size_t)derSz, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (pkey->pkey.ptr == NULL) {
WOLFSSL_MSG("key malloc failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
wolfSSL_EVP_PKEY_free(pkey);
return 0;
}
/* add der info to the evp key */
pkey->pkey_sz = derSz;
XMEMCPY(pkey->pkey.ptr, derBuf, (size_t)derSz);
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
ret = wolfSSL_PEM_write_bio_PrivateKey(bio, pkey, cipher, passwd, len,
cb, arg);
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#ifndef HAVE_SELFTEST
/* Takes a DSA public key and writes it out to a WOLFSSL_BIO
* Returns 1 or 0
*/
int wolfSSL_PEM_write_bio_DSA_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa)
{
int ret = 0;
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_DSA_PUBKEY");
if (bio == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return 0;
}
pkey->type = EVP_PKEY_DSA;
pkey->dsa = dsa;
pkey->ownDsa = 0;
ret = pem_write_bio_pubkey(bio, pkey);
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#endif /* HAVE_SELFTEST */
#endif /* !NO_BIO */
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_mem_DSAPrivateKey(WOLFSSL_DSA* dsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz,
unsigned char **pem, int *pLen)
{
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
byte *derBuf, *tmp, *cipherInfo = NULL;
int der_max_len = 0, derSz = 0;
const int type = DSA_PRIVATEKEY_TYPE;
const char* header = NULL;
const char* footer = NULL;
WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey");
if (pem == NULL || pLen == NULL || dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
if (wc_PemGetHeaderFooter(type, &header, &footer) != 0)
return 0;
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != 1) {
WOLFSSL_MSG("SetDsaInternal failed");
return 0;
}
}
der_max_len = MAX_DSA_PRIVKEY_SZ;
derBuf = (byte*)XMALLOC((size_t)der_max_len, NULL, DYNAMIC_TYPE_DER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
return 0;
}
/* Key to DER */
derSz = wc_DsaKeyToDer((DsaKey*)dsa->internal, derBuf, (word32)der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_DsaKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return 0;
}
/* encrypt DER buffer if required */
if (passwd != NULL && passwdSz > 0 && cipher != NULL) {
int ret;
ret = EncryptDerKey(derBuf, &derSz, cipher,
passwd, passwdSz, &cipherInfo, der_max_len);
if (ret != 1) {
WOLFSSL_MSG("EncryptDerKey failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return ret;
}
/* tmp buffer with a max size */
*pLen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE;
}
else { /* tmp buffer with a max size */
*pLen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1;
}
tmp = (byte*)XMALLOC((size_t)*pLen, NULL, DYNAMIC_TYPE_PEM);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return 0;
}
/* DER to PEM */
*pLen = wc_DerToPemEx(derBuf, (word32)derSz, tmp, (word32)*pLen, cipherInfo,
type);
if (*pLen <= 0) {
WOLFSSL_MSG("wc_DerToPemEx failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return 0;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
*pem = (byte*)XMALLOC((size_t)((*pLen)+1), NULL, DYNAMIC_TYPE_KEY);
if (*pem == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return 0;
}
XMEMSET(*pem, 0, (size_t)((*pLen)+1));
if (XMEMCPY(*pem, tmp, (size_t)*pLen) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return 0;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return 1;
#else
(void)dsa;
(void)cipher;
(void)passwd;
(void)passwdSz;
(void)pem;
(void)pLen;
return 0;
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_DSAPrivateKey(XFILE fp, WOLFSSL_DSA *dsa,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
wc_pem_password_cb *cb, void *u)
{
byte *pem;
int pLen, ret;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_write_DSAPrivateKey");
if (fp == XBADFILE || dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
ret = wolfSSL_PEM_write_mem_DSAPrivateKey(dsa, enc, kstr, klen, &pem,
&pLen);
if (ret != 1) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey failed");
return 0;
}
ret = (int)XFWRITE(pem, (size_t)pLen, 1, fp);
if (ret != 1) {
WOLFSSL_MSG("DSA private key file write failed");
return 0;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return 1;
}
#endif /* NO_FILESYSTEM */
#endif /* defined(WOLFSSL_KEY_GEN) */
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_PEM_write_DSA_PUBKEY(XFILE fp, WOLFSSL_DSA *x)
{
(void)fp;
(void)x;
WOLFSSL_STUB("PEM_write_DSA_PUBKEY");
WOLFSSL_MSG("wolfSSL_PEM_write_DSA_PUBKEY not implemented");
return 0;
}
#endif
#endif /* NO_FILESYSTEM */
#ifndef NO_BIO
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)) && (!defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && defined(WOLFSSL_KEY_GEN))
/* Uses the same format of input as wolfSSL_PEM_read_bio_PrivateKey but expects
* the results to be an DSA key.
*
* bio structure to read DSA private key from
* dsa if not null is then set to the result
* cb password callback for reading PEM
* pass password string
*
* returns a pointer to a new WOLFSSL_DSA structure on success and NULL on fail
*/
WOLFSSL_DSA* wolfSSL_PEM_read_bio_DSAPrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_DSA** dsa,
wc_pem_password_cb* cb,
void* pass)
{
WOLFSSL_EVP_PKEY* pkey = NULL;
WOLFSSL_DSA* local;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAPrivateKey");
pkey = wolfSSL_PEM_read_bio_PrivateKey(bio, NULL, cb, pass);
if (pkey == NULL) {
WOLFSSL_MSG("Error in PEM_read_bio_PrivateKey");
return NULL;
}
/* Since the WOLFSSL_DSA structure is being taken from WOLFSSL_EVP_PKEY the
* flag indicating that the WOLFSSL_DSA structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownDsa = 0;
local = pkey->dsa;
if (dsa != NULL) {
*dsa = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
/* Reads an DSA public key from a WOLFSSL_BIO into a WOLFSSL_DSA.
* Returns 1 or 0
*/
WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSA_PUBKEY(WOLFSSL_BIO* bio,WOLFSSL_DSA** dsa,
wc_pem_password_cb* cb, void* pass)
{
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_DSA* local;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSA_PUBKEY");
pkey = wolfSSL_PEM_read_bio_PUBKEY(bio, NULL, cb, pass);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_PEM_read_bio_PUBKEY failed");
return NULL;
}
/* Since the WOLFSSL_DSA structure is being taken from WOLFSSL_EVP_PKEY the
* flag indicating that the WOLFSSL_DSA structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownDsa = 0;
local = pkey->dsa;
if (dsa != NULL) {
*dsa = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
#endif /* (OPENSSL_EXTRA || OPENSSL_ALL) && (!NO_CERTS &&
!NO_FILESYSTEM && WOLFSSL_KEY_GEN) */
#endif /* NO_BIO */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* return 1 if success, -1 if error */
int wolfSSL_DSA_LoadDer(WOLFSSL_DSA* dsa, const unsigned char* derBuf, int derSz)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_DSA_LoadDer");
if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return -1;
}
ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal,
(word32)derSz);
if (ret < 0) {
WOLFSSL_MSG("DsaPrivateKeyDecode failed");
return -1;
}
if (SetDsaExternal(dsa) != 1) {
WOLFSSL_MSG("SetDsaExternal failed");
return -1;
}
dsa->inSet = 1;
return 1;
}
/* Loads DSA key from DER buffer. opt = DSA_LOAD_PRIVATE or DSA_LOAD_PUBLIC.
returns 1 on success, or 0 on failure. */
int wolfSSL_DSA_LoadDer_ex(WOLFSSL_DSA* dsa, const unsigned char* derBuf,
int derSz, int opt)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_DSA_LoadDer");
if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return -1;
}
if (opt == WOLFSSL_DSA_LOAD_PRIVATE) {
ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal,
(word32)derSz);
}
else {
ret = DsaPublicKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal,
(word32)derSz);
}
if (ret < 0 && opt == WOLFSSL_DSA_LOAD_PRIVATE) {
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("DsaPrivateKeyDecode failed");
return -1;
}
else if (ret < 0 && opt == WOLFSSL_DSA_LOAD_PUBLIC) {
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("DsaPublicKeyDecode failed");
return -1;
}
if (SetDsaExternal(dsa) != 1) {
WOLFSSL_MSG("SetDsaExternal failed");
return -1;
}
dsa->inSet = 1;
return 1;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSAparams(WOLFSSL_BIO *bp, WOLFSSL_DSA **x,
wc_pem_password_cb *cb, void *u)
{
WOLFSSL_DSA* dsa;
DsaKey* key;
int length;
unsigned char* buf;
word32 bufSz;
int ret;
word32 idx = 0;
DerBuffer* pDer;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAparams");
ret = wolfSSL_BIO_get_mem_data(bp, &buf);
if (ret <= 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret);
return NULL;
}
bufSz = (word32)ret;
if (cb != NULL || u != NULL) {
/*
* cb is for a call back when encountering encrypted PEM files
* if cb == NULL and u != NULL then u = null terminated password string
*/
WOLFSSL_MSG("Not yet supporting call back or password for encrypted PEM");
}
if (PemToDer(buf, (long)bufSz, DSA_PARAM_TYPE, &pDer, NULL, NULL,
NULL) < 0 ) {
WOLFSSL_MSG("Issue converting from PEM to DER");
return NULL;
}
if (GetSequence(pDer->buffer, &idx, &length, pDer->length) < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret);
FreeDer(&pDer);
return NULL;
}
dsa = wolfSSL_DSA_new();
if (dsa == NULL) {
FreeDer(&pDer);
WOLFSSL_MSG("Error creating DSA struct");
return NULL;
}
key = (DsaKey*)dsa->internal;
if (key == NULL) {
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
WOLFSSL_MSG("Error finding DSA key struct");
return NULL;
}
if (GetInt(&key->p, pDer->buffer, &idx, pDer->length) < 0 ||
GetInt(&key->q, pDer->buffer, &idx, pDer->length) < 0 ||
GetInt(&key->g, pDer->buffer, &idx, pDer->length) < 0 ) {
WOLFSSL_MSG("dsa key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (wolfssl_bn_set_value(&dsa->p, &key->p) != 1) {
WOLFSSL_MSG("dsa p key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (wolfssl_bn_set_value(&dsa->q, &key->q) != 1) {
WOLFSSL_MSG("dsa q key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (wolfssl_bn_set_value(&dsa->g, &key->g) != 1) {
WOLFSSL_MSG("dsa g key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (x != NULL) {
*x = dsa;
}
FreeDer(&pDer);
return dsa;
}
#endif /* !NO_BIO */
#if !defined(NO_DH)
WOLFSSL_DH *wolfSSL_DSA_dup_DH(const WOLFSSL_DSA *dsa)
{
WOLFSSL_DH* dh;
DhKey* key;
WOLFSSL_ENTER("wolfSSL_DSA_dup_DH");
if (dsa == NULL) {
return NULL;
}
dh = wolfSSL_DH_new();
if (dh == NULL) {
return NULL;
}
key = (DhKey*)dh->internal;
if (dsa->p != NULL &&
wolfssl_bn_get_value(((WOLFSSL_DSA*)dsa)->p, &key->p)
!= 1) {
WOLFSSL_MSG("rsa p key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (dsa->g != NULL &&
wolfssl_bn_get_value(((WOLFSSL_DSA*)dsa)->g, &key->g)
!= 1) {
WOLFSSL_MSG("rsa g key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (wolfssl_bn_set_value(&dh->p, &key->p) != 1) {
WOLFSSL_MSG("dsa p key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (wolfssl_bn_set_value(&dh->g, &key->g) != 1) {
WOLFSSL_MSG("dsa g key error");
wolfSSL_DH_free(dh);
return NULL;
}
return dh;
}
#endif /* !NO_DH */
#endif /* OPENSSL_EXTRA */
#endif /* !NO_DSA */
/*******************************************************************************
* END OF DSA API
******************************************************************************/
/*******************************************************************************
* START OF DH API
******************************************************************************/
#ifndef NO_DH
#ifdef OPENSSL_EXTRA
/*
* DH constructor/deconstructor APIs
*/
/* Allocate and initialize a new DH key.
*
* @return DH key on success.
* @return NULL on failure.
*/
WOLFSSL_DH* wolfSSL_DH_new(void)
{
int err = 0;
WOLFSSL_DH* dh = NULL;
DhKey* key = NULL;
WOLFSSL_ENTER("wolfSSL_DH_new");
/* Allocate OpenSSL DH key. */
dh = (WOLFSSL_DH*)XMALLOC(sizeof(WOLFSSL_DH), NULL, DYNAMIC_TYPE_DH);
if (dh == NULL) {
WOLFSSL_ERROR_MSG("wolfSSL_DH_new malloc WOLFSSL_DH failure");
err = 1;
}
if (!err) {
/* Clear key data. */
XMEMSET(dh, 0, sizeof(WOLFSSL_DH));
/* Initialize reference counting. */
wolfSSL_RefInit(&dh->ref, &err);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
}
if (!err) {
#endif
/* Allocate wolfSSL DH key. */
key = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH);
if (key == NULL) {
WOLFSSL_ERROR_MSG("wolfSSL_DH_new malloc DhKey failure");
err = 1;
}
}
if (!err) {
/* Set and initialize wolfSSL DH key. */
dh->internal = key;
if (wc_InitDhKey(key) != 0) {
WOLFSSL_ERROR_MSG("wolfSSL_DH_new InitDhKey failure");
err = 1;
}
}
if (err && (dh != NULL)) {
/* Dispose of the allocated memory. */
XFREE(key, NULL, DYNAMIC_TYPE_DH);
wolfSSL_RefFree(&dh->ref);
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
dh = NULL;
}
return dh;
}
#if defined(HAVE_PUBLIC_FFDHE) || (defined(HAVE_FIPS) && FIPS_VERSION_EQ(2,0))
/* Set the DH parameters based on the NID.
*
* @param [in, out] dh DH key to set.
* @param [in] nid Numeric ID of predefined DH parameters.
* @return 0 on success.
* @return 1 on failure.
*/
static int wolfssl_dh_set_nid(WOLFSSL_DH* dh, int nid)
{
int err = 0;
const DhParams* params = NULL;
/* HAVE_PUBLIC_FFDHE not required to expose wc_Dh_ffdhe* functions in
* FIPS v2 module */
switch (nid) {
#ifdef HAVE_FFDHE_2048
case NID_ffdhe2048:
params = wc_Dh_ffdhe2048_Get();
break;
#endif /* HAVE_FFDHE_2048 */
#ifdef HAVE_FFDHE_3072
case NID_ffdhe3072:
params = wc_Dh_ffdhe3072_Get();
break;
#endif /* HAVE_FFDHE_3072 */
#ifdef HAVE_FFDHE_4096
case NID_ffdhe4096:
params = wc_Dh_ffdhe4096_Get();
break;
#endif /* HAVE_FFDHE_4096 */
default:
break;
}
if (params == NULL) {
WOLFSSL_ERROR_MSG("Unable to find DH params for nid.");
err = 1;
}
if (!err) {
/* Set prime from data retrieved. */
dh->p = wolfSSL_BN_bin2bn(params->p, (int)params->p_len, NULL);
if (dh->p == NULL) {
WOLFSSL_ERROR_MSG("Error converting p hex to WOLFSSL_BIGNUM.");
err = 1;
}
}
if (!err) {
/* Set generator from data retrieved. */
dh->g = wolfSSL_BN_bin2bn(params->g, (int)params->g_len, NULL);
if (dh->g == NULL) {
WOLFSSL_ERROR_MSG("Error converting g hex to WOLFSSL_BIGNUM.");
err = 1;
}
}
#ifdef HAVE_FFDHE_Q
if (!err) {
/* Set order from data retrieved. */
dh->q = wolfSSL_BN_bin2bn(params->q, params->q_len, NULL);
if (dh->q == NULL) {
WOLFSSL_ERROR_MSG("Error converting q hex to WOLFSSL_BIGNUM.");
err = 1;
}
}
#endif
/* Synchronize the external into internal DH key's parameters. */
if ((!err) && (SetDhInternal(dh) != 1)) {
WOLFSSL_ERROR_MSG("Failed to set internal DH params.");
err = 1;
}
if (!err) {
/* External DH key parameters were set. */
dh->exSet = 1;
}
if (err == 1) {
/* Dispose of any external parameters. */
#ifdef HAVE_FFDHE_Q
wolfSSL_BN_free(dh->q);
dh->q = NULL;
#endif
wolfSSL_BN_free(dh->p);
dh->p = NULL;
wolfSSL_BN_free(dh->g);
dh->g = NULL;
}
return err;
}
#elif !defined(HAVE_PUBLIC_FFDHE) && (!defined(HAVE_FIPS) || \
FIPS_VERSION_GT(2,0))
/* Set the DH parameters based on the NID.
*
* FIPS v2 and lower doesn't support wc_DhSetNamedKey.
*
* @param [in, out] dh DH key to set.
* @param [in] nid Numeric ID of predefined DH parameters.
* @return 0 on success.
* @return 1 on failure.
*/
static int wolfssl_dh_set_nid(WOLFSSL_DH* dh, int nid)
{
int err = 0;
int name = 0;
#ifdef HAVE_FFDHE_Q
int elements = ELEMENT_P | ELEMENT_G | ELEMENT_Q;
#else
int elements = ELEMENT_P | ELEMENT_G;
#endif /* HAVE_FFDHE_Q */
switch (nid) {
#ifdef HAVE_FFDHE_2048
case NID_ffdhe2048:
name = WC_FFDHE_2048;
break;
#endif /* HAVE_FFDHE_2048 */
#ifdef HAVE_FFDHE_3072
case NID_ffdhe3072:
name = WC_FFDHE_3072;
break;
#endif /* HAVE_FFDHE_3072 */
#ifdef HAVE_FFDHE_4096
case NID_ffdhe4096:
name = WC_FFDHE_4096;
break;
#endif /* HAVE_FFDHE_4096 */
default:
err = 1;
WOLFSSL_ERROR_MSG("Unable to find DH params for nid.");
break;
}
/* Set the internal DH key's parameters based on name. */
if ((!err) && (wc_DhSetNamedKey((DhKey*)dh->internal, name) != 0)) {
WOLFSSL_ERROR_MSG("wc_DhSetNamedKey failed.");
err = 1;
}
/* Synchronize the internal into external DH key's parameters. */
if (!err && (SetDhExternal_ex(dh, elements) != 1)) {
WOLFSSL_ERROR_MSG("Failed to set external DH params.");
err = 1;
}
return err;
}
#else
/* Set the DH parameters based on the NID.
*
* Pre-defined DH parameters not available.
*
* @param [in, out] dh DH key to set.
* @param [in] nid Numeric ID of predefined DH parameters.
* @return 1 for failure.
*/
static int wolfssl_dh_set_nid(WOLFSSL_DH* dh, int nid)
{
return 1;
}
#endif
/* Allocate and initialize a new DH key with the parameters based on the NID.
*
* @param [in] nid Numeric ID of DH parameters.
*
* @return DH key on success.
* @return NULL on failure.
*/
WOLFSSL_DH* wolfSSL_DH_new_by_nid(int nid)
{
WOLFSSL_DH* dh = NULL;
int err = 0;
WOLFSSL_ENTER("wolfSSL_DH_new_by_nid");
/* Allocate a new DH key. */
dh = wolfSSL_DH_new();
if (dh == NULL) {
WOLFSSL_ERROR_MSG("Failed to create WOLFSSL_DH.");
err = 1;
}
if (!err) {
/* Set the parameters based on NID. */
err = wolfssl_dh_set_nid(dh, nid);
}
if (err && (dh != NULL)) {
/* Dispose of the key on failure to set. */
wolfSSL_DH_free(dh);
dh = NULL;
}
WOLFSSL_LEAVE("wolfSSL_DH_new_by_nid", err);
return dh;
}
/* Dispose of DH key and allocated data.
*
* Cannot use dh after this call.
*
* @param [in] dh DH key to free.
*/
void wolfSSL_DH_free(WOLFSSL_DH* dh)
{
int doFree = 0;
WOLFSSL_ENTER("wolfSSL_DH_free");
if (dh != NULL) {
int err;
/* Only free if all references to it are done */
wolfSSL_RefDec(&dh->ref, &doFree, &err);
/* Ignore errors - doFree will be 0 on error. */
(void)err;
}
if (doFree) {
/* Dispose of allocated reference counting data. */
wolfSSL_RefFree(&dh->ref);
/* Dispose of wolfSSL DH key. */
if (dh->internal) {
wc_FreeDhKey((DhKey*)dh->internal);
XFREE(dh->internal, NULL, DYNAMIC_TYPE_DH);
dh->internal = NULL;
}
/* Dispose of any allocated BNs. */
wolfSSL_BN_free(dh->priv_key);
wolfSSL_BN_free(dh->pub_key);
wolfSSL_BN_free(dh->g);
wolfSSL_BN_free(dh->p);
wolfSSL_BN_free(dh->q);
/* Set back to NULLs for safety. */
XMEMSET(dh, 0, sizeof(WOLFSSL_DH));
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
}
}
/* Increments ref count of DH key.
*
* @param [in, out] dh DH key.
* @return 1 on success
* @return 0 on error
*/
int wolfSSL_DH_up_ref(WOLFSSL_DH* dh)
{
int err = 1;
WOLFSSL_ENTER("wolfSSL_DH_up_ref");
if (dh != NULL) {
wolfSSL_RefInc(&dh->ref, &err);
}
return !err;
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH) || \
defined(OPENSSL_EXTRA)
#ifdef WOLFSSL_DH_EXTRA
/* Duplicate the DH key.
*
* Internal DH key in 'dh' is updated if necessary.
*
* @param [in, out] dh DH key to duplicate.
* @return NULL on failure.
* @return DH key on success.
*/
WOLFSSL_DH* wolfSSL_DH_dup(WOLFSSL_DH* dh)
{
WOLFSSL_DH* ret = NULL;
int err = 0;
WOLFSSL_ENTER("wolfSSL_DH_dup");
/* Validate parameters. */
if (dh == NULL) {
WOLFSSL_ERROR_MSG("Bad parameter");
err = 1;
}
/* Ensure internal DH key is set. */
if ((!err) && (dh->inSet == 0) && (SetDhInternal(dh) != 1)) {
WOLFSSL_ERROR_MSG("Bad DH set internal");
err = 1;
}
/* Create a new DH key object. */
if ((!err) && (!(ret = wolfSSL_DH_new()))) {
WOLFSSL_ERROR_MSG("wolfSSL_DH_new error");
err = 1;
}
/* Copy internal DH key from original to new. */
if ((!err) && (wc_DhKeyCopy((DhKey*)dh->internal, (DhKey*)ret->internal) !=
MP_OKAY)) {
WOLFSSL_ERROR_MSG("wc_DhKeyCopy error");
err = 1;
}
if (!err) {
ret->inSet = 1;
/* Synchronize the internal into external DH key's parameters. */
if (SetDhExternal(ret) != 1) {
WOLFSSL_ERROR_MSG("SetDhExternal error");
err = 1;
}
}
/* Dispose of any allocated DH key on error. */
if (err && (ret != NULL)) {
wolfSSL_DH_free(ret);
ret = NULL;
}
return ret;
}
#endif /* WOLFSSL_DH_EXTRA */
#endif
/* Allocate and initialize a new DH key with 2048-bit parameters.
*
* See RFC 5114 section 2.3, "2048-bit MODP Group with 256-bit Prime Order
* Subgroup."
*
* @return NULL on failure.
* @return DH Key on success.
*/
WOLFSSL_DH* wolfSSL_DH_get_2048_256(void)
{
WOLFSSL_DH* dh;
int err = 0;
static const byte pHex[] = {
0x87, 0xA8, 0xE6, 0x1D, 0xB4, 0xB6, 0x66, 0x3C, 0xFF, 0xBB, 0xD1, 0x9C,
0x65, 0x19, 0x59, 0x99, 0x8C, 0xEE, 0xF6, 0x08, 0x66, 0x0D, 0xD0, 0xF2,
0x5D, 0x2C, 0xEE, 0xD4, 0x43, 0x5E, 0x3B, 0x00, 0xE0, 0x0D, 0xF8, 0xF1,
0xD6, 0x19, 0x57, 0xD4, 0xFA, 0xF7, 0xDF, 0x45, 0x61, 0xB2, 0xAA, 0x30,
0x16, 0xC3, 0xD9, 0x11, 0x34, 0x09, 0x6F, 0xAA, 0x3B, 0xF4, 0x29, 0x6D,
0x83, 0x0E, 0x9A, 0x7C, 0x20, 0x9E, 0x0C, 0x64, 0x97, 0x51, 0x7A, 0xBD,
0x5A, 0x8A, 0x9D, 0x30, 0x6B, 0xCF, 0x67, 0xED, 0x91, 0xF9, 0xE6, 0x72,
0x5B, 0x47, 0x58, 0xC0, 0x22, 0xE0, 0xB1, 0xEF, 0x42, 0x75, 0xBF, 0x7B,
0x6C, 0x5B, 0xFC, 0x11, 0xD4, 0x5F, 0x90, 0x88, 0xB9, 0x41, 0xF5, 0x4E,
0xB1, 0xE5, 0x9B, 0xB8, 0xBC, 0x39, 0xA0, 0xBF, 0x12, 0x30, 0x7F, 0x5C,
0x4F, 0xDB, 0x70, 0xC5, 0x81, 0xB2, 0x3F, 0x76, 0xB6, 0x3A, 0xCA, 0xE1,
0xCA, 0xA6, 0xB7, 0x90, 0x2D, 0x52, 0x52, 0x67, 0x35, 0x48, 0x8A, 0x0E,
0xF1, 0x3C, 0x6D, 0x9A, 0x51, 0xBF, 0xA4, 0xAB, 0x3A, 0xD8, 0x34, 0x77,
0x96, 0x52, 0x4D, 0x8E, 0xF6, 0xA1, 0x67, 0xB5, 0xA4, 0x18, 0x25, 0xD9,
0x67, 0xE1, 0x44, 0xE5, 0x14, 0x05, 0x64, 0x25, 0x1C, 0xCA, 0xCB, 0x83,
0xE6, 0xB4, 0x86, 0xF6, 0xB3, 0xCA, 0x3F, 0x79, 0x71, 0x50, 0x60, 0x26,
0xC0, 0xB8, 0x57, 0xF6, 0x89, 0x96, 0x28, 0x56, 0xDE, 0xD4, 0x01, 0x0A,
0xBD, 0x0B, 0xE6, 0x21, 0xC3, 0xA3, 0x96, 0x0A, 0x54, 0xE7, 0x10, 0xC3,
0x75, 0xF2, 0x63, 0x75, 0xD7, 0x01, 0x41, 0x03, 0xA4, 0xB5, 0x43, 0x30,
0xC1, 0x98, 0xAF, 0x12, 0x61, 0x16, 0xD2, 0x27, 0x6E, 0x11, 0x71, 0x5F,
0x69, 0x38, 0x77, 0xFA, 0xD7, 0xEF, 0x09, 0xCA, 0xDB, 0x09, 0x4A, 0xE9,
0x1E, 0x1A, 0x15, 0x97
};
static const byte gHex[] = {
0x3F, 0xB3, 0x2C, 0x9B, 0x73, 0x13, 0x4D, 0x0B, 0x2E, 0x77, 0x50, 0x66,
0x60, 0xED, 0xBD, 0x48, 0x4C, 0xA7, 0xB1, 0x8F, 0x21, 0xEF, 0x20, 0x54,
0x07, 0xF4, 0x79, 0x3A, 0x1A, 0x0B, 0xA1, 0x25, 0x10, 0xDB, 0xC1, 0x50,
0x77, 0xBE, 0x46, 0x3F, 0xFF, 0x4F, 0xED, 0x4A, 0xAC, 0x0B, 0xB5, 0x55,
0xBE, 0x3A, 0x6C, 0x1B, 0x0C, 0x6B, 0x47, 0xB1, 0xBC, 0x37, 0x73, 0xBF,
0x7E, 0x8C, 0x6F, 0x62, 0x90, 0x12, 0x28, 0xF8, 0xC2, 0x8C, 0xBB, 0x18,
0xA5, 0x5A, 0xE3, 0x13, 0x41, 0x00, 0x0A, 0x65, 0x01, 0x96, 0xF9, 0x31,
0xC7, 0x7A, 0x57, 0xF2, 0xDD, 0xF4, 0x63, 0xE5, 0xE9, 0xEC, 0x14, 0x4B,
0x77, 0x7D, 0xE6, 0x2A, 0xAA, 0xB8, 0xA8, 0x62, 0x8A, 0xC3, 0x76, 0xD2,
0x82, 0xD6, 0xED, 0x38, 0x64, 0xE6, 0x79, 0x82, 0x42, 0x8E, 0xBC, 0x83,
0x1D, 0x14, 0x34, 0x8F, 0x6F, 0x2F, 0x91, 0x93, 0xB5, 0x04, 0x5A, 0xF2,
0x76, 0x71, 0x64, 0xE1, 0xDF, 0xC9, 0x67, 0xC1, 0xFB, 0x3F, 0x2E, 0x55,
0xA4, 0xBD, 0x1B, 0xFF, 0xE8, 0x3B, 0x9C, 0x80, 0xD0, 0x52, 0xB9, 0x85,
0xD1, 0x82, 0xEA, 0x0A, 0xDB, 0x2A, 0x3B, 0x73, 0x13, 0xD3, 0xFE, 0x14,
0xC8, 0x48, 0x4B, 0x1E, 0x05, 0x25, 0x88, 0xB9, 0xB7, 0xD2, 0xBB, 0xD2,
0xDF, 0x01, 0x61, 0x99, 0xEC, 0xD0, 0x6E, 0x15, 0x57, 0xCD, 0x09, 0x15,
0xB3, 0x35, 0x3B, 0xBB, 0x64, 0xE0, 0xEC, 0x37, 0x7F, 0xD0, 0x28, 0x37,
0x0D, 0xF9, 0x2B, 0x52, 0xC7, 0x89, 0x14, 0x28, 0xCD, 0xC6, 0x7E, 0xB6,
0x18, 0x4B, 0x52, 0x3D, 0x1D, 0xB2, 0x46, 0xC3, 0x2F, 0x63, 0x07, 0x84,
0x90, 0xF0, 0x0E, 0xF8, 0xD6, 0x47, 0xD1, 0x48, 0xD4, 0x79, 0x54, 0x51,
0x5E, 0x23, 0x27, 0xCF, 0xEF, 0x98, 0xC5, 0x82, 0x66, 0x4B, 0x4C, 0x0F,
0x6C, 0xC4, 0x16, 0x59
};
static const byte qHex[] = {
0x8C, 0xF8, 0x36, 0x42, 0xA7, 0x09, 0xA0, 0x97, 0xB4, 0x47, 0x99, 0x76,
0x40, 0x12, 0x9D, 0xA2, 0x99, 0xB1, 0xA4, 0x7D, 0x1E, 0xB3, 0x75, 0x0B,
0xA3, 0x08, 0xB0, 0xFE, 0x64, 0xF5, 0xFB, 0xD3
};
/* Create a new DH key to return. */
dh = wolfSSL_DH_new();
if (dh == NULL) {
err = 1;
}
if (!err) {
/* Set prime. */
dh->p = wolfSSL_BN_bin2bn(pHex, (int)sizeof(pHex), NULL);
if (dh->p == NULL) {
WOLFSSL_ERROR_MSG("Error converting p hex to WOLFSSL_BIGNUM.");
err = 1;
}
}
if (!err) {
/* Set generator. */
dh->g = wolfSSL_BN_bin2bn(gHex, (int)sizeof(gHex), NULL);
if (dh->g == NULL) {
WOLFSSL_ERROR_MSG("Error converting g hex to WOLFSSL_BIGNUM.");
err = 1;
}
}
if (!err) {
/* Set order. */
dh->q = wolfSSL_BN_bin2bn(qHex, (int)sizeof(qHex), NULL);
if (dh->q == NULL) {
WOLFSSL_ERROR_MSG("Error converting q hex to WOLFSSL_BIGNUM.");
err = 1;
}
}
/* Set values into wolfSSL DH key. */
if ((!err) && (SetDhInternal(dh) != 1)) {
WOLFSSL_ERROR_MSG("Error setting DH parameters.");
err = 1;
}
if (!err) {
/* External DH key parameters were set. */
dh->exSet = 1;
}
/* Dispose of any allocated DH key on error. */
if (err && (dh != NULL)) {
wolfSSL_DH_free(dh);
dh = NULL;
}
return dh;
}
/* TODO: consider changing strings to byte arrays. */
/* Returns a big number with the 768-bit prime from RFC 2409.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 768-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_768_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 768
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A63A3620FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_768_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 768 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/* Returns a big number with the 1024-bit prime from RFC 2409.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 1024-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_1024_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 1024
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE65381FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_1024_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 1024 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/* Returns a big number with the 1536-bit prime from RFC 3526.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 1536-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_1536_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 1536
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA237327FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_1536_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 1536 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/* Returns a big number with the 2048-bit prime from RFC 3526.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 2048-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_2048_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 2048
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AACAA68FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_2048_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 2048 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/* Returns a big number with the 3072-bit prime from RFC 3526.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 3072-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_3072_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 3072
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A93AD2CAFFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_3072_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 3072 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/* Returns a big number with the 4096-bit prime from RFC 3526.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 4096-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_4096_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 4096
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C"
"1A946834B6150BDA2583E9CA2AD44CE8"
"DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AF"
"B81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F"
"4DF435C934063199FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_4096_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 4096 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/* Returns a big number with the 6144-bit prime from RFC 3526.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 6144-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_6144_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 6144
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C"
"1A946834B6150BDA2583E9CA2AD44CE8"
"DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AF"
"B81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F"
"4DF435C93402849236C3FAB4D27C7026"
"C1D4DCB2602646DEC9751E763DBA37BD"
"F8FF9406AD9E530EE5DB382F413001AE"
"B06A53ED9027D831179727B0865A8918"
"DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
"DB7F1447E6CC254B332051512BD7AF42"
"6FB8F401378CD2BF5983CA01C64B92EC"
"F032EA15D1721D03F482D7CE6E74FEF6"
"D55E702F46980C82B5A84031900B1C9E"
"59E7C97FBEC7E8F323A97A7E36CC88BE"
"0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0"
"A79715EEF29BE32806A1D58BB7C5DA76"
"F550AA3D8A1FBFF0EB19CCB1A313D55C"
"DA56C9EC2EF29632387FE8D76E3C0468"
"043E8F663F4860EE12BF2D5B0B7474D6"
"E694F91E6DCC4024FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_6144_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 6144 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/* Returns a big number with the 8192-bit prime from RFC 3526.
*
* @param [in, out] bn If not NULL then this BN is set and returned.
* If NULL then a new BN is created, set and returned.
*
* @return NULL on failure.
* @return WOLFSSL_BIGNUM with value set to 8192-bit prime on success.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_8192_prime(WOLFSSL_BIGNUM* bn)
{
#if WOLFSSL_MAX_BN_BITS >= 8192
static const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C"
"1A946834B6150BDA2583E9CA2AD44CE8"
"DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AF"
"B81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F"
"4DF435C93402849236C3FAB4D27C7026"
"C1D4DCB2602646DEC9751E763DBA37BD"
"F8FF9406AD9E530EE5DB382F413001AE"
"B06A53ED9027D831179727B0865A8918"
"DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
"DB7F1447E6CC254B332051512BD7AF42"
"6FB8F401378CD2BF5983CA01C64B92EC"
"F032EA15D1721D03F482D7CE6E74FEF6"
"D55E702F46980C82B5A84031900B1C9E"
"59E7C97FBEC7E8F323A97A7E36CC88BE"
"0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0"
"A79715EEF29BE32806A1D58BB7C5DA76"
"F550AA3D8A1FBFF0EB19CCB1A313D55C"
"DA56C9EC2EF29632387FE8D76E3C0468"
"043E8F663F4860EE12BF2D5B0B7474D6"
"E694F91E6DBE115974A3926F12FEE5E4"
"38777CB6A932DF8CD8BEC4D073B931BA"
"3BC832B68D9DD300741FA7BF8AFC47ED"
"2576F6936BA424663AAB639C5AE4F568"
"3423B4742BF1C978238F16CBE39D652D"
"E3FDB8BEFC848AD922222E04A4037C07"
"13EB57A81A23F0C73473FC646CEA306B"
"4BCBC8862F8385DDFA9D4B7FA2C087E8"
"79683303ED5BDD3A062B3CF5B3A278A6"
"6D2A13F83F44F82DDF310EE074AB6A36"
"4597E899A0255DC164F31CC50846851D"
"F9AB48195DED7EA1B1D510BD7EE74D73"
"FAF36BC31ECFA268359046F4EB879F92"
"4009438B481C6CD7889A002ED5EE382B"
"C9190DA6FC026E479558E4475677E9AA"
"9E3050E2765694DFC81F56E880B96E71"
"60C980DD98EDD3DFFFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_8192_prime");
/* Set prime into BN. Creates a new BN when bn is NULL. */
if (wolfSSL_BN_hex2bn(&bn, prm) != 1) {
WOLFSSL_ERROR_MSG("Error converting DH 8192 prime to big number");
bn = NULL;
}
return bn;
#else
(void)bn;
return NULL;
#endif
}
/*
* DH to/from bin APIs
*/
#ifndef NO_CERTS
/* Load the DER encoded DH parameters/key into DH key.
*
* @param [in, out] dh DH key to load parameters into.
* @param [in] der Buffer holding DER encoded parameters data.
* @param [in, out] idx On in, index at which DH key DER data starts.
* On out, index after DH key DER data.
* @param [in] derSz Size of DER buffer in bytes.
*
* @return 0 on success.
* @return 1 when decoding DER or setting the external key fails.
*/
static int wolfssl_dh_load_key(WOLFSSL_DH* dh, const unsigned char* der,
word32* idx, word32 derSz)
{
int err = 0;
#if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)
int ret;
/* Decode DH parameters/key from DER. */
ret = wc_DhKeyDecode(der, idx, (DhKey*)dh->internal, derSz);
if (ret != 0) {
WOLFSSL_ERROR_MSG("DhKeyDecode() failed");
err = 1;
}
if (!err) {
/* wolfSSL DH key set. */
dh->inSet = 1;
/* Set the external DH key based on wolfSSL DH key. */
if (SetDhExternal(dh) != 1) {
WOLFSSL_ERROR_MSG("SetDhExternal failed");
err = 1;
}
}
#else
byte* p;
byte* g;
word32 pSz = MAX_DH_SIZE;
word32 gSz = MAX_DH_SIZE;
/* Only DH parameters supported. */
/* Load external and set internal. */
p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if ((p == NULL) || (g == NULL)) {
err = 1;
}
/* Extract the p and g as data from the DER encoded DH parameters. */
if ((!err) && (wc_DhParamsLoad(der + *idx, derSz - *idx, p, &pSz, g,
&gSz) < 0)) {
err = 1;
}
if (!err) {
/* Put p and g in as big numbers - free existing BNs. */
if (dh->p != NULL) {
wolfSSL_BN_free(dh->p);
dh->p = NULL;
}
if (dh->g != NULL) {
wolfSSL_BN_free(dh->g);
dh->g = NULL;
}
dh->p = wolfSSL_BN_bin2bn(p, (int)pSz, NULL);
dh->g = wolfSSL_BN_bin2bn(g, (int)gSz, NULL);
if (dh->p == NULL || dh->g == NULL) {
err = 1;
}
else {
/* External DH key parameters were set. */
dh->exSet = 1;
}
}
/* Set internal as the outside has been updated. */
if ((!err) && (SetDhInternal(dh) != 1)) {
WOLFSSL_ERROR_MSG("Unable to set internal DH structure");
err = 1;
}
if (!err) {
*idx += wolfssl_der_length(der + *idx, derSz - *idx);
}
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
#endif
return err;
}
#ifdef OPENSSL_ALL
#if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)
/* Convert DER encoded DH parameters to a WOLFSSL_DH structure.
*
* @param [out] dh DH key to put parameters into. May be NULL.
* @param [in, out] pp Pointer to DER encoded DH parameters.
* Value updated to end of data when dh is not NULL.
* @param [in] length Length of data available in bytes.
*
* @return DH key on success.
* @return NULL on failure.
*/
WOLFSSL_DH *wolfSSL_d2i_DHparams(WOLFSSL_DH** dh, const unsigned char** pp,
long length)
{
WOLFSSL_DH *newDh = NULL;
word32 idx = 0;
int err = 0;
WOLFSSL_ENTER("wolfSSL_d2i_DHparams");
/* Validate parameters. */
if ((pp == NULL) || (length <= 0)) {
WOLFSSL_ERROR_MSG("bad argument");
err = 1;
}
/* Create new DH key to return. */
if ((!err) && ((newDh = wolfSSL_DH_new()) == NULL)) {
WOLFSSL_ERROR_MSG("wolfSSL_DH_new() failed");
err = 1;
}
if ((!err) && (wolfssl_dh_load_key(newDh, *pp, &idx,
(word32)length) != 0)) {
WOLFSSL_ERROR_MSG("Loading DH parameters failed");
err = 1;
}
if ((!err) && (dh != NULL)) {
/* Return through parameter too. */
*dh = newDh;
/* Move buffer on by the used amount. */
*pp += idx;
}
if (err && (newDh != NULL)) {
/* Dispose of any created DH key. */
wolfSSL_DH_free(newDh);
newDh = NULL;
}
return newDh;
}
#endif /* !HAVE_FIPS || FIPS_VERSION_GT(2,0) */
/* Converts internal WOLFSSL_DH structure to DER encoded DH parameters.
*
* @params [in] dh DH key with parameters to encode.
* @params [in, out] out Pointer to buffer to encode into.
* When NULL or pointer to NULL, only length returned.
* @return 0 on error.
* @return Size of DER encoding in bytes on success.
*/
int wolfSSL_i2d_DHparams(const WOLFSSL_DH *dh, unsigned char **out)
{
#if (!defined(HAVE_FIPS) || FIPS_VERSION_GT(5,0)) && defined(WOLFSSL_DH_EXTRA)
/* Set length to an arbitrarily large value for wc_DhParamsToDer(). */
word32 len = (word32)-1;
int err = 0;
/* Validate parameters. */
if (dh == NULL) {
WOLFSSL_ERROR_MSG("Bad parameters");
err = 1;
}
/* Push external DH data into internal DH key if not set. */
if ((!err) && (!dh->inSet) && (SetDhInternal((WOLFSSL_DH*)dh) != 1)) {
WOLFSSL_ERROR_MSG("Bad DH set internal");
err = 1;
}
if (!err) {
int ret;
unsigned char* der = NULL;
/* Use *out when available otherwise NULL. */
if (out != NULL) {
der = *out;
}
/* Get length and/or encode. */
ret = wc_DhParamsToDer((DhKey*)dh->internal, der, &len);
/* Length of encoded data is returned on success. */
if (ret > 0) {
*out += len;
}
/* An error occurred unless only length returned. */
else if (ret != LENGTH_ONLY_E) {
err = 1;
}
}
/* Set return to 0 on error. */
if (err) {
len = 0;
}
return (int)len;
#else
word32 len;
int ret = 0;
int pSz;
int gSz;
WOLFSSL_ENTER("wolfSSL_i2d_DHparams");
/* Validate parameters. */
if (dh == NULL) {
WOLFSSL_ERROR_MSG("Bad parameters");
len = 0;
}
else {
/* SEQ <len>
* INT <len> [0x00] <prime>
* INT <len> [0x00] <generator>
* Integers have 0x00 prepended if the top bit of positive number is
* set.
*/
/* Get total length of prime including any prepended zeros. */
pSz = mp_unsigned_bin_size((mp_int*)dh->p->internal) +
mp_leading_bit((mp_int*)dh->p->internal);
/* Get total length of generator including any prepended zeros. */
gSz = mp_unsigned_bin_size((mp_int*)dh->g->internal) +
mp_leading_bit((mp_int*)dh->g->internal);
/* Calculate length of data in sequence. */
len = 1 + ASN_LEN_SIZE(pSz) + pSz +
1 + ASN_LEN_SIZE(gSz) + gSz;
/* Add in the length of the SEQUENCE. */
len += 1 + ASN_LEN_SIZE(len);
if ((out != NULL) && (*out != NULL)) {
/* Encode parameters. */
ret = StoreDHparams(*out, &len, (mp_int*)dh->p->internal,
(mp_int*)dh->g->internal);
if (ret != MP_OKAY) {
WOLFSSL_ERROR_MSG("StoreDHparams error");
len = 0;
}
else {
/* Move pointer on if encoded. */
*out += len;
}
}
}
return (int)len;
#endif
}
#endif /* OPENSSL_ALL */
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || \
((!defined(NO_BIO) || !defined(NO_FILESYSTEM)) && \
defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_MYSQL_COMPATIBLE))
/* Load the DER encoded DH parameters into DH key.
*
* @param [in, out] dh DH key to load parameters into.
* @param [in] derBuf Buffer holding DER encoded parameters data.
* @param [in] derSz Size of DER data in buffer in bytes.
*
* @return 1 on success.
* @return -1 when DH or derBuf is NULL,
* internal DH key in DH is NULL,
* derSz is 0 or less,
* error decoding DER data or
* setting external parameter values fails.
*/
int wolfSSL_DH_LoadDer(WOLFSSL_DH* dh, const unsigned char* derBuf, int derSz)
{
int ret = 1;
word32 idx = 0;
/* Validate parameters. */
if ((dh == NULL) || (dh->internal == NULL) || (derBuf == NULL) ||
(derSz <= 0)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
if ((ret == 1) && (wolfssl_dh_load_key(dh, derBuf, &idx,
(word32)derSz) != 0)) {
WOLFSSL_ERROR_MSG("DH key decode failed");
ret = -1;
}
return ret;
}
#endif
/*
* DH PEM APIs
*/
#if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \
|| defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA)
#if !defined(NO_BIO) || !defined(NO_FILESYSTEM)
/* Create a DH key by reading the PEM encoded data from the BIO.
*
* @param [in] bio BIO object to read from.
* @param [in, out] dh DH key to use. May be NULL.
* @param [in] pem PEM data to decode.
* @param [in] pemSz Size of PEM data in bytes.
* @param [in] memAlloced Indicates that pem was allocated and is to be
* freed after use.
* @return DH key on success.
* @return NULL on failure.
*/
static WOLFSSL_DH *wolfssl_dhparams_read_pem(WOLFSSL_DH **dh,
unsigned char* pem, int pemSz, int memAlloced)
{
WOLFSSL_DH* localDh = NULL;
DerBuffer *der = NULL;
int err = 0;
/* Convert PEM to DER assuming DH Parameter format. */
if ((!err) && (PemToDer(pem, pemSz, DH_PARAM_TYPE, &der, NULL, NULL,
NULL) < 0)) {
/* Convert PEM to DER assuming X9.42 DH Parameter format. */
if (PemToDer(pem, pemSz, X942_PARAM_TYPE, &der, NULL, NULL, NULL)
!= 0) {
err = 1;
}
/* If Success on X9.42 DH format, clear error from failed DH format */
else {
unsigned long error;
CLEAR_ASN_NO_PEM_HEADER_ERROR(error);
}
}
if (memAlloced) {
/* PEM data no longer needed. */
XFREE(pem, NULL, DYNAMIC_TYPE_PEM);
}
if (!err) {
/* Use the DH key passed in or allocate a new one. */
if (dh != NULL) {
localDh = *dh;
}
if (localDh == NULL) {
localDh = wolfSSL_DH_new();
if (localDh == NULL) {
err = 1;
}
}
}
/* Load the DER encoded DH parameters from buffer into a DH key. */
if ((!err) && (wolfSSL_DH_LoadDer(localDh, der->buffer, (int)der->length)
!= 1)) {
/* Free an allocated DH key. */
if ((dh == NULL) || (localDh != *dh)) {
wolfSSL_DH_free(localDh);
}
localDh = NULL;
err = 1;
}
/* Return the DH key on success. */
if ((!err) && (dh != NULL)) {
*dh = localDh;
}
/* Dispose of DER data. */
if (der != NULL) {
FreeDer(&der);
}
return localDh;
}
#endif /* !NO_BIO || !NO_FILESYSTEM */
#ifndef NO_BIO
/* Create a DH key by reading the PEM encoded data from the BIO.
*
* DH parameters are public data and are not expected to be encrypted.
*
* @param [in] bio BIO object to read from.
* @param [in, out] dh DH key to When pointer to
* NULL, a new DH key is created.
* @param [in] cb Password callback when PEM encrypted. Not used.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted. Not used.
* @return DH key on success.
* @return NULL on failure.
*/
WOLFSSL_DH *wolfSSL_PEM_read_bio_DHparams(WOLFSSL_BIO *bio, WOLFSSL_DH **dh,
wc_pem_password_cb *cb, void *pass)
{
WOLFSSL_DH* localDh = NULL;
int err = 0;
unsigned char* mem = NULL;
int size = 0;
int memAlloced = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DHparams");
(void)cb;
(void)pass;
/* Validate parameters. */
if (bio == NULL) {
WOLFSSL_ERROR_MSG("Bad Function Argument bio is NULL");
err = 1;
}
/* Get buffer of data from BIO or read data from the BIO into a new buffer.
*/
if ((!err) && (wolfssl_read_bio(bio, (char**)&mem, &size, &memAlloced)
!= 0)) {
err = 1;
}
if (!err) {
/* Create a DH key from the PEM - try two different headers. */
localDh = wolfssl_dhparams_read_pem(dh, mem, size, memAlloced);
}
return localDh;
}
#endif /* !NO_BIO */
#ifndef NO_FILESYSTEM
/* Read DH parameters from a file pointer into DH key.
*
* DH parameters are public data and are not expected to be encrypted.
*
* @param [in] fp File pointer to read DH parameter file from.
* @param [in, out] dh DH key with parameters if not NULL. When pointer to
* NULL, a new DH key is created.
* @param [in] cb Password callback when PEM encrypted. Not used.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted. Not used.
*
* @return NULL on failure.
* @return DH key with parameters set on success.
*/
WOLFSSL_DH* wolfSSL_PEM_read_DHparams(XFILE fp, WOLFSSL_DH** dh,
wc_pem_password_cb* cb, void* pass)
{
WOLFSSL_DH* localDh = NULL;
int err = 0;
unsigned char* mem = NULL;
int size = 0;
(void)cb;
(void)pass;
/* Read data from file pointer. */
if (wolfssl_read_file(fp, (char**)&mem, &size) != 0) {
err = 1;
}
if (!err) {
localDh = wolfssl_dhparams_read_pem(dh, mem, size, 1);
}
return localDh;
}
#endif /* !NO_FILESYSTEM */
#if defined(WOLFSSL_DH_EXTRA) && !defined(NO_FILESYSTEM)
/* Encoded parameter data in DH key as DER.
*
* @param [in, out] dh DH key object to encode.
* @param [out] out Buffer containing DER encoding.
* @param [in] heap Heap hint.
* @return <0 on error.
* @return Length of DER encoded DH parameters in bytes.
*/
static int wolfssl_dhparams_to_der(WOLFSSL_DH* dh, unsigned char** out,
void* heap)
{
int ret = -1;
int err = 0;
byte* der = NULL;
word32 derSz;
DhKey* key = NULL;
(void)heap;
/* Set internal parameters based on external parameters. */
if ((dh->inSet == 0) && (SetDhInternal(dh) != 1)) {
WOLFSSL_ERROR_MSG("Unable to set internal DH structure");
err = 1;
}
if (!err) {
/* Use wolfSSL API to get length of DER encode DH parameters. */
key = (DhKey*)dh->internal;
ret = wc_DhParamsToDer(key, NULL, &derSz);
if (ret != LENGTH_ONLY_E) {
WOLFSSL_ERROR_MSG("Failed to get size of DH params");
err = 1;
}
}
if (!err) {
/* Allocate memory for DER encoding. */
der = (byte*)XMALLOC(derSz, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (der == NULL) {
WOLFSSL_LEAVE("wolfssl_dhparams_to_der", MEMORY_E);
err = 1;
}
}
if (!err) {
/* Encode DH parameters into DER buffer. */
ret = wc_DhParamsToDer(key, der, &derSz);
if (ret < 0) {
WOLFSSL_ERROR_MSG("Failed to export DH params");
err = 1;
}
}
if (!err) {
*out = der;
der = NULL;
}
if (der != NULL) {
XFREE(der, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
/* Writes the DH parameters in PEM format from "dh" out to the file pointer
* passed in.
*
* @param [in] fp File pointer to write to.
* @param [in] dh DH key to write.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_PEM_write_DHparams(XFILE fp, WOLFSSL_DH* dh)
{
int ret = 1;
int derSz;
byte* derBuf = NULL;
void* heap = NULL;
WOLFSSL_ENTER("wolfSSL_PEM_write_DHparams");
/* Validate parameters. */
if ((fp == XBADFILE) || (dh == NULL)) {
WOLFSSL_ERROR_MSG("Bad Function Arguments");
ret = 0;
}
if (ret == 1) {
DhKey* key = (DhKey*)dh->internal;
if (key)
heap = key->heap;
if ((derSz = wolfssl_dhparams_to_der(dh, &derBuf, heap)) < 0) {
WOLFSSL_ERROR_MSG("DER encoding failed");
ret = 0;
}
if (derBuf == NULL) {
WOLFSSL_ERROR_MSG("DER encoding failed to get buffer");
ret = 0;
}
}
if ((ret == 1) && (der_write_to_file_as_pem(derBuf, derSz, fp,
DH_PARAM_TYPE, NULL) != WOLFSSL_SUCCESS)) {
ret = 0;
}
/* Dispose of DER buffer. */
XFREE(derBuf, heap, DYNAMIC_TYPE_TMP_BUFFER);
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", ret);
return ret;
}
#endif /* WOLFSSL_DH_EXTRA && !NO_FILESYSTEM */
#endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE ||
* OPENSSL_EXTRA */
/*
* DH get/set APIs
*/
#ifdef OPENSSL_EXTRA
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) \
|| defined(WOLFSSL_OPENSSH) || defined(OPENSSL_EXTRA)
/* Set the members of DhKey into WOLFSSL_DH
* Specify elements to set via the 2nd parameter
*
* @param [in, out] dh DH key to synchronize.
* @param [in] elm Elements to synchronize.
* @return 1 on success.
* @return -1 on failure.
*/
int SetDhExternal_ex(WOLFSSL_DH *dh, int elm)
{
int ret = 1;
DhKey *key = NULL;
WOLFSSL_ENTER("SetDhExternal_ex");
/* Validate parameters. */
if ((dh == NULL) || (dh->internal == NULL)) {
WOLFSSL_ERROR_MSG("dh key NULL error");
ret = -1;
}
if (ret == 1) {
/* Get the wolfSSL DH key. */
key = (DhKey*)dh->internal;
}
if ((ret == 1) && (elm & ELEMENT_P)) {
/* Set the prime. */
if (wolfssl_bn_set_value(&dh->p, &key->p) != 1) {
WOLFSSL_ERROR_MSG("dh param p error");
ret = -1;
}
}
if ((ret == 1) && (elm & ELEMENT_G)) {
/* Set the generator. */
if (wolfssl_bn_set_value(&dh->g, &key->g) != 1) {
WOLFSSL_ERROR_MSG("dh param g error");
ret = -1;
}
}
if ((ret == 1) && (elm & ELEMENT_Q)) {
/* Set the order. */
if (wolfssl_bn_set_value(&dh->q, &key->q) != 1) {
WOLFSSL_ERROR_MSG("dh param q error");
ret = -1;
}
}
#ifdef WOLFSSL_DH_EXTRA
if ((ret == 1) && (elm & ELEMENT_PRV)) {
/* Set the private key. */
if (wolfssl_bn_set_value(&dh->priv_key, &key->priv) != 1) {
WOLFSSL_ERROR_MSG("No DH Private Key");
ret = -1;
}
}
if ((ret == 1) && (elm & ELEMENT_PUB)) {
/* Set the public key. */
if (wolfssl_bn_set_value(&dh->pub_key, &key->pub) != 1) {
WOLFSSL_ERROR_MSG("No DH Public Key");
ret = -1;
}
}
#endif /* WOLFSSL_DH_EXTRA */
if (ret == 1) {
/* On success record that the external values have been set. */
dh->exSet = 1;
}
return ret;
}
/* Set the members of DhKey into WOLFSSL_DH
* DhKey was populated from wc_DhKeyDecode
* p, g, pub_key and priv_key are set.
*
* @param [in, out] dh DH key to synchronize.
* @return 1 on success.
* @return -1 on failure.
*/
int SetDhExternal(WOLFSSL_DH *dh)
{
/* Assuming Q not required when using this API. */
int elements = ELEMENT_P | ELEMENT_G | ELEMENT_PUB | ELEMENT_PRV;
WOLFSSL_ENTER("SetDhExternal");
return SetDhExternal_ex(dh, elements);
}
#endif /* WOLFSSL_QT || OPENSSL_ALL || WOLFSSL_OPENSSH || OPENSSL_EXTRA */
/* Set the internal/wolfSSL DH key with data from the external parts.
*
* @param [in, out] dh DH key to synchronize.
* @return 1 on success.
* @return -1 on failure.
*/
int SetDhInternal(WOLFSSL_DH* dh)
{
int ret = 1;
DhKey *key = NULL;
WOLFSSL_ENTER("SetDhInternal");
/* Validate parameters. */
if ((dh == NULL) || (dh->p == NULL) || (dh->g == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
if (ret == 1) {
/* Get the wolfSSL DH key. */
key = (DhKey*)dh->internal;
/* Clear out key and initialize. */
wc_FreeDhKey(key);
if (wc_InitDhKey(key) != 0) {
ret = -1;
}
}
if (ret == 1) {
/* Transfer prime. */
if (wolfssl_bn_get_value(dh->p, &key->p) != 1) {
ret = -1;
}
}
if (ret == 1) {
/* Transfer generator. */
if (wolfssl_bn_get_value(dh->g, &key->g) != 1) {
ret = -1;
}
}
#ifdef HAVE_FFDHE_Q
/* Transfer order if available. */
if ((ret == 1) && (dh->q != NULL)) {
if (wolfssl_bn_get_value(dh->q, &key->q) != 1) {
ret = -1;
}
}
#endif
#ifdef WOLFSSL_DH_EXTRA
/* Transfer private key if available. */
if ((ret == 1) && (dh->priv_key != NULL) &&
(!wolfSSL_BN_is_zero(dh->priv_key))) {
if (wolfssl_bn_get_value(dh->priv_key, &key->priv) != 1) {
ret = -1;
}
}
/* Transfer public key if available. */
if ((ret == 1) && (dh->pub_key != NULL) &&
(!wolfSSL_BN_is_zero(dh->pub_key))) {
if (wolfssl_bn_get_value(dh->pub_key, &key->pub) != 1) {
ret = -1;
}
}
#endif /* WOLFSSL_DH_EXTRA */
if (ret == 1) {
/* On success record that the internal values have been set. */
dh->inSet = 1;
}
return ret;
}
/* Get the size, in bytes, of the DH key.
*
* Return code compliant with OpenSSL.
*
* @param [in] dh DH key.
* @return -1 on error.
* @return Size of DH key in bytes on success.
*/
int wolfSSL_DH_size(WOLFSSL_DH* dh)
{
int ret = -1;
WOLFSSL_ENTER("wolfSSL_DH_size");
/* Validate parameter. */
if (dh != NULL) {
/* Size of key is size of prime in bytes. */
ret = wolfSSL_BN_num_bytes(dh->p);
}
return ret;
}
/**
* Return parameters p, q and/or g of the DH key.
*
* @param [in] dh DH key to retrieve parameters from.
* @param [out] p Pointer to return prime in. May be NULL.
* @param [out] q Pointer to return order in. May be NULL.
* @param [out] g Pointer to return generator in. May be NULL.
*/
void wolfSSL_DH_get0_pqg(const WOLFSSL_DH *dh, const WOLFSSL_BIGNUM **p,
const WOLFSSL_BIGNUM **q, const WOLFSSL_BIGNUM **g)
{
WOLFSSL_ENTER("wolfSSL_DH_get0_pqg");
if (dh != NULL) {
/* Return prime if required. */
if (p != NULL) {
*p = dh->p;
}
/* Return order if required. */
if (q != NULL) {
*q = dh->q;
}
/* Return generator if required. */
if (g != NULL) {
*g = dh->g;
}
}
}
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS) && !defined(WOLFSSL_DH_EXTRA)) \
|| (defined(HAVE_FIPS_VERSION) && FIPS_VERSION_GT(2,0))
#if defined(OPENSSL_ALL) || \
defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L
/* Sets the parameters p, g and optionally q into the DH key.
*
* Ownership of p, q and g get taken over by "dh" on success and should be
* free'd with a call to wolfSSL_DH_free -- not individually.
*
* @param [in, out] dh DH key to set.
* @param [in] p Prime value to set. May be NULL when value already
* present.
* @param [in] q Order value to set. May be NULL.
* @param [in] g Generator value to set. May be NULL when value already
* present.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_DH_set0_pqg(WOLFSSL_DH *dh, WOLFSSL_BIGNUM *p,
WOLFSSL_BIGNUM *q, WOLFSSL_BIGNUM *g)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_DH_set0_pqg");
/* Validate parameters - q is optional. */
if (dh == NULL) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
/* p can be NULL if we already have one set. */
if ((ret == 1) && (p == NULL) && (dh->p == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
/* g can be NULL if we already have one set. */
if ((ret == 1) && (g == NULL) && (dh->g == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
if (ret == 1) {
/* Invalidate internal key. */
dh->inSet = 0;
/* Free external representation of parameters and set with those passed
* in. */
if (p != NULL) {
wolfSSL_BN_free(dh->p);
dh->p = p;
}
if (q != NULL) {
wolfSSL_BN_free(dh->q);
dh->q = q;
}
if (g != NULL) {
wolfSSL_BN_free(dh->g);
dh->g = g;
}
/* External DH key parameters were set. */
dh->exSet = 1;
/* Set internal/wolfSSL DH key as well. */
if (SetDhInternal(dh) != 1) {
WOLFSSL_ERROR_MSG("Unable to set internal DH key");
/* Don't keep parameters on failure. */
dh->p = NULL;
dh->q = NULL;
dh->g = NULL;
/* Internal and external DH key not set. */
dh->inSet = 0;
dh->exSet = 0;
ret = 0;
}
}
return ret;
}
/* Set the length of the DH private key in bits.
*
* Length field is checked at generation.
*
* @param [in, out] dh DH key to set.
* @param [in] len Length of DH private key in bytes.
* @return 0 on failure.
* @return 1 on success.
*/
int wolfSSL_DH_set_length(WOLFSSL_DH *dh, long len)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_DH_set_length");
/* Validate parameter. */
if (dh == NULL) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
else {
/* Store length. */
dh->length = (int)len;
}
return ret;
}
#endif /* OPENSSL_ALL || (v1.1.0 or later) */
#endif
/* Get the public and private keys requested.
*
* @param [in] dh DH key to get keys from.
* @param [out] pub_key Pointer to return public key in. May be NULL.
* @param [out] priv_key Pointer to return private key in. May be NULL.
*/
void wolfSSL_DH_get0_key(const WOLFSSL_DH *dh, const WOLFSSL_BIGNUM **pub_key,
const WOLFSSL_BIGNUM **priv_key)
{
WOLFSSL_ENTER("wolfSSL_DH_get0_key");
/* Get only when valid DH passed in. */
if (dh != NULL) {
/* Return public key if required and available. */
if ((pub_key != NULL) && (dh->pub_key != NULL)) {
*pub_key = dh->pub_key;
}
/* Return private key if required and available. */
if ((priv_key != NULL) && (dh->priv_key != NULL)) {
*priv_key = dh->priv_key;
}
}
}
/* Set the public and/or private key.
*
* @param [in, out] dh DH key to have keys set into.
* @param [in] pub_key Public key to set. May be NULL.
* @param [in] priv_key Private key to set. May be NULL.
* @return 0 on failure.
* @return 1 on success.
*/
int wolfSSL_DH_set0_key(WOLFSSL_DH *dh, WOLFSSL_BIGNUM *pub_key,
WOLFSSL_BIGNUM *priv_key)
{
int ret = 1;
#ifdef WOLFSSL_DH_EXTRA
DhKey *key = NULL;
#endif
WOLFSSL_ENTER("wolfSSL_DH_set0_key");
/* Validate parameters. */
if (dh == NULL) {
ret = 0;
}
#ifdef WOLFSSL_DH_EXTRA
else {
key = (DhKey*)dh->internal;
}
#endif
/* Replace public key when one passed in. */
if ((ret == 1) && (pub_key != NULL)) {
wolfSSL_BN_free(dh->pub_key);
dh->pub_key = pub_key;
#ifdef WOLFSSL_DH_EXTRA
if (wolfssl_bn_get_value(dh->pub_key, &key->pub) != 1) {
ret = 0;
}
#endif
}
/* Replace private key when one passed in. */
if ((ret == 1) && (priv_key != NULL)) {
wolfSSL_BN_clear_free(dh->priv_key);
dh->priv_key = priv_key;
#ifdef WOLFSSL_DH_EXTRA
if (wolfssl_bn_get_value(dh->priv_key, &key->priv) != 1) {
ret = 0;
}
#endif
}
return ret;
}
#endif /* OPENSSL_EXTRA */
/*
* DH check APIs
*/
#ifdef OPENSSL_EXTRA
#ifndef NO_CERTS
#ifdef OPENSSL_ALL
/* Check whether BN number is a prime.
*
* @param [in] n Number to check.
* @param [out] isPrime MP_YES when prime and MP_NO when not.
* @return 1 on success.
* @return 0 on error.
*/
static int wolfssl_dh_check_prime(WOLFSSL_BIGNUM* n, int* isPrime)
{
int ret = 1;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG tmpRng[1];
#endif
WC_RNG* rng;
int localRng;
/* Make an RNG with tmpRng or get global. */
rng = wolfssl_make_rng(tmpRng, &localRng);
if (rng == NULL) {
ret = 0;
}
if (ret == 1) {
mp_int* prime = (mp_int*)n->internal;
if (mp_prime_is_prime_ex(prime, 8, isPrime, rng) != 0) {
ret = 0;
}
/* Free local random number generator if created. */
if (localRng) {
wc_FreeRng(rng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
}
}
return ret;
}
/* Checks the Diffie-Hellman parameters.
*
* Checks that the generator and prime are available.
* Checks that the prime is prime.
* OpenSSL expects codes to be non-NULL.
*
* @param [in] dh DH key to check.
* @param [out] codes Codes of checks that failed.
* @return 1 on success.
* @return 0 when DH is NULL, there were errors or failed to create a random
* number generator.
*/
int wolfSSL_DH_check(const WOLFSSL_DH *dh, int *codes)
{
int ret = 1;
int errors = 0;
WOLFSSL_ENTER("wolfSSL_DH_check");
/* Validate parameters. */
if (dh == NULL) {
ret = 0;
}
/* Check generator available. */
if ((ret == 1) && ((dh->g == NULL) || (dh->g->internal == NULL))) {
errors |= DH_NOT_SUITABLE_GENERATOR;
}
if (ret == 1) {
/* Check prime available. */
if ((dh->p == NULL) || (dh->p->internal == NULL)) {
errors |= DH_CHECK_P_NOT_PRIME;
}
else {
/* Test if dh->p is prime. */
int isPrime = MP_NO;
ret = wolfssl_dh_check_prime(dh->p, &isPrime);
/* Set error code if parameter p is not prime. */
if ((ret == 1) && (isPrime != MP_YES)) {
errors |= DH_CHECK_P_NOT_PRIME;
}
}
}
/* Return errors when user wants exact issues. */
if (codes != NULL) {
*codes = errors;
}
else if (errors) {
ret = 0;
}
return ret;
}
#endif /* OPENSSL_ALL */
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
/*
* DH generate APIs
*/
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \
(defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \
defined(WOLFSSL_OPENSSH) || defined(HAVE_SBLIM_SFCB)))
#if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_SELFTEST)
/* Generate DH parameters.
*
* @param [in] prime_len Length of prime in bits.
* @param [in] generator Generator value to use.
* @param [in] callback Called with progress information. Unused.
* @param [in] cb_arg User callback argument. Unused.
* @return NULL on failure.
* @return DH key on success.
*/
WOLFSSL_DH *wolfSSL_DH_generate_parameters(int prime_len, int generator,
void (*callback) (int, int, void *), void *cb_arg)
{
WOLFSSL_DH* dh = NULL;
WOLFSSL_ENTER("wolfSSL_DH_generate_parameters");
/* Not supported by wolfSSl APIs. */
(void)callback;
(void)cb_arg;
/* Create an empty DH key. */
if ((dh = wolfSSL_DH_new()) == NULL) {
WOLFSSL_ERROR_MSG("wolfSSL_DH_new error");
}
/* Generate parameters into DH key. */
else if (wolfSSL_DH_generate_parameters_ex(dh, prime_len, generator, NULL)
!= 1) {
WOLFSSL_ERROR_MSG("wolfSSL_DH_generate_parameters_ex error");
wolfSSL_DH_free(dh);
dh = NULL;
}
return dh;
}
/* Generate DH parameters.
*
* @param [in] dh DH key to generate parameters into.
* @param [in] prime_len Length of prime in bits.
* @param [in] generator Generator value to use.
* @param [in] callback Called with progress information. Unused.
* @param [in] cb_arg User callback argument. Unused.
* @return 0 on failure.
* @return 1 on success.
*/
int wolfSSL_DH_generate_parameters_ex(WOLFSSL_DH* dh, int prime_len,
int generator, void (*callback) (int, int, void *))
{
int ret = 1;
DhKey* key = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG tmpRng[1];
#endif
WC_RNG* rng = NULL;
int localRng = 0;
WOLFSSL_ENTER("wolfSSL_DH_generate_parameters_ex");
/* Not supported by wolfSSL APIs. */
(void)callback;
(void)generator;
/* Validate parameters. */
if (dh == NULL) {
WOLFSSL_ERROR_MSG("Bad parameter");
ret = 0;
}
if (ret == 1) {
/* Make an RNG with tmpRng or get global. */
rng = wolfssl_make_rng(tmpRng, &localRng);
if (rng == NULL) {
WOLFSSL_ERROR_MSG("No RNG to use");
ret = 0;
}
}
if (ret == 1) {
/* Get internal/wolfSSL DH key. */
key = (DhKey*)dh->internal;
/* Clear out data from internal DH key. */
wc_FreeDhKey(key);
/* Re-initialize internal DH key. */
if (wc_InitDhKey(key) != 0) {
ret = 0;
}
}
if (ret == 1) {
/* Generate parameters into internal DH key. */
if (wc_DhGenerateParams(rng, prime_len, key) != 0) {
WOLFSSL_ERROR_MSG("wc_DhGenerateParams error");
ret = 0;
}
}
/* Free local random number generator if created. */
if (localRng) {
wc_FreeRng(rng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
}
if (ret == 1) {
/* Internal parameters set by generation. */
dh->inSet = 1;
WOLFSSL_MSG("wolfSSL does not support using a custom generator.");
/* Synchronize the external to the internal parameters. */
if (SetDhExternal(dh) != 1) {
WOLFSSL_ERROR_MSG("SetDhExternal error");
ret = 0;
}
}
return ret;
}
#endif /* WOLFSSL_KEY_GEN && !HAVE_SELFTEST */
#endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (HAVE_STUNNEL || WOLFSSL_NGINX ||
* HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH ||
* HAVE_SBLIM_SFCB)) */
#ifdef OPENSSL_EXTRA
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS) && !defined(WOLFSSL_DH_EXTRA)) \
|| (defined(HAVE_FIPS_VERSION) && FIPS_VERSION_GT(2,0))
/* Generate a public/private key pair base on parameters.
*
* @param [in, out] dh DH key to generate keys into.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_DH_generate_key(WOLFSSL_DH* dh)
{
int ret = 1;
word32 pubSz = 0;
word32 privSz = 0;
int localRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG tmpRng[1];
#endif
unsigned char* pub = NULL;
unsigned char* priv = NULL;
WOLFSSL_ENTER("wolfSSL_DH_generate_key");
/* Validate parameters. */
if ((dh == NULL) || (dh->p == NULL) || (dh->g == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = 0;
}
/* Synchronize the external and internal parameters. */
if ((ret == 1) && (dh->inSet == 0) && (SetDhInternal(dh) != 1)) {
WOLFSSL_ERROR_MSG("Bad DH set internal");
ret = 0;
}
if (ret == 1) {
/* Make a new RNG or use global. */
rng = wolfssl_make_rng(tmpRng, &localRng);
/* Check we have a random number generator. */
if (rng == NULL) {
ret = 0;
}
}
if (ret == 1) {
/* Get the size of the prime in bytes. */
pubSz = (word32)wolfSSL_BN_num_bytes(dh->p);
if (pubSz == 0) {
WOLFSSL_ERROR_MSG("Prime parameter invalid");
ret = 0;
}
}
if (ret == 1) {
/* Private key size can be as much as the size of the prime. */
if (dh->length) {
privSz = (word32)(dh->length / 8); /* to bytes */
}
else {
privSz = pubSz;
}
/* Allocate public and private key arrays. */
pub = (unsigned char*)XMALLOC(pubSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
priv = (unsigned char*)XMALLOC(privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
if (pub == NULL || priv == NULL) {
WOLFSSL_ERROR_MSG("Unable to malloc memory");
ret = 0;
}
}
if (ret == 1) {
/* Dispose of old public and private keys. */
wolfSSL_BN_free(dh->pub_key);
wolfSSL_BN_free(dh->priv_key);
/* Allocate new public and private keys. */
dh->pub_key = wolfSSL_BN_new();
dh->priv_key = wolfSSL_BN_new();
if (dh->pub_key == NULL) {
WOLFSSL_ERROR_MSG("Bad DH new pub");
ret = 0;
}
if (dh->priv_key == NULL) {
WOLFSSL_ERROR_MSG("Bad DH new priv");
ret = 0;
}
}
PRIVATE_KEY_UNLOCK();
/* Generate public and private keys into arrays. */
if ((ret == 1) && (wc_DhGenerateKeyPair((DhKey*)dh->internal, rng, priv,
&privSz, pub, &pubSz) < 0)) {
WOLFSSL_ERROR_MSG("Bad wc_DhGenerateKeyPair");
ret = 0;
}
/* Set public key from array. */
if ((ret == 1) && (wolfSSL_BN_bin2bn(pub, (int)pubSz, dh->pub_key) ==
NULL)) {
WOLFSSL_ERROR_MSG("Bad DH bn2bin error pub");
ret = 0;
}
/* Set private key from array. */
if ((ret == 1) && (wolfSSL_BN_bin2bn(priv, (int)privSz, dh->priv_key) ==
NULL)) {
WOLFSSL_ERROR_MSG("Bad DH bn2bin error priv");
ret = 0;
}
PRIVATE_KEY_LOCK();
if (localRng) {
/* Free an initialized local random number generator. */
wc_FreeRng(rng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
/* Dispose of allocated data. */
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
return ret;
}
/* Compute the shared key from the private key and peer's public key.
*
* Return code compliant with OpenSSL.
* OpenSSL returns 0 when number of bits in p are smaller than minimum
* supported.
*
* @param [out] key Buffer to place shared key.
* @param [in] otherPub Peer's public key.
* @param [in] dh DH key containing private key.
* @return -1 on error.
* @return Size of shared secret in bytes on success.
*/
int wolfSSL_DH_compute_key(unsigned char* key, const WOLFSSL_BIGNUM* otherPub,
WOLFSSL_DH* dh)
{
int ret = 0;
word32 keySz = 0;
int pubSz = MAX_DHKEY_SZ;
int privSz = MAX_DHKEY_SZ;
int sz;
#ifdef WOLFSSL_SMALL_STACK
unsigned char* pub = NULL;
unsigned char* priv = NULL;
#else
unsigned char pub [MAX_DHKEY_SZ];
unsigned char priv[MAX_DHKEY_SZ];
#endif
WOLFSSL_ENTER("wolfSSL_DH_compute_key");
/* Validate parameters. */
if ((dh == NULL) || (dh->priv_key == NULL) || (otherPub == NULL)) {
WOLFSSL_ERROR_MSG("Bad function arguments");
ret = -1;
}
/* Get the maximum size of computed DH key. */
if ((ret == 0) && ((keySz = (word32)DH_size(dh)) == 0)) {
WOLFSSL_ERROR_MSG("Bad DH_size");
ret = -1;
}
if (ret == 0) {
/* Validate the size of the private key. */
sz = wolfSSL_BN_num_bytes(dh->priv_key);
if (sz > (int)privSz) {
WOLFSSL_ERROR_MSG("Bad priv internal size");
ret = -1;
}
}
if (ret == 0) {
#ifdef WOLFSSL_SMALL_STACK
/* Keep real private key size to minimize amount allocated. */
privSz = sz;
#endif
/* Validate the size of the public key. */
sz = wolfSSL_BN_num_bytes(otherPub);
if (sz > pubSz) {
WOLFSSL_ERROR_MSG("Bad otherPub size");
ret = -1;
}
}
if (ret == 0) {
#ifdef WOLFSSL_SMALL_STACK
/* Allocate memory for the public key array. */
pub = (unsigned char*)XMALLOC((size_t)sz, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pub == NULL)
ret = -1;
}
if (ret == 0) {
/* Allocate memory for the private key array. */
priv = (unsigned char*)XMALLOC((size_t)privSz, NULL,
DYNAMIC_TYPE_PRIVATE_KEY);
if (priv == NULL) {
ret = -1;
}
}
if (ret == 0) {
#endif
/* Get the private key into the array. */
privSz = wolfSSL_BN_bn2bin(dh->priv_key, priv);
if (privSz <= 0) {
ret = -1;
}
}
if (ret == 0) {
/* Get the public key into the array. */
pubSz = wolfSSL_BN_bn2bin(otherPub, pub);
if (privSz <= 0) {
ret = -1;
}
}
/* Synchronize the external into the internal parameters. */
if ((ret == 0) && ((dh->inSet == 0) && (SetDhInternal(dh) != 1))) {
WOLFSSL_ERROR_MSG("Bad DH set internal");
ret = -1;
}
PRIVATE_KEY_UNLOCK();
/* Calculate shared secret from private and public keys. */
if ((ret == 0) && (wc_DhAgree((DhKey*)dh->internal, key, &keySz, priv,
(word32)privSz, pub, (word32)pubSz) < 0)) {
WOLFSSL_ERROR_MSG("wc_DhAgree failed");
ret = -1;
}
if (ret == 0) {
/* Return actual length. */
ret = (int)keySz;
}
PRIVATE_KEY_LOCK();
#ifdef WOLFSSL_SMALL_STACK
if (priv != NULL)
#endif
{
/* Zeroize sensitive data. */
ForceZero(priv, (word32)privSz);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
#endif
WOLFSSL_LEAVE("wolfSSL_DH_compute_key", ret);
return ret;
}
#endif /* !HAVE_FIPS || (HAVE_FIPS && !WOLFSSL_DH_EXTRA) ||
* HAVE_FIPS_VERSION > 2 */
#endif /* OPENSSL_EXTRA */
#endif /* NO_DH */
/*******************************************************************************
* END OF DH API
******************************************************************************/
/*******************************************************************************
* START OF EC API
******************************************************************************/
#ifdef HAVE_ECC
#if defined(OPENSSL_EXTRA)
/* Start EC_curve */
/* Get the NIST name for the numeric ID.
*
* @param [in] nid Numeric ID of an EC curve.
* @return String representing NIST name of EC curve on success.
* @return NULL on error.
*/
const char* wolfSSL_EC_curve_nid2nist(int nid)
{
const char* name = NULL;
const WOLF_EC_NIST_NAME* nist_name;
/* Attempt to find the curve info matching the NID passed in. */
for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) {
if (nist_name->nid == nid) {
/* NID found - return name. */
name = nist_name->name;
break;
}
}
return name;
}
/* Get the numeric ID for the NIST name.
*
* @param [in] name NIST name of EC curve.
* @return NID matching NIST name on success.
* @return 0 on error.
*/
int wolfSSL_EC_curve_nist2nid(const char* name)
{
int nid = 0;
const WOLF_EC_NIST_NAME* nist_name;
/* Attempt to find the curve info matching the NIST name passed in. */
for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) {
if (XSTRCMP(nist_name->name, name) == 0) {
/* Name found - return NID. */
nid = nist_name->nid;
break;
}
}
return nid;
}
#endif /* OPENSSL_EXTRA */
/* End EC_curve */
/* Start EC_METHOD */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Get the EC method of the EC group object.
*
* wolfSSL doesn't use method tables. Implementation used is dependent upon
* the NID.
*
* @param [in] group EC group object.
* @return EC method.
*/
const WOLFSSL_EC_METHOD* wolfSSL_EC_GROUP_method_of(
const WOLFSSL_EC_GROUP *group)
{
/* No method table used so just return the same object. */
return group;
}
/* Get field type for method.
*
* Only prime fields are supported.
*
* @param [in] meth EC method.
* @return X9.63 prime field NID on success.
* @return 0 on error.
*/
int wolfSSL_EC_METHOD_get_field_type(const WOLFSSL_EC_METHOD *meth)
{
int nid = 0;
if (meth != NULL) {
/* Only field type supported by code base. */
nid = NID_X9_62_prime_field;
}
return nid;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
/* End EC_METHOD */
/* Start EC_GROUP */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Converts ECC curve enum values in ecc_curve_id to the associated OpenSSL NID
* value.
*
* @param [in] n ECC curve id.
* @return ECC curve NID (OpenSSL compatible value).
*/
int EccEnumToNID(int n)
{
WOLFSSL_ENTER("EccEnumToNID");
switch(n) {
case ECC_SECP192R1:
return NID_X9_62_prime192v1;
case ECC_PRIME192V2:
return NID_X9_62_prime192v2;
case ECC_PRIME192V3:
return NID_X9_62_prime192v3;
case ECC_PRIME239V1:
return NID_X9_62_prime239v1;
case ECC_PRIME239V2:
return NID_X9_62_prime239v2;
case ECC_PRIME239V3:
return NID_X9_62_prime239v3;
case ECC_SECP256R1:
return NID_X9_62_prime256v1;
case ECC_SECP112R1:
return NID_secp112r1;
case ECC_SECP112R2:
return NID_secp112r2;
case ECC_SECP128R1:
return NID_secp128r1;
case ECC_SECP128R2:
return NID_secp128r2;
case ECC_SECP160R1:
return NID_secp160r1;
case ECC_SECP160R2:
return NID_secp160r2;
case ECC_SECP224R1:
return NID_secp224r1;
case ECC_SECP384R1:
return NID_secp384r1;
case ECC_SECP521R1:
return NID_secp521r1;
case ECC_SECP160K1:
return NID_secp160k1;
case ECC_SECP192K1:
return NID_secp192k1;
case ECC_SECP224K1:
return NID_secp224k1;
case ECC_SECP256K1:
return NID_secp256k1;
case ECC_BRAINPOOLP160R1:
return NID_brainpoolP160r1;
case ECC_BRAINPOOLP192R1:
return NID_brainpoolP192r1;
case ECC_BRAINPOOLP224R1:
return NID_brainpoolP224r1;
case ECC_BRAINPOOLP256R1:
return NID_brainpoolP256r1;
case ECC_BRAINPOOLP320R1:
return NID_brainpoolP320r1;
case ECC_BRAINPOOLP384R1:
return NID_brainpoolP384r1;
case ECC_BRAINPOOLP512R1:
return NID_brainpoolP512r1;
#ifdef WOLFSSL_SM2
case ECC_SM2P256V1:
return NID_sm2;
#endif
default:
WOLFSSL_MSG("NID not found");
return -1;
}
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Converts OpenSSL NID of EC curve to the enum value in ecc_curve_id
*
* Used by ecc_sets[].
*
* @param [in] n OpenSSL NID of EC curve.
* @return wolfCrypt EC curve id.
* @return -1 on error.
*/
int NIDToEccEnum(int nid)
{
/* -1 on error. */
int id = -1;
WOLFSSL_ENTER("NIDToEccEnum");
switch (nid) {
case NID_X9_62_prime192v1:
id = ECC_SECP192R1;
break;
case NID_X9_62_prime192v2:
id = ECC_PRIME192V2;
break;
case NID_X9_62_prime192v3:
id = ECC_PRIME192V3;
break;
case NID_X9_62_prime239v1:
id = ECC_PRIME239V1;
break;
case NID_X9_62_prime239v2:
id = ECC_PRIME239V2;
break;
case NID_X9_62_prime239v3:
id = ECC_PRIME239V3;
break;
case NID_X9_62_prime256v1:
id = ECC_SECP256R1;
break;
case NID_secp112r1:
id = ECC_SECP112R1;
break;
case NID_secp112r2:
id = ECC_SECP112R2;
break;
case NID_secp128r1:
id = ECC_SECP128R1;
break;
case NID_secp128r2:
id = ECC_SECP128R2;
break;
case NID_secp160r1:
id = ECC_SECP160R1;
break;
case NID_secp160r2:
id = ECC_SECP160R2;
break;
case NID_secp224r1:
id = ECC_SECP224R1;
break;
case NID_secp384r1:
id = ECC_SECP384R1;
break;
case NID_secp521r1:
id = ECC_SECP521R1;
break;
case NID_secp160k1:
id = ECC_SECP160K1;
break;
case NID_secp192k1:
id = ECC_SECP192K1;
break;
case NID_secp224k1:
id = ECC_SECP224K1;
break;
case NID_secp256k1:
id = ECC_SECP256K1;
break;
case NID_brainpoolP160r1:
id = ECC_BRAINPOOLP160R1;
break;
case NID_brainpoolP192r1:
id = ECC_BRAINPOOLP192R1;
break;
case NID_brainpoolP224r1:
id = ECC_BRAINPOOLP224R1;
break;
case NID_brainpoolP256r1:
id = ECC_BRAINPOOLP256R1;
break;
case NID_brainpoolP320r1:
id = ECC_BRAINPOOLP320R1;
break;
case NID_brainpoolP384r1:
id = ECC_BRAINPOOLP384R1;
break;
case NID_brainpoolP512r1:
id = ECC_BRAINPOOLP512R1;
break;
default:
WOLFSSL_MSG("NID not found");
}
return id;
}
/* Set the fields of the EC group based on numeric ID.
*
* @param [in, out] group EC group.
* @param [in] nid Numeric ID of an EC curve.
*/
static void ec_group_set_nid(WOLFSSL_EC_GROUP* group, int nid)
{
int eccEnum;
int realNid;
/* Convert ecc_curve_id enum to NID. */
if ((realNid = EccEnumToNID(nid)) != -1) {
/* ecc_curve_id enum passed in - have real NID value set. */
eccEnum = nid;
}
else {
/* NID passed in is OpenSSL type. */
realNid = nid;
/* Convert NID to ecc_curve_id enum. */
eccEnum = NIDToEccEnum(nid);
}
/* Set the numeric ID of the curve */
group->curve_nid = realNid;
/* Initialize index to -1 (i.e. wolfCrypt doesn't support curve). */
group->curve_idx = -1;
/* Find index and OID sum for curve if wolfCrypt supports it. */
if (eccEnum != -1) {
int i;
/* Find id and set the internal curve idx and OID sum. */
for (i = 0; ecc_sets[i].size != 0; i++) {
if (ecc_sets[i].id == eccEnum) {
/* Found id in wolfCrypt supported EC curves. */
group->curve_idx = i;
group->curve_oid = (int)ecc_sets[i].oidSum;
break;
}
}
}
}
/* Create a new EC group with the numeric ID for an EC curve.
*
* @param [in] nid Numeric ID of an EC curve.
* @return New, allocated EC group on success.
* @return NULL on error.
*/
WOLFSSL_EC_GROUP* wolfSSL_EC_GROUP_new_by_curve_name(int nid)
{
int err = 0;
WOLFSSL_EC_GROUP* group;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_new_by_curve_name");
/* Allocate EC group. */
group = (WOLFSSL_EC_GROUP*)XMALLOC(sizeof(WOLFSSL_EC_GROUP), NULL,
DYNAMIC_TYPE_ECC);
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_new_by_curve_name malloc failure");
err = 1;
}
if (!err) {
/* Reset all fields. */
XMEMSET(group, 0, sizeof(WOLFSSL_EC_GROUP));
/* Set the fields of group based on the numeric ID. */
ec_group_set_nid(group, nid);
}
return group;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Dispose of the EC group.
*
* Cannot use group after this call.
*
* @param [in] group EC group to free.
*/
void wolfSSL_EC_GROUP_free(WOLFSSL_EC_GROUP *group)
{
WOLFSSL_ENTER("wolfSSL_EC_GROUP_free");
/* Dispose of EC group. */
XFREE(group, NULL, DYNAMIC_TYPE_ECC);
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
/* Creates an EC group from the DER encoding.
*
* Only named curves supported.
*
* @param [out] group Reference to EC group object.
* @param [in] in Buffer holding DER encoding of curve.
* @param [in] inSz Length of data in buffer.
* @return EC group on success.
* @return NULL on error.
*/
static WOLFSSL_EC_GROUP* wolfssl_ec_group_d2i(WOLFSSL_EC_GROUP** group,
const unsigned char* in, long inSz)
{
int err = 0;
WOLFSSL_EC_GROUP* ret = NULL;
word32 idx = 0;
word32 oid = 0;
int id = 0;
/* Use the group passed in. */
if ((group != NULL) && (*group != NULL)) {
ret = *group;
}
/* Only support named curves. */
if (in[0] != ASN_OBJECT_ID) {
WOLFSSL_ERROR_MSG("Invalid or unsupported encoding");
err = 1;
}
/* Decode the OBJECT ID - expecting an EC curve OID. */
if ((!err) && (GetObjectId(in, &idx, &oid, oidCurveType, (word32)inSz) !=
0)) {
err = 1;
}
if (!err) {
/* Get the internal ID for OID. */
id = wc_ecc_get_oid(oid, NULL, NULL);
if (id < 0) {
err = 1;
}
}
if (!err) {
/* Get the NID for the internal ID. */
int nid = EccEnumToNID(id);
if (ret == NULL) {
/* Create a new EC group with the numeric ID. */
ret = wolfSSL_EC_GROUP_new_by_curve_name(nid);
if (ret == NULL) {
err = 1;
}
}
else {
ec_group_set_nid(ret, nid);
}
}
if ((!err) && (group != NULL)) {
/* Return the EC group through reference. */
*group = ret;
}
if (err) {
if ((ret != NULL) && (ret != *group)) {
wolfSSL_EC_GROUP_free(ret);
}
ret = NULL;
}
return ret;
}
/* Creates a new EC group from the PEM encoding in the BIO.
*
* @param [in] bio BIO to read PEM encoding from.
* @param [out] group Reference to EC group object.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM encrypted.
* @return EC group on success.
* @return NULL on error.
*/
WOLFSSL_EC_GROUP* wolfSSL_PEM_read_bio_ECPKParameters(WOLFSSL_BIO* bio,
WOLFSSL_EC_GROUP** group, wc_pem_password_cb* cb, void* pass)
{
int err = 0;
WOLFSSL_EC_GROUP* ret = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
if (bio == NULL) {
err = 1;
}
/* Read parameters from BIO and convert PEM to DER. */
if ((!err) && (pem_read_bio_key(bio, cb, pass, ECC_PARAM_TYPE,
&keyFormat, &der) < 0)) {
err = 1;
}
if (!err) {
/* Create EC group from DER encoding. */
ret = wolfssl_ec_group_d2i(group, der->buffer, der->length);
if (ret == NULL) {
WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_EC_GROUP");
}
}
/* Dispose of any allocated data. */
FreeDer(&der);
return ret;
}
#endif /* !NO_BIO */
#if defined(OPENSSL_ALL) && !defined(NO_CERTS)
/* Copy an EC group.
*
* Only used by wolfSSL_EC_KEY_dup at this time.
*
* @param [in, out] dst Destination EC group.
* @param [in] src Source EC group.
* @return 0 on success.
*/
static int wolfssl_ec_group_copy(WOLFSSL_EC_GROUP* dst,
const WOLFSSL_EC_GROUP* src)
{
/* Copy the fields. */
dst->curve_idx = src->curve_idx;
dst->curve_nid = src->curve_nid;
dst->curve_oid = src->curve_oid;
return 0;
}
#endif /* OPENSSL_ALL && !NO_CERTS */
/* Copies ecc_key into new WOLFSSL_EC_GROUP object
*
* @param [in] src EC group to duplicate.
*
* @return EC group on success.
* @return NULL on error.
*/
WOLFSSL_EC_GROUP* wolfSSL_EC_GROUP_dup(const WOLFSSL_EC_GROUP *src)
{
WOLFSSL_EC_GROUP* newGroup = NULL;
if (src != NULL) {
/* Create new group base on NID in original EC group. */
newGroup = wolfSSL_EC_GROUP_new_by_curve_name(src->curve_nid);
}
return newGroup;
}
/* Compare two EC groups.
*
* Return code compliant with OpenSSL.
*
* @param [in] a First EC group.
* @param [in] b Second EC group.
* @param [in] ctx Big number context to use when comparing fields. Unused.
*
* @return 0 if equal.
* @return 1 if not equal.
* @return -1 on error.
*/
int wolfSSL_EC_GROUP_cmp(const WOLFSSL_EC_GROUP *a, const WOLFSSL_EC_GROUP *b,
WOLFSSL_BN_CTX *ctx)
{
int ret;
/* No BN operations performed. */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_cmp");
/* Validate parameters. */
if ((a == NULL) || (b == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_cmp Bad arguments");
/* Return error value. */
ret = -1;
}
/* Compare NID and wolfSSL curve index. */
else {
/* 0 when same, 1 when not. */
ret = ((a->curve_nid == b->curve_nid) &&
(a->curve_idx == b->curve_idx)) ? 0 : 1;
}
return ret;
}
#ifndef NO_WOLFSSL_STUB
/* Set the ASN.1 flag that indicate encoding of curve.
*
* Stub function - flag not used elsewhere.
* Always encoded as named curve.
*
* @param [in] group EC group to modify.
* @param [in] flag ASN.1 flag to set. Valid values:
* OPENSSL_EC_EXPLICIT_CURVE, OPENSSL_EC_NAMED_CURVE
*/
void wolfSSL_EC_GROUP_set_asn1_flag(WOLFSSL_EC_GROUP *group, int flag)
{
(void)group;
(void)flag;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_set_asn1_flag");
WOLFSSL_STUB("EC_GROUP_set_asn1_flag");
}
#endif
/* Get the curve NID of the group.
*
* Return code compliant with OpenSSL.
*
* @param [in] group EC group.
* @return Curve NID on success.
* @return 0 on error.
*/
int wolfSSL_EC_GROUP_get_curve_name(const WOLFSSL_EC_GROUP *group)
{
int nid = 0;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_curve_name");
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_curve_name Bad arguments");
}
else {
nid = group->curve_nid;
}
return nid;
}
/* Get the degree (curve size in bits) of the EC group.
*
* Return code compliant with OpenSSL.
*
* @return Degree of the curve on success.
* @return 0 on error.
*/
int wolfSSL_EC_GROUP_get_degree(const WOLFSSL_EC_GROUP *group)
{
int degree = 0;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_degree");
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_degree Bad arguments");
}
else {
switch (group->curve_nid) {
case NID_secp112r1:
case NID_secp112r2:
degree = 112;
break;
case NID_secp128r1:
case NID_secp128r2:
degree = 128;
break;
case NID_secp160k1:
case NID_secp160r1:
case NID_secp160r2:
case NID_brainpoolP160r1:
degree = 160;
break;
case NID_secp192k1:
case NID_brainpoolP192r1:
case NID_X9_62_prime192v1:
case NID_X9_62_prime192v2:
case NID_X9_62_prime192v3:
degree = 192;
break;
case NID_secp224k1:
case NID_secp224r1:
case NID_brainpoolP224r1:
degree = 224;
break;
case NID_X9_62_prime239v1:
case NID_X9_62_prime239v2:
case NID_X9_62_prime239v3:
degree = 239;
break;
case NID_secp256k1:
case NID_brainpoolP256r1:
case NID_X9_62_prime256v1:
degree = 256;
break;
case NID_brainpoolP320r1:
degree = 320;
break;
case NID_secp384r1:
case NID_brainpoolP384r1:
degree = 384;
break;
case NID_brainpoolP512r1:
degree = 512;
break;
case NID_secp521r1:
degree = 521;
break;
}
}
return degree;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Get the length of the order in bits of the EC group.
*
* TODO: consider switch statement or calculating directly from hex string
* array instead of using mp_int.
*
* @param [in] group EC group.
* @return Length of order in bits on success.
* @return 0 on error.
*/
int wolfSSL_EC_GROUP_order_bits(const WOLFSSL_EC_GROUP *group)
{
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
mp_int *order = NULL;
#else
mp_int order[1];
#endif
/* Validate parameter. */
if ((group == NULL) || (group->curve_idx < 0)) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_order_bits NULL error");
ret = -1;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
/* Allocate memory for mp_int that will hold order value. */
order = (mp_int *)XMALLOC(sizeof(*order), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (order == NULL) {
ret = -1;
}
}
#endif
if (ret == 0) {
/* Initialize mp_int. */
ret = mp_init(order);
}
if (ret == 0) {
/* Read hex string of order from wolfCrypt array of curves. */
ret = mp_read_radix(order, ecc_sets[group->curve_idx].order,
MP_RADIX_HEX);
if (ret == 0) {
/* Get bits of order. */
ret = mp_count_bits(order);
}
/* Clear and free mp_int. */
mp_clear(order);
}
#ifdef WOLFSSL_SMALL_STACK
/* Deallocate order. */
XFREE(order, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
/* Convert error code to length of 0. */
if (ret < 0) {
ret = 0;
}
return ret;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if defined(OPENSSL_EXTRA)
/* Get the order of the group as a BN.
*
* Return code compliant with OpenSSL.
*
* @param [in] group EC group.
* @param [in, out] order BN to hold order value.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_EC_GROUP_get_order(const WOLFSSL_EC_GROUP *group,
WOLFSSL_BIGNUM *order, WOLFSSL_BN_CTX *ctx)
{
int ret = 1;
mp_int* mp = NULL;
/* No BN operations performed - done with mp_int in BN. */
(void)ctx;
/* Validate parameters. */
if ((group == NULL) || (order == NULL) || (order->internal == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order NULL error");
ret = 0;
}
if (ret == 1) {
mp = (mp_int*)order->internal;
}
/* Initialize */
if ((ret == 1) && (mp_init(mp) != MP_OKAY)) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_init failure");
ret = 0;
}
/* Read hex string of order from wolfCrypt array of curves. */
if ((ret == 1) && (mp_read_radix(mp, ecc_sets[group->curve_idx].order,
MP_RADIX_HEX) != MP_OKAY)) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_read order failure");
/* Zero out any partial value but don't free. */
mp_zero(mp);
ret = 0;
}
return ret;
}
#endif /* OPENSSL_EXTRA */
/* End EC_GROUP */
/* Start EC_POINT */
#if defined(OPENSSL_EXTRA)
/* Set data of EC point into internal, wolfCrypt EC point object.
*
* EC_POINT Openssl -> WolfSSL
*
* @param [in, out] p EC point to update.
* @return 1 on success.
* @return -1 on failure.
*/
static int ec_point_internal_set(WOLFSSL_EC_POINT *p)
{
int ret = 1;
WOLFSSL_ENTER("ec_point_internal_set");
/* Validate parameter. */
if ((p == NULL) || (p->internal == NULL)) {
WOLFSSL_MSG("ECPoint NULL error");
ret = -1;
}
else {
/* Get internal point as a wolfCrypt EC point. */
ecc_point* point = (ecc_point*)p->internal;
/* Set X ordinate if available. */
if ((p->X != NULL) && (wolfssl_bn_get_value(p->X, point->x) != 1)) {
WOLFSSL_MSG("ecc point X error");
ret = -1;
}
/* Set Y ordinate if available. */
if ((ret == 1) && (p->Y != NULL) && (wolfssl_bn_get_value(p->Y,
point->y) != 1)) {
WOLFSSL_MSG("ecc point Y error");
ret = -1;
}
/* Set Z ordinate if available. */
if ((ret == 1) && (p->Z != NULL) && (wolfssl_bn_get_value(p->Z,
point->z) != 1)) {
WOLFSSL_MSG("ecc point Z error");
ret = -1;
}
/* Internal values set when operations succeeded. */
p->inSet = (ret == 1);
}
return ret;
}
/* Set data of internal, wolfCrypt EC point object into EC point.
*
* EC_POINT WolfSSL -> OpenSSL
*
* @param [in, out] p EC point to update.
* @return 1 on success.
* @return -1 on failure.
*/
static int ec_point_external_set(WOLFSSL_EC_POINT *p)
{
int ret = 1;
WOLFSSL_ENTER("ec_point_external_set");
/* Validate parameter. */
if ((p == NULL) || (p->internal == NULL)) {
WOLFSSL_MSG("ECPoint NULL error");
ret = -1;
}
else {
/* Get internal point as a wolfCrypt EC point. */
ecc_point* point = (ecc_point*)p->internal;
/* Set X ordinate. */
if (wolfssl_bn_set_value(&p->X, point->x) != 1) {
WOLFSSL_MSG("ecc point X error");
ret = -1;
}
/* Set Y ordinate. */
if ((ret == 1) && (wolfssl_bn_set_value(&p->Y, point->y) != 1)) {
WOLFSSL_MSG("ecc point Y error");
ret = -1;
}
/* Set Z ordinate. */
if ((ret == 1) && (wolfssl_bn_set_value(&p->Z, point->z) != 1)) {
WOLFSSL_MSG("ecc point Z error");
ret = -1;
}
/* External values set when operations succeeded. */
p->exSet = (ret == 1);
}
return ret;
}
/* Setup internals of EC point.
*
* Assumes point is not NULL.
*
* @param [in, out] point EC point to update.
* @return 1 on success.
* @return 0 on failure.
*/
static int ec_point_setup(const WOLFSSL_EC_POINT *point) {
int ret = 1;
/* Check if internal values need setting. */
if (!point->inSet) {
WOLFSSL_MSG("No ECPoint internal set, do it");
/* Forcing to non-constant type to update internals. */
if (ec_point_internal_set((WOLFSSL_EC_POINT *)point) != 1) {
WOLFSSL_MSG("ec_point_internal_set failed");
ret = 0;
}
}
return ret;
}
/* Create a new EC point from the group.
*
* @param [in] group EC group.
* @return EC point on success.
* @return NULL on error.
*/
WOLFSSL_EC_POINT* wolfSSL_EC_POINT_new(const WOLFSSL_EC_GROUP* group)
{
int err = 0;
WOLFSSL_EC_POINT* point = NULL;
WOLFSSL_ENTER("wolfSSL_EC_POINT_new");
/* Validate parameter. */
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new NULL error");
err = 1;
}
if (!err) {
/* Allocate memory for new EC point. */
point = (WOLFSSL_EC_POINT*)XMALLOC(sizeof(WOLFSSL_EC_POINT), NULL,
DYNAMIC_TYPE_ECC);
if (point == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new malloc ecc point failure");
err = 1;
}
}
if (!err) {
/* Clear fields of EC point. */
XMEMSET(point, 0, sizeof(WOLFSSL_EC_POINT));
/* Allocate internal EC point. */
point->internal = wc_ecc_new_point();
if (point->internal == NULL) {
WOLFSSL_MSG("ecc_new_point failure");
err = 1;
}
}
if (err) {
XFREE(point, NULL, DYNAMIC_TYPE_ECC);
point = NULL;
}
return point;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Dispose of the EC point.
*
* Cannot use point after this call.
*
* @param [in, out] point EC point to free.
*/
void wolfSSL_EC_POINT_free(WOLFSSL_EC_POINT *point)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_free");
if (point != NULL) {
if (point->internal != NULL) {
wc_ecc_del_point((ecc_point*)point->internal);
point->internal = NULL;
}
/* Free ordinates. */
wolfSSL_BN_free(point->X);
wolfSSL_BN_free(point->Y);
wolfSSL_BN_free(point->Z);
/* Clear fields. */
point->X = NULL;
point->Y = NULL;
point->Z = NULL;
point->inSet = 0;
point->exSet = 0;
/* Dispose of EC point. */
XFREE(point, NULL, DYNAMIC_TYPE_ECC);
}
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_EXTRA
/* Clear and dispose of the EC point.
*
* Cannot use point after this call.
*
* @param [in, out] point EC point to free.
*/
void wolfSSL_EC_POINT_clear_free(WOLFSSL_EC_POINT *point)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_clear_free");
if (point != NULL) {
if (point->internal != NULL) {
/* Force internal point to be zeros. */
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
wc_ecc_forcezero_point((ecc_point*)point->internal);
#else
ecc_point* p = (ecc_point*)point->internal;
mp_forcezero(p->x);
mp_forcezero(p->y);
mp_forcezero(p->z);
#endif
wc_ecc_del_point((ecc_point*)point->internal);
point->internal = NULL;
}
/* Clear the ordinates before freeing. */
wolfSSL_BN_clear_free(point->X);
wolfSSL_BN_clear_free(point->Y);
wolfSSL_BN_clear_free(point->Z);
/* Clear fields. */
point->X = NULL;
point->Y = NULL;
point->Z = NULL;
point->inSet = 0;
point->exSet = 0;
/* Dispose of EC point. */
XFREE(point, NULL, DYNAMIC_TYPE_ECC);
}
}
/* Print out the internals of EC point in debug and when logging callback set.
*
* Not an OpenSSL API.
*
* TODO: Use WOLFSSL_MSG_EX()?
*
* @param [in] msg Message to prepend.
* @param [in] point EC point to print.
*/
void wolfSSL_EC_POINT_dump(const char *msg, const WOLFSSL_EC_POINT *point)
{
#if defined(DEBUG_WOLFSSL)
char *num;
WOLFSSL_ENTER("wolfSSL_EC_POINT_dump");
/* Only print when debugging on. */
if (WOLFSSL_IS_DEBUG_ON()) {
if (point == NULL) {
/* No point passed in so just put out "NULL". */
WOLFSSL_MSG_EX("%s = NULL\n", msg);
}
else {
/* Put out message and status of internal/external data set. */
WOLFSSL_MSG_EX("%s:\n\tinSet=%d, exSet=%d\n", msg, point->inSet,
point->exSet);
/* Get x-ordinate as a hex string and print. */
num = wolfSSL_BN_bn2hex(point->X);
WOLFSSL_MSG_EX("\tX = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL);
/* Get x-ordinate as a hex string and print. */
num = wolfSSL_BN_bn2hex(point->Y);
WOLFSSL_MSG_EX("\tY = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL);
/* Get z-ordinate as a hex string and print. */
num = wolfSSL_BN_bn2hex(point->Z);
WOLFSSL_MSG_EX("\tZ = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
#else
(void)msg;
(void)point;
#endif
}
#ifndef HAVE_SELFTEST
/* Convert EC point to hex string that as either uncompressed or compressed.
*
* ECC point compression types were not included in selftest ecc.h
*
* @param [in] group EC group for point.
* @param [in] point EC point to encode.
* @param [in] form Format of encoding. Valid values:
* POINT_CONVERSION_UNCOMPRESSED, POINT_CONVERSION_COMPRESSED
* @param [in] ctx Context to use for BN operations. Unused.
* @return Allocated hex string on success.
* @return NULL on error.
*/
char* wolfSSL_EC_POINT_point2hex(const WOLFSSL_EC_GROUP* group,
const WOLFSSL_EC_POINT* point, int form, WOLFSSL_BN_CTX* ctx)
{
static const char* hexDigit = "0123456789ABCDEF";
char* hex = NULL;
int i;
int sz = 0;
int len = 0;
int err = 0;
/* No BN operations performed. */
(void)ctx;
/* Validate parameters. */
if ((group == NULL) || (point == NULL)) {
err = 1;
}
/* Get curve id expects a positive index. */
if ((!err) && (group->curve_idx < 0)) {
err = 1;
}
if (!err) {
/* Get curve id to look up ordinate size. */
int id = wc_ecc_get_curve_id(group->curve_idx);
/* Get size of ordinate. */
if ((sz = wc_ecc_get_curve_size_from_id(id)) < 0) {
err = 1;
}
}
if (!err) {
/* <format byte> <x-ordinate> [<y-ordinate>] */
len = sz + 1;
if (form == POINT_CONVERSION_UNCOMPRESSED) {
/* Include y ordinate when uncompressed. */
len += sz;
}
/* Hex string: allocate 2 bytes to represent each byte plus 1 for '\0'.
*/
hex = (char*)XMALLOC((size_t)(2 * len + 1), NULL, DYNAMIC_TYPE_ECC);
if (hex == NULL) {
err = 1;
}
}
if (!err) {
/* Make bytes all zeros to allow for ordinate values less than max size.
*/
XMEMSET(hex, 0, (size_t)(2 * len + 1));
/* Calculate offset as leading zeros not encoded. */
i = sz - mp_unsigned_bin_size((mp_int*)point->X->internal) + 1;
/* Put in x-ordinate after format byte. */
if (mp_to_unsigned_bin((mp_int*)point->X->internal, (byte*)(hex + i)) <
0) {
err = 1;
}
}
if (!err) {
if (form == POINT_CONVERSION_COMPRESSED) {
/* Compressed format byte value dependent on whether y-ordinate is
* odd.
*/
hex[0] = mp_isodd((mp_int*)point->Y->internal) ?
ECC_POINT_COMP_ODD : ECC_POINT_COMP_EVEN;
/* No y-ordinate. */
}
else {
/* Put in uncompressed format byte. */
hex[0] = ECC_POINT_UNCOMP;
/* Calculate offset as leading zeros not encoded. */
i = 1 + 2 * sz - mp_unsigned_bin_size((mp_int*)point->Y->internal);
/* Put in y-ordinate after x-ordinate. */
if (mp_to_unsigned_bin((mp_int*)point->Y->internal,
(byte*)(hex + i)) < 0) {
err = 1;
}
}
}
if (!err) {
/* Convert binary encoding to hex string. */
/* Start at end so as not to overwrite. */
for (i = len-1; i >= 0; i--) {
/* Get byte value and store has hex string. */
byte b = (byte)hex[i];
hex[i * 2 + 1] = hexDigit[b & 0xf];
hex[i * 2 ] = hexDigit[b >> 4];
}
/* Memset put trailing zero or '\0' on end of string. */
}
if (err && (hex != NULL)) {
/* Dispose of allocated data not being returned. */
XFREE(hex, NULL, DYNAMIC_TYPE_ECC);
hex = NULL;
}
/* Return hex string encoding. */
return hex;
}
#endif /* HAVE_SELFTEST */
/* Encode the EC point as an uncompressed point in DER.
*
* Return code compliant with OpenSSL.
* Not OpenSSL API.
*
* @param [in] group EC group point belongs to.
* @param [in] point EC point to encode.
* @param [out] out Buffer to encode into. May be NULL.
* @param [in, out] len On in, length of buffer in bytes.
* On out, length of encoding in bytes.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_ECPoint_i2d(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point, unsigned char *out, unsigned int *len)
{
int res = 1;
WOLFSSL_ENTER("wolfSSL_ECPoint_i2d");
/* Validate parameters. */
if ((group == NULL) || (point == NULL) || (len == NULL)) {
WOLFSSL_MSG("wolfSSL_ECPoint_i2d NULL error");
res = 0;
}
/* Ensure points internals are set up. */
if ((res == 1) && (ec_point_setup(point) != 1)) {
res = 0;
}
/* Dump the point if encoding. */
if ((res == 1) && (out != NULL)) {
wolfSSL_EC_POINT_dump("i2d p", point);
}
if (res == 1) {
/* DER encode point in uncompressed format. */
int ret = wc_ecc_export_point_der(group->curve_idx,
(ecc_point*)point->internal, out, len);
/* Check return. When out is NULL, return will be length only error. */
if ((ret != MP_OKAY) && ((out != NULL) || (ret != LENGTH_ONLY_E))) {
WOLFSSL_MSG("wolfSSL_ECPoint_i2d wc_ecc_export_point_der failed");
res = 0;
}
}
return res;
}
/* Decode the uncompressed point in DER into EC point.
*
* Return code compliant with OpenSSL.
* Not OpenSSL API.
*
* @param [in] in Buffer containing DER encoded point.
* @param [in] len Length of data in bytes.
* @param [in] group EC group associated with point.
* @param [in, out] point EC point to set data into.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_ECPoint_d2i(const unsigned char *in, unsigned int len,
const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *point)
{
int ret = 1;
WOLFSSL_BIGNUM* x = NULL;
WOLFSSL_BIGNUM* y = NULL;
WOLFSSL_ENTER("wolfSSL_ECPoint_d2i");
/* Validate parameters. */
if ((in == NULL) || (group == NULL) || (point == NULL) ||
(point->internal == NULL)) {
WOLFSSL_MSG("wolfSSL_ECPoint_d2i NULL error");
ret = 0;
}
if (ret == 1) {
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
/* Import point into internal EC point. */
if (wc_ecc_import_point_der_ex(in, len, group->curve_idx,
(ecc_point*)point->internal, 0) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_import_point_der_ex failed");
ret = 0;
}
#else
/* ECC_POINT_UNCOMP is not defined CAVP self test so use magic number */
if (in[0] == 0x04) {
/* Import point into internal EC point. */
if (wc_ecc_import_point_der((unsigned char *)in, len,
group->curve_idx, (ecc_point*)point->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_import_point_der failed");
ret = 0;
}
}
else {
WOLFSSL_MSG("Only uncompressed points supported with "
"HAVE_SELFTEST");
ret = 0;
}
#endif
}
if (ret == 1)
point->inSet = 1;
/* Set new external point. */
if (ret == 1 && ec_point_external_set(point) != 1) {
WOLFSSL_MSG("ec_point_external_set failed");
ret = 0;
}
if (ret == 1 && !wolfSSL_BN_is_one(point->Z)) {
#if !defined(WOLFSSL_SP_MATH) && !defined(WOLF_CRYPTO_CB_ONLY_ECC)
x = wolfSSL_BN_new();
y = wolfSSL_BN_new();
if (x == NULL || y == NULL)
ret = 0;
if (ret == 1 && wolfSSL_EC_POINT_get_affine_coordinates_GFp(group,
point, x, y, NULL) != 1) {
WOLFSSL_MSG("wolfSSL_EC_POINT_get_affine_coordinates_GFp failed");
ret = 0;
}
/* wolfSSL_EC_POINT_set_affine_coordinates_GFp check that the point is
* on the curve. */
if (ret == 1 && wolfSSL_EC_POINT_set_affine_coordinates_GFp(group,
point, x, y, NULL) != 1) {
WOLFSSL_MSG("wolfSSL_EC_POINT_set_affine_coordinates_GFp failed");
ret = 0;
}
#else
WOLFSSL_MSG("Importing non-affine point. This may cause issues in math "
"operations later on.");
#endif
}
if (ret == 1) {
/* Dump new point. */
wolfSSL_EC_POINT_dump("d2i p", point);
}
wolfSSL_BN_free(x);
wolfSSL_BN_free(y);
return ret;
}
/* Encode point as octet string.
*
* HYBRID not supported.
*
* @param [in] group EC group that point belongs to.
* @param [in] point EC point to encode.
* @param [in] form Format of encoding. Valid values:
* POINT_CONVERSION_UNCOMPRESSED,POINT_CONVERSION_COMPRESSED
* @param [out] buf Buffer to write encoding into.
* @param [in] len Length of buffer.
* @param [in] ctx Context to use for BN operations. Unused.
* @return Length of encoded data on success.
* @return 0 on error.
*/
size_t wolfSSL_EC_POINT_point2oct(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point, int form, byte *buf, size_t len,
WOLFSSL_BN_CTX *ctx)
{
int err = 0;
word32 enc_len = (word32)len;
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
int compressed = ((form == POINT_CONVERSION_COMPRESSED) ? 1 : 0);
#endif /* !HAVE_SELFTEST */
WOLFSSL_ENTER("wolfSSL_EC_POINT_point2oct");
/* No BN operations performed. */
(void)ctx;
/* Validate parameters. */
if ((group == NULL) || (point == NULL)) {
err = 1;
}
/* Ensure points internals are set up. */
if ((!err) && (ec_point_setup(point) != 1)) {
err = 1;
}
/* Special case when point is infinity. */
if ((!err) && wolfSSL_EC_POINT_is_at_infinity(group, point)) {
/* Encoding is a single octet: 0x00. */
enc_len = 1;
if (buf != NULL) {
/* Check whether buffer has space. */
if (len < 1) {
ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
err = 1;
}
else {
/* Put in encoding of infinity. */
buf[0] = 0x00;
}
}
}
/* Not infinity. */
else if (!err) {
/* Validate format. */
if (form != POINT_CONVERSION_UNCOMPRESSED
#ifndef HAVE_SELFTEST
&& form != POINT_CONVERSION_COMPRESSED
#endif /* !HAVE_SELFTEST */
) {
WOLFSSL_MSG("Unsupported point form");
err = 1;
}
if (!err) {
int ret;
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
/* Encode as compressed or uncompressed. */
ret = wc_ecc_export_point_der_ex(group->curve_idx,
(ecc_point*)point->internal, buf, &enc_len, compressed);
#else
/* Encode uncompressed point in DER format. */
ret = wc_ecc_export_point_der(group->curve_idx,
(ecc_point*)point->internal, buf, &enc_len);
#endif /* !HAVE_SELFTEST */
/* Check return. When buf is NULL, return will be length only
* error.
*/
if (ret != ((buf != NULL) ? MP_OKAY : LENGTH_ONLY_E)) {
err = 1;
}
}
}
#if defined(DEBUG_WOLFSSL)
if (!err) {
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_point2oct point", point);
WOLFSSL_MSG("\twolfSSL_EC_POINT_point2oct output:");
WOLFSSL_BUFFER(buf, enc_len);
}
#endif
/* On error, return encoding length of 0. */
if (err) {
enc_len = 0;
}
return (size_t)enc_len;
}
/* Convert octet string to EC point.
*
* @param [in] group EC group.
* @param [in, out] point EC point to set data into.
* @param [in] buf Buffer holding octet string.
* @param [in] len Length of data in buffer in bytes.
* @param [in] ctx Context to use for BN operations. Unused.
*/
int wolfSSL_EC_POINT_oct2point(const WOLFSSL_EC_GROUP *group,
WOLFSSL_EC_POINT *point, const unsigned char *buf, size_t len,
WOLFSSL_BN_CTX *ctx)
{
int ret;
WOLFSSL_ENTER("wolfSSL_EC_POINT_oct2point");
/* No BN operations performed. */
(void)ctx;
/* Validate parameters. */
if ((group == NULL) || (point == NULL)) {
ret = 0;
}
else {
/* Decode DER encoding into EC point. */
ret = wolfSSL_ECPoint_d2i((unsigned char*)buf, (unsigned int)len, group,
point);
}
return ret;
}
/* Convert an EC point to a single BN.
*
* @param [in] group EC group.
* @param [in] point EC point.
* @param [in] form Format of encoding. Valid values:
* POINT_CONVERSION_UNCOMPRESSED,
* POINT_CONVERSION_COMPRESSED.
* @param [in, out] bn BN to hold point value.
* When NULL a new BN is allocated otherwise this is
* returned on success.
* @param [in] ctx Context to use for BN operations. Unused.
* @return BN object with point as a value on success.
* @return NULL on error.
*/
WOLFSSL_BIGNUM *wolfSSL_EC_POINT_point2bn(const WOLFSSL_EC_GROUP* group,
const WOLFSSL_EC_POINT* point, int form, WOLFSSL_BIGNUM* bn,
WOLFSSL_BN_CTX* ctx)
{
int err = 0;
size_t len = 0;
byte *buf = NULL;
WOLFSSL_BIGNUM *ret = NULL;
WOLFSSL_ENTER("wolfSSL_EC_POINT_oct2point");
/* Validate parameters. */
if ((group == NULL) || (point == NULL)) {
err = 1;
}
/* Calculate length of octet encoding. */
if ((!err) && ((len = wolfSSL_EC_POINT_point2oct(group, point, form, NULL,
0, ctx)) == 0)) {
err = 1;
}
/* Allocate buffer to hold octet encoding. */
if ((!err) && ((buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER)) ==
NULL)) {
WOLFSSL_MSG("malloc failed");
err = 1;
}
/* Encode EC point as an octet string. */
if ((!err) && (wolfSSL_EC_POINT_point2oct(group, point, form, buf, len,
ctx) != len)) {
err = 1;
}
/* Load BN with octet string data. */
if (!err) {
ret = wolfSSL_BN_bin2bn(buf, (int)len, bn);
}
/* Dispose of any allocated data. */
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#if defined(USE_ECC_B_PARAM) && !defined(HAVE_SELFTEST) && \
(!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
/* Check if EC point is on the the curve defined by the EC group.
*
* @param [in] group EC group defining curve.
* @param [in] point EC point to check.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 1 when point is on curve.
* @return 0 when point is not on curve or error.
*/
int wolfSSL_EC_POINT_is_on_curve(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point, WOLFSSL_BN_CTX *ctx)
{
int err = 0;
WOLFSSL_ENTER("wolfSSL_EC_POINT_is_on_curve");
/* No BN operations performed. */
(void)ctx;
/* Validate parameters. */
if ((group == NULL) || (point == NULL)) {
WOLFSSL_MSG("Invalid arguments");
err = 1;
}
/* Ensure internal EC point set. */
if ((!err) && (!point->inSet) && ec_point_internal_set(
(WOLFSSL_EC_POINT*)point) != 1) {
WOLFSSL_MSG("ec_point_internal_set error");
err = 1;
}
/* Check point is on curve from group. */
if ((!err) && (wc_ecc_point_is_on_curve((ecc_point*)point->internal,
group->curve_idx) != MP_OKAY)) {
err = 1;
}
/* Return boolean of on curve. No error means on curve. */
return !err;
}
#endif /* USE_ECC_B_PARAM && !HAVE_SELFTEST && !(FIPS_VERSION <= 2) */
#if !defined(WOLFSSL_SP_MATH) && !defined(WOLF_CRYPTO_CB_ONLY_ECC)
/* Convert Jacobian ordinates to affine.
*
* @param [in] group EC group.
* @param [in] point EC point to get coordinates from.
* @return 1 on success.
* @return 0 on error.
*/
int ec_point_convert_to_affine(const WOLFSSL_EC_GROUP *group,
WOLFSSL_EC_POINT *point)
{
int err = 0;
mp_digit mp = 0;
#ifdef WOLFSSL_SMALL_STACK
mp_int* modulus;
#else
mp_int modulus[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
/* Allocate memory for curve's prime modulus. */
modulus = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (modulus == NULL) {
err = 1;
}
#endif
/* Initialize the MP integer. */
if ((!err) && (mp_init(modulus) != MP_OKAY)) {
WOLFSSL_MSG("mp_init failed");
err = 1;
}
if (!err) {
/* Get the modulus from the hex string in the EC curve set. */
if (mp_read_radix(modulus, ecc_sets[group->curve_idx].prime,
MP_RADIX_HEX) != MP_OKAY) {
WOLFSSL_MSG("mp_read_radix failed");
err = 1;
}
/* Get Montgomery multiplier for the modulus as ordinates in
* Montgomery form.
*/
if ((!err) && (mp_montgomery_setup(modulus, &mp) != MP_OKAY)) {
WOLFSSL_MSG("mp_montgomery_setup failed");
err = 1;
}
/* Map internal EC point from Jacobian to affine. */
if ((!err) && (ecc_map((ecc_point*)point->internal, modulus, mp) !=
MP_OKAY)) {
WOLFSSL_MSG("ecc_map failed");
err = 1;
}
/* Set new ordinates into external EC point. */
if ((!err) && (ec_point_external_set((WOLFSSL_EC_POINT *)point) != 1)) {
WOLFSSL_MSG("ec_point_external_set failed");
err = 1;
}
point->exSet = !err;
mp_clear(modulus);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(modulus, NULL, DYNAMIC_TYPE_BIGINT);
#endif
return err;
}
/* Get the affine coordinates of the EC point on a Prime curve.
*
* When z-ordinate is not one then coordinates are Jacobian and need to be
* converted to affine before storing in BNs.
*
* Return code compliant with OpenSSL.
*
* TODO: OpenSSL doesn't change point when Jacobian. Do the same?
*
* @param [in] group EC group.
* @param [in] point EC point to get coordinates from.
* @param [in, out] x BN to hold x-ordinate.
* @param [in, out] y BN to hold y-ordinate.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_EC_POINT_get_affine_coordinates_GFp(const WOLFSSL_EC_GROUP* group,
const WOLFSSL_EC_POINT* point, WOLFSSL_BIGNUM* x, WOLFSSL_BIGNUM* y,
WOLFSSL_BN_CTX* ctx)
{
int ret = 1;
/* BN operations don't need context. */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_get_affine_coordinates_GFp");
/* Validate parameters. */
if ((group == NULL) || (point == NULL) || (point->internal == NULL) ||
(x == NULL) || (y == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_get_affine_coordinates_GFp NULL error");
ret = 0;
}
/* Don't return point at infinity. */
if ((ret == 1) && wolfSSL_EC_POINT_is_at_infinity(group, point)) {
ret = 0;
}
/* Ensure internal EC point has values of external EC point. */
if ((ret == 1) && (ec_point_setup(point) != 1)) {
ret = 0;
}
/* Check whether ordinates are in Jacobian form. */
if ((ret == 1) && (!wolfSSL_BN_is_one(point->Z))) {
/* Convert from Jacobian to affine. */
if (ec_point_convert_to_affine(group, (WOLFSSL_EC_POINT*)point) == 1) {
ret = 0;
}
}
/* Copy the externally set x and y ordinates. */
if ((ret == 1) && (BN_copy(x, point->X) == NULL)) {
ret = 0;
}
if ((ret == 1) && (BN_copy(y, point->Y) == NULL)) {
ret = 0;
}
return ret;
}
#endif /* !WOLFSSL_SP_MATH && !WOLF_CRYPTO_CB_ONLY_ECC */
/* Sets the affine coordinates that belong on a prime curve.
*
* @param [in] group EC group.
* @param [in, out] point EC point to set coordinates into.
* @param [in] x BN holding x-ordinate.
* @param [in] y BN holding y-ordinate.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_EC_POINT_set_affine_coordinates_GFp(const WOLFSSL_EC_GROUP* group,
WOLFSSL_EC_POINT* point, const WOLFSSL_BIGNUM* x, const WOLFSSL_BIGNUM* y,
WOLFSSL_BN_CTX* ctx)
{
int ret = 1;
/* BN operations don't need context. */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_set_affine_coordinates_GFp");
/* Validate parameters. */
if ((group == NULL) || (point == NULL) || (point->internal == NULL) ||
(x == NULL) || (y == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_set_affine_coordinates_GFp NULL error");
ret = 0;
}
/* Ensure we have a object for x-ordinate. */
if ((ret == 1) && (point->X == NULL) &&
((point->X = wolfSSL_BN_new()) == NULL)) {
WOLFSSL_MSG("wolfSSL_BN_new failed");
ret = 0;
}
/* Ensure we have a object for y-ordinate. */
if ((ret == 1) && (point->Y == NULL) &&
((point->Y = wolfSSL_BN_new()) == NULL)) {
WOLFSSL_MSG("wolfSSL_BN_new failed");
ret = 0;
}
/* Ensure we have a object for z-ordinate. */
if ((ret == 1) && (point->Z == NULL) &&
((point->Z = wolfSSL_BN_new()) == NULL)) {
WOLFSSL_MSG("wolfSSL_BN_new failed");
ret = 0;
}
/* Copy the x-ordinate. */
if ((ret == 1) && ((wolfSSL_BN_copy(point->X, x)) == NULL)) {
WOLFSSL_MSG("wolfSSL_BN_copy failed");
ret = 0;
}
/* Copy the y-ordinate. */
if ((ret == 1) && ((wolfSSL_BN_copy(point->Y, y)) == NULL)) {
WOLFSSL_MSG("wolfSSL_BN_copy failed");
ret = 0;
}
/* z-ordinate is one for affine coordinates. */
if ((ret == 1) && ((wolfSSL_BN_one(point->Z)) == 0)) {
WOLFSSL_MSG("wolfSSL_BN_one failed");
ret = 0;
}
/* Copy the new point data to internal object. */
if ((ret == 1) && (ec_point_internal_set((WOLFSSL_EC_POINT *)point) != 1)) {
WOLFSSL_MSG("ec_point_internal_set failed");
ret = 0;
}
#if defined(USE_ECC_B_PARAM) && !defined(HAVE_SELFTEST) && \
(!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0))
/* Check that the point is valid. */
if ((ret == 1) && (wolfSSL_EC_POINT_is_on_curve(group,
(WOLFSSL_EC_POINT *)point, ctx) != 1)) {
WOLFSSL_MSG("EC_POINT_is_on_curve failed");
ret = 0;
}
#endif
return ret;
}
#if !defined(WOLFSSL_ATECC508A) && !defined(WOLFSSL_ATECC608A) && \
!defined(HAVE_SELFTEST) && !defined(WOLFSSL_SP_MATH) && \
!defined(WOLF_CRYPTO_CB_ONLY_ECC)
/* Add two points on the same together.
*
* @param [in] curveIdx Index of curve in ecc_set.
* @param [out] r Result point.
* @param [in] p1 First point to add.
* @param [in] p2 Second point to add.
* @return 1 on success.
* @return 0 on error.
*/
static int wolfssl_ec_point_add(int curveIdx, ecc_point* r, ecc_point* p1,
ecc_point* p2)
{
int ret = 1;
#ifdef WOLFSSL_SMALL_STACK
mp_int* a = NULL;
mp_int* prime = NULL;
mp_int* mu = NULL;
#else
mp_int a[1];
mp_int prime[1];
mp_int mu[1];
#endif
mp_digit mp = 0;
ecc_point* montP1 = NULL;
ecc_point* montP2 = NULL;
#ifdef WOLFSSL_SMALL_STACK
if (ret == 1) {
/* Allocate memory for curve parameter: a. */
a = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (a == NULL) {
WOLFSSL_MSG("Failed to allocate memory for mp_int a");
ret = 0;
}
}
if (ret == 1) {
/* Allocate memory for curve parameter: prime. */
prime = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (prime == NULL) {
WOLFSSL_MSG("Failed to allocate memory for mp_int prime");
ret = 0;
}
}
if (ret == 1) {
/* Allocate memory for mu (Montgomery normalizer). */
mu = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (mu == NULL) {
WOLFSSL_MSG("Failed to allocate memory for mp_int mu");
ret = 0;
}
}
if (ret == 1) {
/* Zero out all MP int data in case initialization fails. */
XMEMSET(a, 0, sizeof(mp_int));
XMEMSET(prime, 0, sizeof(mp_int));
XMEMSET(mu, 0, sizeof(mp_int));
}
#endif
/* Initialize the MP ints. */
if ((ret == 1) && (mp_init_multi(prime, a, mu, NULL, NULL, NULL) !=
MP_OKAY)) {
WOLFSSL_MSG("mp_init_multi error");
ret = 0;
}
/* Read the curve parameter: a. */
if ((ret == 1) && (mp_read_radix(a, ecc_sets[curveIdx].Af, MP_RADIX_HEX) !=
MP_OKAY)) {
WOLFSSL_MSG("mp_read_radix a error");
ret = 0;
}
/* Read the curve parameter: prime. */
if ((ret == 1) && (mp_read_radix(prime, ecc_sets[curveIdx].prime,
MP_RADIX_HEX) != MP_OKAY)) {
WOLFSSL_MSG("mp_read_radix prime error");
ret = 0;
}
/* Calculate the Montgomery product. */
if ((ret == 1) && (mp_montgomery_setup(prime, &mp) != MP_OKAY)) {
WOLFSSL_MSG("mp_montgomery_setup nqm error");
ret = 0;
}
/* TODO: use the heap filed of one of the points? */
/* Allocate new points to hold the Montgomery form values. */
if ((ret == 1) && (((montP1 = wc_ecc_new_point_h(NULL)) == NULL) ||
((montP2 = wc_ecc_new_point_h(NULL)) == NULL))) {
WOLFSSL_MSG("wc_ecc_new_point_h nqm error");
ret = 0;
}
/* Calculate the Montgomery normalizer. */
if ((ret == 1) && (mp_montgomery_calc_normalization(mu, prime) !=
MP_OKAY)) {
WOLFSSL_MSG("mp_montgomery_calc_normalization error");
ret = 0;
}
/* Convert to Montgomery form. */
if ((ret == 1) && (mp_cmp_d(mu, 1) == MP_EQ)) {
/* Copy the points if the normalizer is 1. */
if ((wc_ecc_copy_point(p1, montP1) != MP_OKAY) ||
(wc_ecc_copy_point(p2, montP2) != MP_OKAY)) {
WOLFSSL_MSG("wc_ecc_copy_point error");
ret = 0;
}
}
else if (ret == 1) {
/* Multiply each ordinate by the Montgomery normalizer. */
if ((mp_mulmod(p1->x, mu, prime, montP1->x) != MP_OKAY) ||
(mp_mulmod(p1->y, mu, prime, montP1->y) != MP_OKAY) ||
(mp_mulmod(p1->z, mu, prime, montP1->z) != MP_OKAY)) {
WOLFSSL_MSG("mp_mulmod error");
ret = 0;
}
/* Multiply each ordinate by the Montgomery normalizer. */
if ((mp_mulmod(p2->x, mu, prime, montP2->x) != MP_OKAY) ||
(mp_mulmod(p2->y, mu, prime, montP2->y) != MP_OKAY) ||
(mp_mulmod(p2->z, mu, prime, montP2->z) != MP_OKAY)) {
WOLFSSL_MSG("mp_mulmod error");
ret = 0;
}
}
/* Perform point addition with internal EC point objects - Jacobian form
* result.
*/
if ((ret == 1) && (ecc_projective_add_point(montP1, montP2, r, a, prime,
mp) != MP_OKAY)) {
WOLFSSL_MSG("ecc_projective_add_point error");
ret = 0;
}
/* Map point back to affine coordinates. Converts from Montogomery form. */
if ((ret == 1) && (ecc_map(r, prime, mp) != MP_OKAY)) {
WOLFSSL_MSG("ecc_map error");
ret = 0;
}
/* Dispose of allocated memory. */
mp_clear(a);
mp_clear(prime);
mp_clear(mu);
wc_ecc_del_point_h(montP1, NULL);
wc_ecc_del_point_h(montP2, NULL);
#ifdef WOLFSSL_SMALL_STACK
XFREE(a, NULL, DYNAMIC_TYPE_BIGINT);
XFREE(prime, NULL, DYNAMIC_TYPE_BIGINT);
XFREE(mu, NULL, DYNAMIC_TYPE_BIGINT);
#endif
return ret;
}
/* Add two points on the same curve together.
*
* @param [in] group EC group.
* @param [out] r EC point that is result of point addition.
* @param [in] p1 First EC point to add.
* @param [in] p2 Second EC point to add.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_EC_POINT_add(const WOLFSSL_EC_GROUP* group, WOLFSSL_EC_POINT* r,
const WOLFSSL_EC_POINT* p1, const WOLFSSL_EC_POINT* p2, WOLFSSL_BN_CTX* ctx)
{
int ret = 1;
/* No BN operations performed. */
(void)ctx;
/* Validate parameters. */
if ((group == NULL) || (r == NULL) || (p1 == NULL) || (p2 == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_add error");
ret = 0;
}
/* Ensure the internal objects of the EC points are setup. */
if ((ret == 1) && ((ec_point_setup(r) != 1) || (ec_point_setup(p1) != 1) ||
(ec_point_setup(p2) != 1))) {
WOLFSSL_MSG("ec_point_setup error");
ret = 0;
}
#ifdef DEBUG_WOLFSSL
if (ret == 1) {
int nid = wolfSSL_EC_GROUP_get_curve_name(group);
const char* curve = wolfSSL_OBJ_nid2ln(nid);
const char* nistName = wolfSSL_EC_curve_nid2nist(nid);
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_add p1", p1);
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_add p2", p2);
if (curve != NULL)
WOLFSSL_MSG_EX("curve name: %s", curve);
if (nistName != NULL)
WOLFSSL_MSG_EX("nist curve name: %s", nistName);
}
#endif
if (ret == 1) {
/* Add points using wolfCrypt objects. */
ret = wolfssl_ec_point_add(group->curve_idx, (ecc_point*)r->internal,
(ecc_point*)p1->internal, (ecc_point*)p2->internal);
}
/* Copy internal EC point values out to external EC point. */
if ((ret == 1) && (ec_point_external_set(r) != 1)) {
WOLFSSL_MSG("ec_point_external_set error");
ret = 0;
}
#ifdef DEBUG_WOLFSSL
if (ret == 1) {
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_add result", r);
}
#endif
return ret;
}
/* Sum the scalar multiplications of the base point and n, and q and m.
*
* r = base point * n + q * m
*
* @param [out] r EC point that is result of operation.
* @param [in] b Base point of curve.
* @param [in] n Scalar to multiply by base point.
* @param [in] q EC point to be scalar multiplied.
* @param [in] m Scalar to multiply q by.
* @param [in] a Parameter A of curve.
* @param [in] prime Prime (modulus) of curve.
* @return 1 on success.
* @return 0 on error.
*/
static int ec_mul2add(ecc_point* r, ecc_point* b, mp_int* n, ecc_point* q,
mp_int* m, mp_int* a, mp_int* prime)
{
int ret = 1;
#if defined(ECC_SHAMIR) && !defined(WOLFSSL_KCAPI_ECC)
if (ecc_mul2add(b, n, q, m, r, a, prime, NULL) != MP_OKAY) {
WOLFSSL_MSG("ecc_mul2add error");
ret = 0;
}
#else
ecc_point* tmp = NULL;
mp_digit mp = 0;
/* Calculate Montgomery product. */
if (mp_montgomery_setup(prime, &mp) != MP_OKAY) {
WOLFSSL_MSG("mp_montgomery_setup nqm error");
ret = 0;
}
/* Create temporary point to hold: q * m */
if ((ret == 1) && ((tmp = wc_ecc_new_point()) == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new nqm error");
ret = 0;
}
/* r = base point * n */
if ((ret == 1) && (wc_ecc_mulmod(n, b, r, a, prime, 0) !=
MP_OKAY)) {
WOLFSSL_MSG("wc_ecc_mulmod nqm error");
ret = 0;
}
/* tmp = q * m */
if ((ret == 1) && (wc_ecc_mulmod(m, q, tmp, a, prime, 0) != MP_OKAY)) {
WOLFSSL_MSG("wc_ecc_mulmod nqm error");
ret = 0;
}
/* r = r + tmp */
if ((ret == 1) && (ecc_projective_add_point(tmp, r, r, a, prime, mp) !=
MP_OKAY)) {
WOLFSSL_MSG("wc_ecc_mulmod nqm error");
ret = 0;
}
/* Map point back to affine coordinates. Converts from Montogomery
* form. */
if ((ret == 1) && (ecc_map(r, prime, mp) != MP_OKAY)) {
WOLFSSL_MSG("ecc_map nqm error");
ret = 0;
}
/* Dispose of allocated temporary point. */
wc_ecc_del_point(tmp);
#endif
return ret;
}
/* Sum the scalar multiplications of the base point and n, and q and m.
*
* r = base point * n + q * m
*
* @param [in] curveIdx Index of curve in ecc_set.
* @param [out] r EC point that is result of operation.
* @param [in] n Scalar to multiply by base point. May be NULL.
* @param [in] q EC point to be scalar multiplied. May be NULL.
* @param [in] m Scalar to multiply q by. May be NULL.
* @return 1 on success.
* @return 0 on error.
*/
static int wolfssl_ec_point_mul(int curveIdx, ecc_point* r, mp_int* n,
ecc_point* q, mp_int* m)
{
int ret = 1;
#ifdef WOLFSSL_SMALL_STACK
mp_int* a = NULL;
mp_int* prime = NULL;
#else
mp_int a[1], prime[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
/* Allocate MP integer for curve parameter: a. */
a = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (a == NULL) {
ret = 0;
}
if (ret == 1) {
/* Allocate MP integer for curve parameter: prime. */
prime = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (prime == NULL) {
ret = 0;
}
}
#endif
/* Initialize the MP ints. */
if ((ret == 1) && (mp_init_multi(prime, a, NULL, NULL, NULL, NULL) !=
MP_OKAY)) {
WOLFSSL_MSG("mp_init_multi error");
ret = 0;
}
/* Read the curve parameter: prime. */
if ((ret == 1) && (mp_read_radix(prime, ecc_sets[curveIdx].prime,
MP_RADIX_HEX) != MP_OKAY)) {
WOLFSSL_MSG("mp_read_radix prime error");
ret = 0;
}
/* Read the curve parameter: a. */
if ((ret == 1) && (mp_read_radix(a, ecc_sets[curveIdx].Af,
MP_RADIX_HEX) != MP_OKAY)) {
WOLFSSL_MSG("mp_read_radix a error");
ret = 0;
}
if ((ret == 1) && (n != NULL)) {
/* Get generator - base point. */
#if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)
if ((ret == 1) && (wc_ecc_get_generator(r, curveIdx) != MP_OKAY)) {
WOLFSSL_MSG("wc_ecc_get_generator error");
ret = 0;
}
#else
/* wc_ecc_get_generator is not defined in the FIPS v2 module. */
/* Read generator (base point) x-ordinate. */
if ((ret == 1) && (mp_read_radix(r->x, ecc_sets[curveIdx].Gx,
MP_RADIX_HEX) != MP_OKAY)) {
WOLFSSL_MSG("mp_read_radix Gx error");
ret = 0;
}
/* Read generator (base point) y-ordinate. */
if ((ret == 1) && (mp_read_radix(r->y, ecc_sets[curveIdx].Gy,
MP_RADIX_HEX) != MP_OKAY)) {
WOLFSSL_MSG("mp_read_radix Gy error");
ret = 0;
}
/* z-ordinate is one as point is affine. */
if ((ret == 1) && (mp_set(r->z, 1) != MP_OKAY)) {
WOLFSSL_MSG("mp_set Gz error");
ret = 0;
}
#endif /* NOPT_FIPS_VERSION == 2 */
}
if ((ret == 1) && (n != NULL) && (q != NULL) && (m != NULL)) {
/* r = base point * n + q * m */
ret = ec_mul2add(r, r, n, q, m, a, prime);
}
/* Not all values present, see if we are only doing base point * n. */
else if ((ret == 1) && (n != NULL)) {
/* r = base point * n */
if (wc_ecc_mulmod(n, r, r, a, prime, 1) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_mulmod gn error");
ret = 0;
}
}
/* Not all values present, see if we are only doing q * m. */
else if ((ret == 1) && (q != NULL) && (m != NULL)) {
/* r = q * m */
if (wc_ecc_mulmod(m, q, r, a, prime, 1) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_mulmod qm error");
ret = 0;
}
}
/* No values to use. */
else if (ret == 1) {
/* Set result to infinity as no values passed in. */
mp_zero(r->x);
mp_zero(r->y);
mp_zero(r->z);
}
mp_clear(a);
mp_clear(prime);
#ifdef WOLFSSL_SMALL_STACK
XFREE(a, NULL, DYNAMIC_TYPE_BIGINT);
XFREE(prime, NULL, DYNAMIC_TYPE_BIGINT);
#endif
return ret;
}
/* Sum the scalar multiplications of the base point and n, and q and m.
*
* r = base point * n + q * m
*
* Return code compliant with OpenSSL.
*
* @param [in] group EC group.
* @param [out] r EC point that is result of operation.
* @param [in] n Scalar to multiply by base point. May be NULL.
* @param [in] q EC point to be scalar multiplied. May be NULL.
* @param [in] m Scalar to multiply q by. May be NULL.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_EC_POINT_mul(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *r,
const WOLFSSL_BIGNUM *n, const WOLFSSL_EC_POINT *q, const WOLFSSL_BIGNUM *m,
WOLFSSL_BN_CTX *ctx)
{
int ret = 1;
/* No BN operations performed. */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_mul");
/* Validate parameters. */
if ((group == NULL) || (r == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_mul NULL error");
ret = 0;
}
/* Ensure the internal representation of the EC point q is setup. */
if ((ret == 1) && (q != NULL) && (ec_point_setup(q) != 1)) {
WOLFSSL_MSG("ec_point_setup error");
ret = 0;
}
#ifdef DEBUG_WOLFSSL
if (ret == 1) {
int nid = wolfSSL_EC_GROUP_get_curve_name(group);
const char* curve = wolfSSL_OBJ_nid2ln(nid);
const char* nistName = wolfSSL_EC_curve_nid2nist(nid);
char* num;
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_mul input q", q);
num = wolfSSL_BN_bn2hex(n);
WOLFSSL_MSG_EX("\tn = %s", num);
XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL);
num = wolfSSL_BN_bn2hex(m);
WOLFSSL_MSG_EX("\tm = %s", num);
XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL);
if (curve != NULL)
WOLFSSL_MSG_EX("curve name: %s", curve);
if (nistName != NULL)
WOLFSSL_MSG_EX("nist curve name: %s", nistName);
}
#endif
if (ret == 1) {
mp_int* ni = (n != NULL) ? (mp_int*)n->internal : NULL;
ecc_point* qi = (q != NULL) ? (ecc_point*)q->internal : NULL;
mp_int* mi = (m != NULL) ? (mp_int*)m->internal : NULL;
/* Perform multiplication with wolfCrypt objects. */
ret = wolfssl_ec_point_mul(group->curve_idx, (ecc_point*)r->internal,
ni, qi, mi);
}
/* Only on success is the internal point guaranteed to be set. */
if (r != NULL) {
r->inSet = (ret == 1);
}
/* Copy internal EC point values out to external EC point. */
if ((ret == 1) && (ec_point_external_set(r) != 1)) {
WOLFSSL_MSG("ec_point_external_set error");
ret = 0;
}
#ifdef DEBUG_WOLFSSL
if (ret == 1) {
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_mul result", r);
}
#endif
return ret;
}
#endif /* !WOLFSSL_ATECC508A && !WOLFSSL_ATECC608A && !HAVE_SELFTEST &&
* !WOLFSSL_SP_MATH */
/* Invert the point on the curve.
* (x, y) -> (x, -y) = (x, (prime - y) % prime)
*
* @param [in] curveIdx Index of curve in ecc_set.
* @param [in, out] point EC point to invert.
* @return 1 on success.
* @return 0 on error.
*/
static int wolfssl_ec_point_invert(int curveIdx, ecc_point* point)
{
int ret = 1;
#ifdef WOLFSSL_SMALL_STACK
mp_int* prime = NULL;
#else
mp_int prime[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
/* Allocate memory for an MP int to hold the prime of the curve. */
prime = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (prime == NULL) {
ret = 0;
}
#endif
/* Initialize MP int. */
if ((ret == 1) && (mp_init(prime) != MP_OKAY)) {
WOLFSSL_MSG("mp_init_multi error");
ret = 0;
}
/* Read the curve parameter: prime. */
if ((ret == 1) && (mp_read_radix(prime, ecc_sets[curveIdx].prime,
MP_RADIX_HEX) != MP_OKAY)) {
WOLFSSL_MSG("mp_read_radix prime error");
ret = 0;
}
/* y = (prime - y) mod prime. */
if ((ret == 1) && (!mp_iszero(point->y)) && (mp_sub(prime, point->y,
point->y) != MP_OKAY)) {
WOLFSSL_MSG("mp_sub error");
ret = 0;
}
/* Dispose of memory associated with MP. */
mp_free(prime);
#ifdef WOLFSSL_SMALL_STACK
/* Dispose of dynamically allocated temporaries. */
XFREE(prime, NULL, DYNAMIC_TYPE_BIGINT);
#endif
return ret;
}
/* Invert the point on the curve.
* (x, y) -> (x, -y) = (x, (prime - y) % prime)
*
* @param [in] group EC group.
* @param [in, out] point EC point to invert.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_EC_POINT_invert(const WOLFSSL_EC_GROUP *group,
WOLFSSL_EC_POINT *point, WOLFSSL_BN_CTX *ctx)
{
int ret = 1;
/* No BN operations performed. */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_invert");
/* Validate parameters. */
if ((group == NULL) || (point == NULL) || (point->internal == NULL)) {
ret = 0;
}
/* Ensure internal representation of point is setup. */
if ((ret == 1) && (ec_point_setup(point) != 1)) {
ret = 0;
}
#ifdef DEBUG_WOLFSSL
if (ret == 1) {
int nid = wolfSSL_EC_GROUP_get_curve_name(group);
const char* curve = wolfSSL_OBJ_nid2ln(nid);
const char* nistName = wolfSSL_EC_curve_nid2nist(nid);
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_invert input", point);
if (curve != NULL)
WOLFSSL_MSG_EX("curve name: %s", curve);
if (nistName != NULL)
WOLFSSL_MSG_EX("nist curve name: %s", nistName);
}
#endif
if (ret == 1 && !wolfSSL_BN_is_one(point->Z)) {
#if !defined(WOLFSSL_SP_MATH) && !defined(WOLF_CRYPTO_CB_ONLY_ECC)
if (ec_point_convert_to_affine(group, point) != 0)
ret = 0;
#else
WOLFSSL_MSG("wolfSSL_EC_POINT_invert called on non-affine point");
ret = 0;
#endif
}
if (ret == 1) {
/* Perform inversion using wolfCrypt objects. */
ret = wolfssl_ec_point_invert(group->curve_idx,
(ecc_point*)point->internal);
}
/* Set the external EC point representation based on internal. */
if ((ret == 1) && (ec_point_external_set(point) != 1)) {
WOLFSSL_MSG("ec_point_external_set error");
ret = 0;
}
#ifdef DEBUG_WOLFSSL
if (ret == 1) {
wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_invert result", point);
}
#endif
return ret;
}
#ifdef WOLFSSL_EC_POINT_CMP_JACOBIAN
/* Compare two points on a the same curve.
*
* (Ax, Ay, Az) => (Ax / (Az ^ 2), Ay / (Az ^ 3))
* (Bx, By, Bz) => (Bx / (Bz ^ 2), By / (Bz ^ 3))
* When equal:
* (Ax / (Az ^ 2), Ay / (Az ^ 3)) = (Bx / (Bz ^ 2), By / (Bz ^ 3))
* => (Ax * (Bz ^ 2), Ay * (Bz ^ 3)) = (Bx * (Az ^ 2), By * (Az ^ 3))
*
* @param [in] group EC group.
* @param [in] a EC point to compare.
* @param [in] b EC point to compare.
* @return 0 when equal.
* @return 1 when different.
* @return -1 on error.
*/
static int ec_point_cmp_jacobian(const WOLFSSL_EC_GROUP* group,
const WOLFSSL_EC_POINT *a, const WOLFSSL_EC_POINT *b, WOLFSSL_BN_CTX *ctx)
{
int ret = 0;
BIGNUM* at = BN_new();
BIGNUM* bt = BN_new();
BIGNUM* az = BN_new();
BIGNUM* bz = BN_new();
BIGNUM* mod = BN_new();
/* Check that the big numbers were allocated. */
if ((at == NULL) || (bt == NULL) || (az == NULL) || (bz == NULL) ||
(mod == NULL)) {
ret = -1;
}
/* Get the modulus for the curve. */
if ((ret == 0) &&
(BN_hex2bn(&mod, ecc_sets[group->curve_idx].prime) != 1)) {
ret = -1;
}
if (ret == 0) {
/* bt = Bx * (Az ^ 2). When Az is one then just copy. */
if (BN_is_one(a->Z)) {
if (BN_copy(bt, b->X) == NULL) {
ret = -1;
}
}
/* az = Az ^ 2 */
else if ((BN_mod_mul(az, a->Z, a->Z, mod, ctx) != 1)) {
ret = -1;
}
/* bt = Bx * az = Bx * (Az ^ 2) */
else if (BN_mod_mul(bt, b->X, az, mod, ctx) != 1) {
ret = -1;
}
}
if (ret == 0) {
/* at = Ax * (Bz ^ 2). When Bz is one then just copy. */
if (BN_is_one(b->Z)) {
if (BN_copy(at, a->X) == NULL) {
ret = -1;
}
}
/* bz = Bz ^ 2 */
else if (BN_mod_mul(bz, b->Z, b->Z, mod, ctx) != 1) {
ret = -1;
}
/* at = Ax * bz = Ax * (Bz ^ 2) */
else if (BN_mod_mul(at, a->X, bz, mod, ctx) != 1) {
ret = -1;
}
}
/* Compare x-ordinates. */
if ((ret == 0) && (BN_cmp(at, bt) != 0)) {
ret = 1;
}
if (ret == 0) {
/* bt = By * (Az ^ 3). When Az is one then just copy. */
if (BN_is_one(a->Z)) {
if (BN_copy(bt, b->Y) == NULL) {
ret = -1;
}
}
/* az = az * Az = Az ^ 3 */
else if ((BN_mod_mul(az, az, a->Z, mod, ctx) != 1)) {
ret = -1;
}
/* bt = By * az = By * (Az ^ 3) */
else if (BN_mod_mul(bt, b->Y, az, mod, ctx) != 1) {
ret = -1;
}
}
if (ret == 0) {
/* at = Ay * (Bz ^ 3). When Bz is one then just copy. */
if (BN_is_one(b->Z)) {
if (BN_copy(at, a->Y) == NULL) {
ret = -1;
}
}
/* bz = bz * Bz = Bz ^ 3 */
else if (BN_mod_mul(bz, bz, b->Z, mod, ctx) != 1) {
ret = -1;
}
/* at = Ay * bz = Ay * (Bz ^ 3) */
else if (BN_mod_mul(at, a->Y, bz, mod, ctx) != 1) {
ret = -1;
}
}
/* Compare y-ordinates. */
if ((ret == 0) && (BN_cmp(at, bt) != 0)) {
ret = 1;
}
BN_free(mod);
BN_free(bz);
BN_free(az);
BN_free(bt);
BN_free(at);
return ret;
}
#endif
/* Compare two points on a the same curve.
*
* Return code compliant with OpenSSL.
*
* @param [in] group EC group.
* @param [in] a EC point to compare.
* @param [in] b EC point to compare.
* @param [in] ctx Context to use for BN operations. Unused.
* @return 0 when equal.
* @return 1 when different.
* @return -1 on error.
*/
int wolfSSL_EC_POINT_cmp(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *a, const WOLFSSL_EC_POINT *b, WOLFSSL_BN_CTX *ctx)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_EC_POINT_cmp");
/* Validate parameters. */
if ((group == NULL) || (a == NULL) || (a->internal == NULL) ||
(b == NULL) || (b->internal == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_cmp Bad arguments");
ret = -1;
}
if (ret != -1) {
#ifdef WOLFSSL_EC_POINT_CMP_JACOBIAN
/* If same Z ordinate then no need to convert to affine. */
if (BN_cmp(a->Z, b->Z) == 0) {
/* Compare */
ret = ((BN_cmp(a->X, b->X) != 0) || (BN_cmp(a->Y, b->Y) != 0));
}
else {
ret = ec_point_cmp_jacobian(group, a, b, ctx);
}
#else
/* No BN operations performed. */
(void)ctx;
ret = (wc_ecc_cmp_point((ecc_point*)a->internal,
(ecc_point*)b->internal) != MP_EQ);
#endif
}
return ret;
}
/* Copy EC point.
*
* @param [out] dest EC point to copy into.
* @param [in] src EC point to copy.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_EC_POINT_copy(WOLFSSL_EC_POINT *dest, const WOLFSSL_EC_POINT *src)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_EC_POINT_copy");
/* Validate parameters. */
if ((dest == NULL) || (src == NULL)) {
ret = 0;
}
/* Ensure internal EC point of src is setup. */
if ((ret == 1) && (ec_point_setup(src) != 1)) {
ret = 0;
}
/* Copy internal EC points. */
if ((ret == 1) && (wc_ecc_copy_point((ecc_point*)src->internal,
(ecc_point*)dest->internal) != MP_OKAY)) {
ret = 0;
}
if (ret == 1) {
/* Destinatation internal point is set. */
dest->inSet = 1;
/* Set the external EC point of dest based on internal. */
if (ec_point_external_set(dest) != 1) {
ret = 0;
}
}
return ret;
}
/* Checks whether point is at infinity.
*
* Return code compliant with OpenSSL.
*
* @param [in] group EC group.
* @param [in] point EC point to check.
* @return 1 when at infinity.
* @return 0 when not at infinity.
*/
int wolfSSL_EC_POINT_is_at_infinity(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_EC_POINT_is_at_infinity");
/* Validate parameters. */
if ((group == NULL) || (point == NULL) || (point->internal == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_is_at_infinity NULL error");
ret = 0;
}
/* Ensure internal EC point is setup. */
if ((ret == 1) && (ec_point_setup(point) != 1)) {
ret = 0;
}
if (ret == 1) {
#ifndef WOLF_CRYPTO_CB_ONLY_ECC
/* Check for infinity. */
ret = wc_ecc_point_is_at_infinity((ecc_point*)point->internal);
if (ret < 0) {
WOLFSSL_MSG("ecc_point_is_at_infinity failure");
/* Error return is 0 by OpenSSL. */
ret = 0;
}
#else
WOLFSSL_MSG("ecc_point_is_at_infinitiy compiled out");
ret = 0;
#endif
}
return ret;
}
#endif /* OPENSSL_EXTRA */
/* End EC_POINT */
/* Start EC_KEY */
#ifdef OPENSSL_EXTRA
/*
* EC key constructor/deconstructor APIs
*/
/* Allocate a new EC key.
*
* Not OpenSSL API.
*
* @param [in] heap Heap hint for dynamic memory allocation.
* @param [in] devId Device identifier value.
* @return New, allocated EC key on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new_ex(void* heap, int devId)
{
WOLFSSL_EC_KEY *key = NULL;
int err = 0;
WOLFSSL_ENTER("wolfSSL_EC_KEY_new");
/* Allocate memory for EC key. */
key = (WOLFSSL_EC_KEY*)XMALLOC(sizeof(WOLFSSL_EC_KEY), heap,
DYNAMIC_TYPE_ECC);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_KEY failure");
err = 1;
}
if (!err) {
/* Reset all fields to 0. */
XMEMSET(key, 0, sizeof(WOLFSSL_EC_KEY));
/* Cache heap hint. */
key->heap = heap;
/* Initialize fields to defaults. */
key->form = POINT_CONVERSION_UNCOMPRESSED;
/* Initialize reference count. */
wolfSSL_RefInit(&key->ref, &err);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
}
if (!err) {
#endif
/* Allocate memory for internal EC key representation. */
key->internal = (ecc_key*)XMALLOC(sizeof(ecc_key), heap,
DYNAMIC_TYPE_ECC);
if (key->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc ecc key failure");
err = 1;
}
}
if (!err) {
/* Initialize wolfCrypt EC key. */
if (wc_ecc_init_ex((ecc_key*)key->internal, heap, devId) != 0) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new init ecc key failure");
err = 1;
}
}
if (!err) {
/* Group unknown at creation */
key->group = wolfSSL_EC_GROUP_new_by_curve_name(NID_undef);
if (key->group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_GROUP failure");
err = 1;
}
}
if (!err) {
/* Allocate a point as public key. */
key->pub_key = wolfSSL_EC_POINT_new(key->group);
if (key->pub_key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new failure");
err = 1;
}
}
if (!err) {
/* Allocate a BN as private key. */
key->priv_key = wolfSSL_BN_new();
if (key->priv_key == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new failure");
err = 1;
}
}
if (err) {
/* Dispose of EC key on error. */
wolfSSL_EC_KEY_free(key);
key = NULL;
}
/* Return new EC key object. */
return key;
}
/* Allocate a new EC key.
*
* @return New, allocated EC key on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new(void)
{
return wolfSSL_EC_KEY_new_ex(NULL, INVALID_DEVID);
}
/* Create new EC key with the group having the specified numeric ID.
*
* @param [in] nid Numeric ID.
* @return New, allocated EC key on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new_by_curve_name(int nid)
{
WOLFSSL_EC_KEY *key;
int err = 0;
WOLFSSL_ENTER("wolfSSL_EC_KEY_new_by_curve_name");
/* Allocate empty, EC key. */
key = wolfSSL_EC_KEY_new();
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new failure");
err = 1;
}
if (!err) {
/* Set group to be nid. */
ec_group_set_nid(key->group, nid);
if (key->group->curve_idx == -1) {
wolfSSL_EC_KEY_free(key);
key = NULL;
}
}
/* Return the new EC key object. */
return key;
}
/* Dispose of the EC key and allocated data.
*
* Cannot use key after this call.
*
* @param [in] key EC key to free.
*/
void wolfSSL_EC_KEY_free(WOLFSSL_EC_KEY *key)
{
int doFree = 0;
int err;
(void)err;
WOLFSSL_ENTER("wolfSSL_EC_KEY_free");
if (key != NULL) {
void* heap = key->heap;
/* Decrement reference count. */
wolfSSL_RefDec(&key->ref, &doFree, &err);
if (doFree) {
/* Dispose of allocated reference counting data. */
wolfSSL_RefFree(&key->ref);
/* Dispose of private key. */
wolfSSL_BN_free(key->priv_key);
wolfSSL_EC_POINT_free(key->pub_key);
wolfSSL_EC_GROUP_free(key->group);
if (key->internal != NULL) {
/* Dispose of wolfCrypt representation of EC key. */
wc_ecc_free((ecc_key*)key->internal);
XFREE(key->internal, heap, DYNAMIC_TYPE_ECC);
}
/* Set back to NULLs for safety. */
ForceZero(key, sizeof(*key));
/* Dispose of the memory associated with the EC key. */
XFREE(key, heap, DYNAMIC_TYPE_ECC);
(void)heap;
}
}
}
/* Increments ref count of EC key.
*
* @param [in, out] key EC key.
* @return 1 on success
* @return 0 on error
*/
int wolfSSL_EC_KEY_up_ref(WOLFSSL_EC_KEY* key)
{
int err = 1;
if (key != NULL) {
wolfSSL_RefInc(&key->ref, &err);
}
return !err;
}
#ifndef NO_CERTS
#if defined(OPENSSL_ALL)
/* Copy the internal, wolfCrypt EC key.
*
* @param [in, out] dst Destination wolfCrypt EC key.
* @param [in] src Source wolfCrypt EC key.
* @return 0 on success.
* @return Negative on error.
*/
static int wolfssl_ec_key_int_copy(ecc_key* dst, const ecc_key* src)
{
int ret;
/* Copy public key. */
#if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)
ret = wc_ecc_copy_point(&src->pubkey, &dst->pubkey);
#else
ret = wc_ecc_copy_point((ecc_point*)&src->pubkey, &dst->pubkey);
#endif
if (ret != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_copy_point error");
}
if (ret == 0) {
/* Copy private key. */
ret = mp_copy(wc_ecc_key_get_priv(src), wc_ecc_key_get_priv(dst));
if (ret != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
}
}
if (ret == 0) {
/* Copy domain parameters. */
if (src->dp) {
ret = wc_ecc_set_curve(dst, 0, src->dp->id);
if (ret != 0) {
WOLFSSL_MSG("wc_ecc_set_curve error");
}
}
}
if (ret == 0) {
/* Copy the other components. */
dst->type = src->type;
dst->idx = src->idx;
dst->state = src->state;
dst->flags = src->flags;
}
return ret;
}
/* Copies ecc_key into new WOLFSSL_EC_KEY object
*
* Copies the internal representation as well.
*
* @param [in] src EC key to duplicate.
*
* @return EC key on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_dup(const WOLFSSL_EC_KEY *src)
{
int err = 0;
WOLFSSL_EC_KEY* newKey = NULL;
WOLFSSL_ENTER("wolfSSL_EC_KEY_dup");
/* Validate EC key. */
if ((src == NULL) || (src->internal == NULL) || (src->group == NULL) ||
(src->pub_key == NULL) || (src->priv_key == NULL)) {
WOLFSSL_MSG("src NULL error");
err = 1;
}
if (!err) {
/* Create a new, empty key. */
newKey = wolfSSL_EC_KEY_new();
if (newKey == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new error");
err = 1;
}
}
if (!err) {
/* Copy internal EC key. */
if (wolfssl_ec_key_int_copy((ecc_key*)newKey->internal,
(ecc_key*)src->internal) != 0) {
WOLFSSL_MSG("Copying internal EC key error");
err = 1;
}
}
if (!err) {
/* Internal key set. */
newKey->inSet = 1;
/* Copy group */
err = wolfssl_ec_group_copy(newKey->group, src->group);
}
/* Copy public key. */
if ((!err) && (wolfSSL_EC_POINT_copy(newKey->pub_key, src->pub_key) != 1)) {
WOLFSSL_MSG("Copying EC public key error");
err = 1;
}
if (!err) {
/* Set header size of private key in PKCS#8 format.*/
newKey->pkcs8HeaderSz = src->pkcs8HeaderSz;
/* Copy private key. */
if (wolfSSL_BN_copy(newKey->priv_key, src->priv_key) == NULL) {
WOLFSSL_MSG("Copying EC private key error");
err = 1;
}
}
if (err) {
/* Dispose of EC key on error. */
wolfSSL_EC_KEY_free(newKey);
newKey = NULL;
}
/* Return the new EC key. */
return newKey;
}
#endif /* OPENSSL_ALL */
#endif /* !NO_CERTS */
/*
* EC key to/from bin/octet APIs
*/
/* Create an EC key from the octet encoded public key.
*
* Behaviour checked against OpenSSL.
*
* @param [out] key Reference to EC key. Must pass in a valid object with
* group set.
* @param [in, out] in On in, reference to buffer that contains data.
* On out, reference to buffer after public key data.
* @param [in] len Length of data in the buffer. Must be length of the
* encoded public key.
* @return Allocated EC key on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY *wolfSSL_o2i_ECPublicKey(WOLFSSL_EC_KEY **key,
const unsigned char **in, long len)
{
int err = 0;
WOLFSSL_EC_KEY* ret = NULL;
WOLFSSL_ENTER("wolfSSL_o2i_ECPublicKey");
/* Validate parameters: EC group needed to perform import. */
if ((key == NULL) || (*key == NULL) || ((*key)->group == NULL) ||
(in == NULL) || (*in == NULL) || (len <= 0)) {
WOLFSSL_MSG("wolfSSL_o2i_ECPublicKey Bad arguments");
err = 1;
}
if (!err) {
/* Return the EC key object passed in. */
ret = *key;
/* Import point into public key field. */
if (wolfSSL_EC_POINT_oct2point(ret->group, ret->pub_key, *in,
(size_t)len, NULL) != 1) {
WOLFSSL_MSG("wolfSSL_EC_POINT_oct2point error");
ret = NULL;
err = 1;
}
}
if (!err) {
/* Assumed length passed in is all the data. */
*in += len;
}
return ret;
}
/* Puts the encoded public key into out.
*
* Passing in NULL for out returns length only.
* Passing in NULL for *out has buffer allocated, encoded into and passed back.
* Passing non-NULL for *out has it encoded into and pointer moved past.
*
* @param [in] key EC key to encode.
* @param [in, out] out Reference to buffer to encode into. May be NULL or
* point to NULL.
* @return Length of encoding in bytes on success.
* @return 0 on error.
*/
int wolfSSL_i2o_ECPublicKey(const WOLFSSL_EC_KEY *key, unsigned char **out)
{
int ret = 1;
size_t len = 0;
int form = POINT_CONVERSION_UNCOMPRESSED;
WOLFSSL_ENTER("wolfSSL_i2o_ECPublicKey");
/* Validate parameters. */
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_i2o_ECPublicKey Bad arguments");
ret = 0;
}
/* Ensure the external key data is set from the internal EC key. */
if ((ret == 1) && (!key->exSet) && (SetECKeyExternal((WOLFSSL_EC_KEY*)
key) != 1)) {
WOLFSSL_MSG("SetECKeyExternal failure");
ret = 0;
}
if (ret == 1) {
#ifdef HAVE_COMP_KEY
/* Default to compressed form if not set */
form = (key->form != POINT_CONVERSION_UNCOMPRESSED) ?
POINT_CONVERSION_UNCOMPRESSED :
POINT_CONVERSION_COMPRESSED;
#endif
/* Calculate length of point encoding. */
len = wolfSSL_EC_POINT_point2oct(key->group, key->pub_key, form, NULL,
0, NULL);
}
/* Encode if length calculated and pointer supplied to update. */
if ((ret == 1) && (len != 0) && (out != NULL)) {
unsigned char *tmp = NULL;
/* Allocate buffer for encoding if no buffer supplied. */
if (*out == NULL) {
tmp = (unsigned char*)XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
ret = 0;
}
}
else {
/* Get buffer to encode into. */
tmp = *out;
}
/* Encode public key into buffer. */
if ((ret == 1) && (wolfSSL_EC_POINT_point2oct(key->group, key->pub_key,
form, tmp, len, NULL) == 0)) {
ret = 0;
}
if (ret == 1) {
/* Return buffer if allocated. */
if (*out == NULL) {
*out = tmp;
}
else {
/* Step over encoded data if not allocated. */
*out += len;
}
}
else if (*out == NULL) {
/* Dispose of allocated buffer. */
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
if (ret == 1) {
/* Return length on success. */
ret = (int)len;
}
return ret;
}
#ifdef HAVE_ECC_KEY_IMPORT
/* Create a EC key from the DER encoded private key.
*
* @param [out] key Reference to EC key.
* @param [in, out] in On in, reference to buffer that contains DER data.
* On out, reference to buffer after private key data.
* @param [in] long Length of data in the buffer. May be larger than the
* length of the encoded private key.
* @return Allocated EC key on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY* wolfSSL_d2i_ECPrivateKey(WOLFSSL_EC_KEY** key,
const unsigned char** in, long len)
{
int err = 0;
word32 idx = 0;
WOLFSSL_EC_KEY* ret = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_ECPrivateKey");
/* Validate parameters. */
if ((in == NULL) || (*in == NULL) || (len <= 0)) {
WOLFSSL_MSG("wolfSSL_d2i_ECPrivateKey Bad arguments");
err = 1;
}
/* Create a new, empty EC key. */
if ((!err) && ((ret = wolfSSL_EC_KEY_new()) == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new error");
err = 1;
}
/* Decode the private key DER data into internal EC key. */
if ((!err) && (wc_EccPrivateKeyDecode(*in, &idx, (ecc_key*)ret->internal,
(word32)len) != 0)) {
WOLFSSL_MSG("wc_EccPrivateKeyDecode error");
err = 1;
}
if (!err) {
/* Internal EC key setup. */
ret->inSet = 1;
/* Set the EC key from the internal values. */
if (SetECKeyExternal(ret) != 1) {
WOLFSSL_MSG("SetECKeyExternal error");
err = 1;
}
}
if (!err) {
/* Move buffer on to next byte after data used. */
*in += idx;
if (key) {
/* Return new EC key through reference. */
*key = ret;
}
}
if (err && (ret != NULL)) {
/* Dispose of allocated EC key. */
wolfSSL_EC_KEY_free(ret);
ret = NULL;
}
return ret;
}
#endif /* HAVE_ECC_KEY_IMPORT */
/* Enecode the private key of the EC key into the buffer as DER.
*
* @param [in] key EC key to encode.
* @param [in, out] out On in, reference to buffer to place DER encoding into.
* On out, reference to buffer adter the encoding.
* May be NULL.
* @return Length of DER encoding on success.
* @return 0 on error.
*/
int wolfSSL_i2d_ECPrivateKey(const WOLFSSL_EC_KEY *key, unsigned char **out)
{
int err = 0;
word32 len = 0;
WOLFSSL_ENTER("wolfSSL_i2d_ECPrivateKey");
/* Validate parameters. */
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_i2d_ECPrivateKey Bad arguments");
err = 1;
}
/* Update the internal EC key if not set. */
if ((!err) && (!key->inSet) && (SetECKeyInternal((WOLFSSL_EC_KEY*)key) !=
1)) {
WOLFSSL_MSG("SetECKeyInternal error");
err = 1;
}
/* Calculate the length of the private key DER encoding using internal EC
* key. */
if ((!err) && ((int)(len = (word32)wc_EccKeyDerSize((ecc_key*)key->internal,
0)) <= 0)) {
WOLFSSL_MSG("wc_EccKeyDerSize error");
err = 1;
}
/* Only return length when out is NULL. */
if ((!err) && (out != NULL)) {
unsigned char* buf = NULL;
/* Must have a buffer to encode into. */
if (*out == NULL) {
/* Allocate a new buffer of appropriate length. */
buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
/* Error and return 0. */
err = 1;
len = 0;
}
else {
/* Return the allocated buffer. */
*out = buf;
}
}
/* Encode the internal EC key as a private key in DER format. */
if ((!err) && wc_EccPrivateKeyToDer((ecc_key*)key->internal, *out,
len) < 0) {
WOLFSSL_MSG("wc_EccPrivateKeyToDer error");
err = 1;
}
else if (buf != *out) {
/* Move the reference to byte past encoded private key. */
*out += len;
}
/* Dispose of any allocated buffer on error. */
if (err && (*out == buf)) {
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
*out = NULL;
}
}
return (int)len;
}
/* Load private key into EC key from DER encoding.
*
* Not an OpenSSL compatibility API.
*
* @param [in, out] key EC key to put private key values into.
* @param [in] derBuf Buffer holding DER encoding.
* @param [in] derSz Size of DER encoding in bytes.
* @return 1 on success.
* @return -1 on error.
*/
int wolfSSL_EC_KEY_LoadDer(WOLFSSL_EC_KEY* key, const unsigned char* derBuf,
int derSz)
{
return wolfSSL_EC_KEY_LoadDer_ex(key, derBuf, derSz,
WOLFSSL_EC_KEY_LOAD_PRIVATE);
}
/* Load private/public key into EC key from DER encoding.
*
* Not an OpenSSL compatibility API.
*
* @param [in, out] key EC key to put private/public key values into.
* @param [in] derBuf Buffer holding DER encoding.
* @param [in] derSz Size of DER encoding in bytes.
* @param [in] opt Key type option. Valid values:
* WOLFSSL_EC_KEY_LOAD_PRIVATE,
* WOLFSSL_EC_KEY_LOAD_PUBLIC.
* @return 1 on success.
* @return -1 on error.
*/
int wolfSSL_EC_KEY_LoadDer_ex(WOLFSSL_EC_KEY* key, const unsigned char* derBuf,
int derSz, int opt)
{
int res = 1;
int ret;
word32 idx = 0;
word32 algId;
WOLFSSL_ENTER("wolfSSL_EC_KEY_LoadDer");
/* Validate parameters. */
if ((key == NULL) || (key->internal == NULL) || (derBuf == NULL) ||
(derSz <= 0)) {
WOLFSSL_MSG("Bad function arguments");
res = -1;
}
if ((res == 1) && (opt != WOLFSSL_EC_KEY_LOAD_PRIVATE) &&
(opt != WOLFSSL_EC_KEY_LOAD_PUBLIC)) {
res = -1;
}
if (res == 1) {
/* Assume no PKCS#8 header. */
key->pkcs8HeaderSz = 0;
/* Check if input buffer has PKCS8 header. In the case that it does not
* have a PKCS8 header then do not error out.
*/
if ((ret = ToTraditionalInline_ex((const byte*)derBuf, &idx,
(word32)derSz, &algId)) > 0) {
WOLFSSL_MSG("Found PKCS8 header");
key->pkcs8HeaderSz = (word16)idx;
res = 1;
}
/* Error out on parsing error. */
else if (ret != ASN_PARSE_E) {
WOLFSSL_MSG("Unexpected error with trying to remove PKCS8 header");
res = -1;
}
}
if (res == 1) {
/* Load into internal EC key based on key type option. */
if (opt == WOLFSSL_EC_KEY_LOAD_PRIVATE) {
ret = wc_EccPrivateKeyDecode(derBuf, &idx, (ecc_key*)key->internal,
(word32)derSz);
}
else {
ret = wc_EccPublicKeyDecode(derBuf, &idx, (ecc_key*)key->internal,
(word32)derSz);
if (ret < 0) {
ecc_key *tmp = (ecc_key*)XMALLOC(sizeof(ecc_key),
((ecc_key*)key->internal)->heap, DYNAMIC_TYPE_ECC);
if (tmp == NULL) {
ret = -1;
}
else {
/* We now try again as x.963 [point type][x][opt y]. */
ret = wc_ecc_init_ex(tmp, ((ecc_key*)key->internal)->heap,
INVALID_DEVID);
if (ret == 0) {
ret = wc_ecc_import_x963(derBuf, (word32)derSz, tmp);
if (ret == 0) {
/* Take ownership of new key - set tmp to the old
* key which will then be freed below. */
ecc_key *old = (ecc_key *)key->internal;
key->internal = tmp;
tmp = old;
idx = (word32)derSz;
}
wc_ecc_free(tmp);
}
XFREE(tmp, ((ecc_key*)key->internal)->heap,
DYNAMIC_TYPE_ECC);
}
}
}
if (ret < 0) {
/* Error returned from wolfSSL. */
if (opt == WOLFSSL_EC_KEY_LOAD_PRIVATE) {
WOLFSSL_MSG("wc_EccPrivateKeyDecode failed");
}
else {
WOLFSSL_MSG("wc_EccPublicKeyDecode failed");
}
res = -1;
}
/* Internal key updated - update whether it is a valid key. */
key->inSet = (res == 1);
}
/* Set the external EC key based on value in internal. */
if ((res == 1) && (SetECKeyExternal(key) != 1)) {
WOLFSSL_MSG("SetECKeyExternal failed");
res = -1;
}
return res;
}
/*
* EC key PEM APIs
*/
#if (defined(WOLFSSL_KEY_GEN) && !defined(NO_FILESYSTEM)) || \
(!defined(NO_BIO) && (defined(WOLFSSL_KEY_GEN) || \
defined(HAVE_ECC) && defined(HAVE_ECC_KEY_EXPORT)))
/* Encode the EC public key as DER.
*
* Also used by pem_write_pubkey().
*
* @param [in] key EC key to encode.
* @param [out] der Pointer through which buffer is returned.
* @param [in] heap Heap hint.
* @return Size of encoding on success.
* @return 0 on error.
*/
static int wolfssl_ec_key_to_pubkey_der(WOLFSSL_EC_KEY* key,
unsigned char** der, void* heap)
{
int sz;
unsigned char* buf = NULL;
(void)heap;
/* Calculate encoded size to allocate. */
sz = wc_EccPublicKeyDerSize((ecc_key*)key->internal, 1);
if (sz <= 0) {
WOLFSSL_MSG("wc_EccPublicKeyDerSize failed");
sz = 0;
}
if (sz > 0) {
/* Allocate memory to hold encoding. */
buf = (byte*)XMALLOC((size_t)sz, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
WOLFSSL_MSG("malloc failed");
sz = 0;
}
}
if (sz > 0) {
/* Encode public key to DER using wolfSSL. */
sz = wc_EccPublicKeyToDer((ecc_key*)key->internal, buf, (word32)sz, 1);
if (sz < 0) {
WOLFSSL_MSG("wc_EccPublicKeyToDer failed");
sz = 0;
}
}
/* Return buffer on success. */
if (sz > 0) {
*der = buf;
}
else {
/* Dispose of any dynamically allocated data not returned. */
XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return sz;
}
#endif
#if !defined(NO_FILESYSTEM) && defined(WOLFSSL_KEY_GEN)
/*
* Return code compliant with OpenSSL.
*
* @param [in] fp File pointer to write PEM encoding to.
* @param [in] key EC key to encode and write.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_PEM_write_EC_PUBKEY(XFILE fp, WOLFSSL_EC_KEY* key)
{
int ret = 1;
unsigned char* derBuf = NULL;
int derSz = 0;
WOLFSSL_ENTER("wolfSSL_PEM_write_EC_PUBKEY");
/* Validate parameters. */
if ((fp == XBADFILE) || (key == NULL)) {
WOLFSSL_MSG("Bad argument.");
return 0;
}
/* Encode public key in EC key as DER. */
derSz = wolfssl_ec_key_to_pubkey_der(key, &derBuf, key->heap);
if (derSz == 0) {
ret = 0;
}
/* Write out to file the PEM encoding of the DER. */
if ((ret == 1) && (der_write_to_file_as_pem(derBuf, derSz, fp,
ECC_PUBLICKEY_TYPE, key->heap) != 1)) {
ret = 0;
}
/* Dispose of any dynamically allocated data. */
XFREE(derBuf, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
WOLFSSL_LEAVE("wolfSSL_PEM_write_EC_PUBKEY", ret);
return ret;
}
#endif
#ifndef NO_BIO
/* Read a PEM encoded EC public key from a BIO.
*
* @param [in] bio BIO to read EC public key from.
* @param [out] out Pointer to return EC key object through. May be NULL.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted.
* @return New EC key object on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY* wolfSSL_PEM_read_bio_EC_PUBKEY(WOLFSSL_BIO* bio,
WOLFSSL_EC_KEY** out, wc_pem_password_cb* cb, void *pass)
{
int err = 0;
WOLFSSL_EC_KEY* ec = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_EC_PUBKEY");
/* Validate parameters. */
if (bio == NULL) {
err = 1;
}
if (!err) {
/* Create an empty EC key. */
ec = wolfSSL_EC_KEY_new();
if (ec == NULL) {
err = 1;
}
}
/* Read a PEM key in to a new DER buffer. */
if ((!err) && (pem_read_bio_key(bio, cb, pass, ECC_PUBLICKEY_TYPE,
&keyFormat, &der) <= 0)) {
err = 1;
}
/* Load the EC key with the public key from the DER encoding. */
if ((!err) && (wolfSSL_EC_KEY_LoadDer_ex(ec, der->buffer, (int)der->length,
WOLFSSL_EC_KEY_LOAD_PUBLIC) != 1)) {
WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_EC_KEY");
err = 1;
}
/* Dispose of dynamically allocated data not needed anymore. */
FreeDer(&der);
if (err) {
wolfSSL_EC_KEY_free(ec);
ec = NULL;
}
/* Return EC key through out if required. */
if ((out != NULL) && (ec != NULL)) {
*out = ec;
}
return ec;
}
/* Read a PEM encoded EC private key from a BIO.
*
* @param [in] bio BIO to read EC private key from.
* @param [out] out Pointer to return EC key object through. May be NULL.
* @param [in] cb Password callback when PEM encrypted.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted.
* @return New EC key object on success.
* @return NULL on error.
*/
WOLFSSL_EC_KEY* wolfSSL_PEM_read_bio_ECPrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_EC_KEY** out, wc_pem_password_cb* cb, void *pass)
{
int err = 0;
WOLFSSL_EC_KEY* ec = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_ECPrivateKey");
/* Validate parameters. */
if (bio == NULL) {
err = 1;
}
if (!err) {
/* Create an empty EC key. */
ec = wolfSSL_EC_KEY_new();
if (ec == NULL) {
err = 1;
}
}
/* Read a PEM key in to a new DER buffer.
* To check ENC EC PRIVATE KEY, it uses PRIVATEKEY_TYPE to call
* pem_read_bio_key(), and then check key format if it is EC.
*/
if ((!err) && (pem_read_bio_key(bio, cb, pass, PRIVATEKEY_TYPE,
&keyFormat, &der) <= 0)) {
err = 1;
}
if (keyFormat != ECDSAk) {
WOLFSSL_ERROR_MSG("Error not EC key format");
err = 1;
}
/* Load the EC key with the private key from the DER encoding. */
if ((!err) && (wolfSSL_EC_KEY_LoadDer_ex(ec, der->buffer, (int)der->length,
WOLFSSL_EC_KEY_LOAD_PRIVATE) != 1)) {
WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_EC_KEY");
err = 1;
}
/* Dispose of dynamically allocated data not needed anymore. */
FreeDer(&der);
if (err) {
wolfSSL_EC_KEY_free(ec);
ec = NULL;
}
/* Return EC key through out if required. */
if ((out != NULL) && (ec != NULL)) {
*out = ec;
}
return ec;
}
#endif /* !NO_BIO */
#if defined(WOLFSSL_KEY_GEN)
#ifndef NO_BIO
/* Write out the EC public key as PEM to the BIO.
*
* @param [in] bio BIO to write PEM encoding to.
* @param [in] ec EC public key to encode.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_PEM_write_bio_EC_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ec)
{
int ret = 1;
unsigned char* derBuf = NULL;
int derSz = 0;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_EC_PUBKEY");
/* Validate parameters. */
if ((bio == NULL) || (ec == NULL)) {
WOLFSSL_MSG("Bad Function Arguments");
return 0;
}
/* Encode public key in EC key as DER. */
derSz = wolfssl_ec_key_to_pubkey_der(ec, &derBuf, ec->heap);
if (derSz == 0) {
ret = 0;
}
/* Write out to BIO the PEM encoding of the EC private key. */
if ((ret == 1) && (der_write_to_bio_as_pem(derBuf, derSz, bio,
ECC_PUBLICKEY_TYPE) != 1)) {
ret = 0;
}
/* Dispose of any dynamically allocated data. */
XFREE(derBuf, ec->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* Write out the EC private key as PEM to the BIO.
*
* Return code compliant with OpenSSL.
*
* @param [in] bio BIO to write PEM encoding to.
* @param [in] ec EC private key to encode.
* @param [in] cipher Cipher to use when PEM encrypted. May be NULL.
* @param [in] passwd Password string when PEM encrypted. May be NULL.
* @param [in] passwdSz Length of password string when PEM encrypted.
* @param [in] cb Password callback when PEM encrypted. Unused.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_PEM_write_bio_ECPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ec,
const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz,
wc_pem_password_cb* cb, void* arg)
{
int ret = 1;
unsigned char* pem = NULL;
int pLen = 0;
(void)cb;
(void)arg;
/* Validate parameters. */
if ((bio == NULL) || (ec == NULL)) {
ret = 0;
}
/* Write EC private key to PEM. */
if ((ret == 1) && (wolfSSL_PEM_write_mem_ECPrivateKey(ec, cipher, passwd,
passwdSz, &pem, &pLen) != 1)) {
ret = 0;
}
/* Write PEM to BIO. */
if ((ret == 1) && (wolfSSL_BIO_write(bio, pem, pLen) != pLen)) {
WOLFSSL_ERROR_MSG("EC private key BIO write failed");
ret = 0;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return ret;
}
#endif /* !NO_BIO */
/* Encode the EC private key as PEM into buffer.
*
* Return code compliant with OpenSSL.
* Not an OpenSSL API.
*
* @param [in] ec EC private key to encode.
* @param [in] cipher Cipher to use when PEM encrypted. May be NULL.
* @param [in] passwd Password string when PEM encrypted. May be NULL.
* @param [in] passwdSz Length of password string when PEM encrypted.
* @param [out] pem Newly allocated buffer holding PEM encoding.
* @param [out] pLen Length of PEM encoding in bytes.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_PEM_write_mem_ECPrivateKey(WOLFSSL_EC_KEY* ec,
const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz,
unsigned char **pem, int *pLen)
{
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
int ret = 1;
byte* derBuf = NULL;
word32 der_max_len = 0;
int derSz = 0;
WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey");
/* Validate parameters. */
if ((pem == NULL) || (pLen == NULL) || (ec == NULL) ||
(ec->internal == NULL)) {
WOLFSSL_MSG("Bad function arguments");
ret = 0;
}
/* Ensure internal EC key is set from external. */
if ((ret == 1) && (ec->inSet == 0)) {
WOLFSSL_MSG("No ECC internal set, do it");
if (SetECKeyInternal(ec) != 1) {
WOLFSSL_MSG("SetECKeyInternal failed");
ret = 0;
}
}
if (ret == 1) {
/* Calculate maximum size of DER encoding.
* 4 > size of pub, priv + ASN.1 additional information */
der_max_len = 4 * (word32)wc_ecc_size((ecc_key*)ec->internal) +
AES_BLOCK_SIZE;
/* Allocate buffer big enough to hold encoding. */
derBuf = (byte*)XMALLOC((size_t)der_max_len, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
ret = 0;
}
}
if (ret == 1) {
/* Encode EC private key as DER. */
derSz = wc_EccKeyToDer((ecc_key*)ec->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_EccKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
ret = 0;
}
}
/* Convert DER to PEM - possibly encrypting. */
if ((ret == 1) && (der_to_enc_pem_alloc(derBuf, derSz, cipher, passwd,
passwdSz, ECC_PRIVATEKEY_TYPE, NULL, pem, pLen) != 1)) {
WOLFSSL_ERROR_MSG("der_to_enc_pem_alloc failed");
ret = 0;
}
return ret;
#else
(void)ec;
(void)cipher;
(void)passwd;
(void)passwdSz;
(void)pem;
(void)pLen;
return 0;
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
}
#ifndef NO_FILESYSTEM
/* Write out the EC private key as PEM to file.
*
* Return code compliant with OpenSSL.
*
* @param [in] fp File pointer to write PEM encoding to.
* @param [in] ec EC private key to encode.
* @param [in] cipher Cipher to use when PEM encrypted. May be NULL.
* @param [in] passwd Password string when PEM encrypted. May be NULL.
* @param [in] passwdSz Length of password string when PEM encrypted.
* @param [in] cb Password callback when PEM encrypted. Unused.
* @param [in] pass NUL terminated string for passphrase when PEM
* encrypted. Unused.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_PEM_write_ECPrivateKey(XFILE fp, WOLFSSL_EC_KEY *ec,
const EVP_CIPHER *cipher, unsigned char *passwd, int passwdSz,
wc_pem_password_cb *cb, void *pass)
{
int ret = 1;
byte *pem = NULL;
int pLen = 0;
(void)cb;
(void)pass;
WOLFSSL_MSG("wolfSSL_PEM_write_ECPrivateKey");
/* Validate parameters. */
if ((fp == XBADFILE) || (ec == NULL) || (ec->internal == NULL)) {
WOLFSSL_MSG("Bad function arguments");
ret = 0;
}
/* Write EC private key to PEM. */
if ((ret == 1) && (wolfSSL_PEM_write_mem_ECPrivateKey(ec, cipher, passwd,
passwdSz, &pem, &pLen) != 1)) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey failed");
ret = 0;
}
/* Write out to file the PEM encoding of the EC private key. */
if ((ret == 1) && ((int)XFWRITE(pem, 1, (size_t)pLen, fp) != pLen)) {
WOLFSSL_MSG("ECC private key file write failed");
ret = 0;
}
/* Dispose of any dynamically allocated data. */
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return ret;
}
#endif /* NO_FILESYSTEM */
#endif /* defined(WOLFSSL_KEY_GEN) */
/*
* EC key print APIs
*/
#ifndef NO_CERTS
#if defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \
!defined(NO_STDIO_FILESYSTEM)
/* Print the EC key to a file pointer as text.
*
* @param [in] fp File pointer.
* @param [in] key EC key to print.
* @param [in] indent Number of spaces to place before each line printed.
* @return 1 on success.
* @return 0 on failure.
*/
int wolfSSL_EC_KEY_print_fp(XFILE fp, WOLFSSL_EC_KEY* key, int indent)
{
int ret = 1;
int bits = 0;
int priv = 0;
WOLFSSL_ENTER("wolfSSL_EC_KEY_print_fp");
/* Validate parameters. */
if ((fp == XBADFILE) || (key == NULL) || (key->group == NULL) ||
(indent < 0)) {
ret = 0;
}
if (ret == 1) {
/* Get EC groups order size in bits. */
bits = wolfSSL_EC_GROUP_order_bits(key->group);
if (bits <= 0) {
WOLFSSL_MSG("Failed to get group order bits.");
ret = 0;
}
}
if (ret == 1) {
const char* keyType;
/* Determine whether this is a private or public key. */
if ((key->priv_key != NULL) && (!wolfSSL_BN_is_zero(key->priv_key))) {
keyType = "Private-Key";
priv = 1;
}
else {
keyType = "Public-Key";
}
/* Print key header. */
if (XFPRINTF(fp, "%*s%s: (%d bit)\n", indent, "", keyType, bits) < 0) {
ret = 0;
}
}
if ((ret == 1) && priv) {
/* Print the private key BN. */
ret = pk_bn_field_print_fp(fp, indent, "priv", key->priv_key);
}
/* Check for public key data in EC key. */
if ((ret == 1) && (key->pub_key != NULL) && (key->pub_key->exSet)) {
/* Get the public key point as one BN. */
WOLFSSL_BIGNUM* pubBn = wolfSSL_EC_POINT_point2bn(key->group,
key->pub_key, POINT_CONVERSION_UNCOMPRESSED, NULL, NULL);
if (pubBn == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_point2bn failed.");
ret = 0;
}
else {
/* Print the public key in a BN. */
ret = pk_bn_field_print_fp(fp, indent, "pub", pubBn);
wolfSSL_BN_free(pubBn);
}
}
if (ret == 1) {
/* Get the NID of the group. */
int nid = wolfSSL_EC_GROUP_get_curve_name(key->group);
if (nid > 0) {
/* Convert the NID into a long name and NIST name. */
const char* curve = wolfSSL_OBJ_nid2ln(nid);
const char* nistName = wolfSSL_EC_curve_nid2nist(nid);
/* Print OID name if known. */
if ((curve != NULL) &&
(XFPRINTF(fp, "%*sASN1 OID: %s\n", indent, "", curve) < 0)) {
ret = 0;
}
/* Print NIST curve name if known. */
if ((nistName != NULL) &&
(XFPRINTF(fp, "%*sNIST CURVE: %s\n", indent, "",
nistName) < 0)) {
ret = 0;
}
}
}
WOLFSSL_LEAVE("wolfSSL_EC_KEY_print_fp", ret);
return ret;
}
#endif /* XFPRINTF && !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM */
#endif /* !NO_CERTS */
/*
* EC_KEY get/set/test APIs
*/
/* Set data of internal, wolfCrypt EC key object into EC key.
*
* EC_KEY wolfSSL -> OpenSSL
*
* @param [in, out] p EC key to update.
* @return 1 on success.
* @return -1 on failure.
*/
int SetECKeyExternal(WOLFSSL_EC_KEY* eckey)
{
int ret = 1;
WOLFSSL_ENTER("SetECKeyExternal");
/* Validate parameter. */
if ((eckey == NULL) || (eckey->internal == NULL)) {
WOLFSSL_MSG("ec key NULL error");
ret = -1;
}
else {
ecc_key* key = (ecc_key*)eckey->internal;
/* Set group (OID, nid and idx) from wolfCrypt EC key. */
eckey->group->curve_oid = (int)key->dp->oidSum;
eckey->group->curve_nid = EccEnumToNID(key->dp->id);
eckey->group->curve_idx = key->idx;
if (eckey->pub_key->internal != NULL) {
/* Copy internal public point from internal key's public point. */
if (wc_ecc_copy_point(&key->pubkey,
(ecc_point*)eckey->pub_key->internal) != MP_OKAY) {
WOLFSSL_MSG("SetECKeyExternal ecc_copy_point failed");
ret = -1;
}
/* Set external public key from internal wolfCrypt, public key. */
if ((ret == 1) && (ec_point_external_set(eckey->pub_key) != 1)) {
WOLFSSL_MSG("SetECKeyExternal ec_point_external_set failed");
ret = -1;
}
}
/* set the external privkey */
if ((ret == 1) && (key->type == ECC_PRIVATEKEY) &&
(wolfssl_bn_set_value(&eckey->priv_key,
wc_ecc_key_get_priv(key)) != 1)) {
WOLFSSL_MSG("ec priv key error");
ret = -1;
}
/* External values set when operations succeeded. */
eckey->exSet = (ret == 1);
}
return ret;
}
/* Set data of EC key into internal, wolfCrypt EC key object.
*
* EC_KEY Openssl -> WolfSSL
*
* @param [in, out] p EC key to update.
* @return 1 on success.
* @return -1 on failure.
*/
int SetECKeyInternal(WOLFSSL_EC_KEY* eckey)
{
int ret = 1;
WOLFSSL_ENTER("SetECKeyInternal");
/* Validate parameter. */
if ((eckey == NULL) || (eckey->internal == NULL) ||
(eckey->group == NULL)) {
WOLFSSL_MSG("ec key NULL error");
ret = -1;
}
else {
ecc_key* key = (ecc_key*)eckey->internal;
int pubSet = 0;
/* Validate group. */
if ((eckey->group->curve_idx < 0) ||
(wc_ecc_is_valid_idx(eckey->group->curve_idx) == 0)) {
WOLFSSL_MSG("invalid curve idx");
ret = -1;
}
if (ret == 1) {
/* Set group (idx of curve and corresponding domain parameters). */
key->idx = eckey->group->curve_idx;
key->dp = &ecc_sets[key->idx];
pubSet = (eckey->pub_key != NULL);
}
/* Set public key (point). */
if ((ret == 1) && pubSet) {
if (ec_point_internal_set(eckey->pub_key) != 1) {
WOLFSSL_MSG("ec key pub error");
ret = -1;
}
/* Copy public point to key. */
if ((ret == 1) && (wc_ecc_copy_point(
(ecc_point*)eckey->pub_key->internal, &key->pubkey) !=
MP_OKAY)) {
WOLFSSL_MSG("wc_ecc_copy_point error");
ret = -1;
}
if (ret == 1) {
/* Set that the internal key is a public key */
key->type = ECC_PUBLICKEY;
}
}
/* set privkey */
if ((ret == 1) && (eckey->priv_key != NULL)) {
if (wolfssl_bn_get_value(eckey->priv_key,
wc_ecc_key_get_priv(key)) != 1) {
WOLFSSL_MSG("ec key priv error");
ret = -1;
}
/* private key */
if ((ret == 1) && (!mp_iszero(wc_ecc_key_get_priv(key)))) {
if (pubSet) {
key->type = ECC_PRIVATEKEY;
}
else {
key->type = ECC_PRIVATEKEY_ONLY;
}
}
}
/* Internal values set when operations succeeded. */
eckey->inSet = (ret == 1);
}
return ret;
}
/* Get point conversion format of EC key.
*
* @param [in] key EC key.
* @return Point conversion format on success.
* @return -1 on error.
*/
point_conversion_form_t wolfSSL_EC_KEY_get_conv_form(const WOLFSSL_EC_KEY* key)
{
int ret = -1;
if (key != NULL) {
ret = key->form;
}
return ret;
}
/* Set point conversion format into EC key.
*
* @param [in, out] key EC key to set format into.
* @param [in] form Point conversion format. Valid values:
* POINT_CONVERSION_UNCOMPRESSED,
* POINT_CONVERSION_COMPRESSED (when HAVE_COMP_KEY)
*/
void wolfSSL_EC_KEY_set_conv_form(WOLFSSL_EC_KEY *key, int form)
{
if (key == NULL) {
WOLFSSL_MSG("Key passed in NULL");
}
else if (form == POINT_CONVERSION_UNCOMPRESSED
#ifdef HAVE_COMP_KEY
|| form == POINT_CONVERSION_COMPRESSED
#endif
) {
key->form = (unsigned char)form;
}
else {
WOLFSSL_MSG("Incorrect form or HAVE_COMP_KEY not compiled in");
}
}
/* Get the EC group object that is in EC key.
*
* @param [in] key EC key.
* @return EC group object on success.
* @return NULL when key is NULL.
*/
const WOLFSSL_EC_GROUP *wolfSSL_EC_KEY_get0_group(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_EC_GROUP* group = NULL;
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_group");
if (key != NULL) {
group = key->group;
}
return group;
}
/* Set the group in WOLFSSL_EC_KEY
*
* @param [in, out] key EC key to update.
* @param [in] group EC group to copy.
* @return 1 on success
* @return 0 on failure.
*/
int wolfSSL_EC_KEY_set_group(WOLFSSL_EC_KEY *key, WOLFSSL_EC_GROUP *group)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_group");
/* Validate parameters. */
if ((key == NULL) || (group == NULL)) {
ret = 0;
}
if (ret == 1) {
/* Dispose of the current group. */
if (key->group != NULL) {
wolfSSL_EC_GROUP_free(key->group);
}
/* Duplicate the passed in group into EC key. */
key->group = wolfSSL_EC_GROUP_dup(group);
if (key->group == NULL) {
ret = 0;
}
}
return ret;
}
/* Get the BN object that is the private key in the EC key.
*
* @param [in] key EC key.
* @return BN object on success.
* @return NULL when key is NULL or private key is not set.
*/
WOLFSSL_BIGNUM *wolfSSL_EC_KEY_get0_private_key(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_BIGNUM* priv_key = NULL;
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_private_key");
/* Validate parameter. */
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_get0_private_key Bad arguments");
}
/* Only return private key if it is not 0. */
else if (!wolfSSL_BN_is_zero(key->priv_key)) {
priv_key = key->priv_key;
}
return priv_key;
}
/* Sets the private key value into EC key.
*
* Return code compliant with OpenSSL.
*
* @param [in, out] key EC key to set.
* @param [in] priv_key Private key value in a BN.
* @return 1 on success
* @return 0 on failure.
*/
int wolfSSL_EC_KEY_set_private_key(WOLFSSL_EC_KEY *key,
const WOLFSSL_BIGNUM *priv_key)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_private_key");
/* Validate parameters. */
if ((key == NULL) || (priv_key == NULL)) {
WOLFSSL_MSG("Bad arguments");
ret = 0;
}
/* Check for obvious invalid values. */
if (wolfSSL_BN_is_negative(priv_key) || wolfSSL_BN_is_zero(priv_key) ||
wolfSSL_BN_is_one(priv_key)) {
WOLFSSL_MSG("Invalid private key value");
ret = 0;
}
if (ret == 1) {
/* Free key if previously set. */
if (key->priv_key != NULL) {
wolfSSL_BN_free(key->priv_key);
}
/* Duplicate the BN passed in. */
key->priv_key = wolfSSL_BN_dup(priv_key);
if (key->priv_key == NULL) {
WOLFSSL_MSG("key ecc priv key NULL");
ret = 0;
}
}
/* Set the external values into internal EC key. */
if ((ret == 1) && (SetECKeyInternal(key) != 1)) {
WOLFSSL_MSG("SetECKeyInternal failed");
/* Dispose of new private key on error. */
wolfSSL_BN_free(key->priv_key);
key->priv_key = NULL;
ret = 0;
}
return ret;
}
/* Get the public key EC point object that is in EC key.
*
* @param [in] key EC key.
* @return EC point object that is the public key on success.
* @return NULL when key is NULL.
*/
WOLFSSL_EC_POINT* wolfSSL_EC_KEY_get0_public_key(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_EC_POINT* pub_key = NULL;
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_public_key");
if (key != NULL) {
pub_key = key->pub_key;
}
return pub_key;
}
/*
* Return code compliant with OpenSSL.
*
* @param [in, out] key EC key.
* @param [in] pub Public key as an EC point.
* @return 1 on success
* @return 0 on failure.
*/
int wolfSSL_EC_KEY_set_public_key(WOLFSSL_EC_KEY *key,
const WOLFSSL_EC_POINT *pub)
{
int ret = 1;
ecc_point *pub_p = NULL;
ecc_point *key_p = NULL;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_public_key");
/* Validate parameters. */
if ((key == NULL) || (key->internal == NULL) || (pub == NULL) ||
(pub->internal == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_KEY_set_public_key Bad arguments");
ret = 0;
}
/* Ensure the internal EC key is set. */
if ((ret == 1) && (key->inSet == 0) && (SetECKeyInternal(key) != 1)) {
WOLFSSL_MSG("SetECKeyInternal failed");
ret = 0;
}
/* Ensure the internal EC point of pub is setup. */
if ((ret == 1) && (ec_point_setup(pub) != 1)) {
ret = 0;
}
if (ret == 1) {
/* Get the internal point of pub and the public key in key. */
pub_p = (ecc_point*)pub->internal;
key_p = (ecc_point*)key->pub_key->internal;
/* Create new point if required. */
if (key_p == NULL) {
key_p = wc_ecc_new_point();
key->pub_key->internal = (void*)key_p;
}
/* Check point available. */
if (key_p == NULL) {
WOLFSSL_MSG("key ecc point NULL");
ret = 0;
}
}
/* Copy the internal pub point into internal key point. */
if ((ret == 1) && (wc_ecc_copy_point(pub_p, key_p) != MP_OKAY)) {
WOLFSSL_MSG("ecc_copy_point failure");
ret = 0;
}
/* Copy the internal point data into external. */
if ((ret == 1) && (ec_point_external_set(key->pub_key) != 1)) {
WOLFSSL_MSG("SetECKeyInternal failed");
ret = 0;
}
/* Copy the internal key into external. */
if ((ret == 1) && (SetECKeyInternal(key) != 1)) {
WOLFSSL_MSG("SetECKeyInternal failed");
ret = 0;
}
if (ret == 1) {
/* Dump out the point and the key's public key for debug. */
wolfSSL_EC_POINT_dump("pub", pub);
wolfSSL_EC_POINT_dump("key->pub_key", key->pub_key);
}
return ret;
}
#ifndef NO_WOLFSSL_STUB
/* Set the ASN.1 encoding flag against the EC key.
*
* No implementation as only named curves supported for encoding.
*
* @param [in, out] key EC key.
* @param [in] flag ASN.1 flag to set. Valid values:
* OPENSSL_EC_EXPLICIT_CURVE, OPENSSL_EC_NAMED_CURVE
*/
void wolfSSL_EC_KEY_set_asn1_flag(WOLFSSL_EC_KEY *key, int asn1_flag)
{
(void)key;
(void)asn1_flag;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_asn1_flag");
WOLFSSL_STUB("EC_KEY_set_asn1_flag");
}
#endif
/*
* EC key generate key APIs
*/
/* Generate an EC key.
*
* Uses the internal curve index set in the EC key or the default.
*
* @param [in, out] key EC key.
* @return 1 on success
* @return 0 on failure.
*/
int wolfSSL_EC_KEY_generate_key(WOLFSSL_EC_KEY *key)
{
int res = 1;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG tmpRng[1];
#endif
WOLFSSL_ENTER("wolfSSL_EC_KEY_generate_key");
/* Validate parameters. */
if ((key == NULL) || (key->internal == NULL) || (key->group == NULL)) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key Bad arguments");
res = 0;
}
if (res == 1) {
/* Check if we know which internal curve index to use. */
if (key->group->curve_idx < 0) {
/* Generate key using the default curve. */
key->group->curve_idx = ECC_CURVE_DEF;
}
/* Create a random number generator. */
rng = wolfssl_make_rng(tmpRng, &initTmpRng);
if (rng == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to set RNG");
res = 0;
}
}
if (res == 1) {
/* NIDToEccEnum returns -1 for invalid NID so if key->group->curve_nid
* is 0 then pass ECC_CURVE_DEF as arg */
int eccEnum = key->group->curve_nid ?
NIDToEccEnum(key->group->curve_nid) : ECC_CURVE_DEF;
/* Get the internal EC key. */
ecc_key* ecKey = (ecc_key*)key->internal;
/* Make the key using internal API. */
int ret = wc_ecc_make_key_ex(rng, 0, ecKey, eccEnum);
#if defined(WOLFSSL_ASYNC_CRYPT)
/* Wait on asynchronouse operation. */
ret = wc_AsyncWait(ret, &ecKey->asyncDev, WC_ASYNC_FLAG_NONE);
#endif
if (ret != 0) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key wc_ecc_make_key failed");
res = 0;
}
}
/* Dispose of local random number generator if initialized. */
if (initTmpRng) {
wc_FreeRng(rng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
/* Set the external key from new internal key values. */
if ((res == 1) && (SetECKeyExternal(key) != 1)) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key SetECKeyExternal failed");
res = 0;
}
return res;
}
/*
* EC key check key APIs
*/
/* Check that the EC key is valid.
*
* @param [in] key EC key.
* @return 1 on valid.
* @return 0 on invalid or error.
*/
int wolfSSL_EC_KEY_check_key(const WOLFSSL_EC_KEY *key)
{
int ret = 1;
WOLFSSL_ENTER("wolfSSL_EC_KEY_check_key");
/* Validate parameter. */
if ((key == NULL) || (key->internal == NULL)) {
WOLFSSL_MSG("Bad parameter");
ret = 0;
}
/* Set the external EC key values into internal if not already. */
if ((ret == 1) && (key->inSet == 0) && (SetECKeyInternal(
(WOLFSSL_EC_KEY*)key) != 1)) {
WOLFSSL_MSG("SetECKeyInternal failed");
ret = 0;
}
if (ret == 1) {
/* Have internal EC implementation check key. */
ret = wc_ecc_check_key((ecc_key*)key->internal) == 0;
}
return ret;
}
/* End EC_KEY */
#if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)
/* Get the supported, built-in EC curves
*
* @param [in, out] curves Pre-allocated list to put supported curves into.
* @param [in] len Maximum number of items to place in list.
* @return Number of built-in EC curves when curves is NULL or len is 0.
* @return Number of items placed in list otherwise.
*/
size_t wolfSSL_EC_get_builtin_curves(WOLFSSL_EC_BUILTIN_CURVE *curves,
size_t len)
{
size_t i;
size_t cnt;
#ifdef HAVE_SELFTEST
/* Defined in ecc.h when available. */
size_t ecc_sets_count;
/* Count the pre-defined curves since global not available. */
for (i = 0; ecc_sets[i].size != 0 && ecc_sets[i].name != NULL; i++) {
/* Do nothing. */
}
ecc_sets_count = i;
#endif
/* Assume we are going to return total count. */
cnt = ecc_sets_count;
/* Check we have a list that can hold data. */
if ((curves != NULL) && (len != 0)) {
/* Limit count to length of list. */
if (cnt > len) {
cnt = len;
}
/* Put in built-in EC curve nid and short name. */
for (i = 0; i < cnt; i++) {
curves[i].nid = EccEnumToNID(ecc_sets[i].id);
curves[i].comment = wolfSSL_OBJ_nid2sn(curves[i].nid);
}
}
return cnt;
}
#endif /* !HAVE_FIPS || FIPS_VERSION_GT(2,0) */
/* Start ECDSA_SIG */
/* Allocate a new ECDSA signature object.
*
* @return New, allocated ECDSA signature object on success.
* @return NULL on error.
*/
WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_SIG_new(void)
{
int err = 0;
WOLFSSL_ECDSA_SIG *sig;
WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_new");
/* Allocate memory for ECDSA signature object. */
sig = (WOLFSSL_ECDSA_SIG*)XMALLOC(sizeof(WOLFSSL_ECDSA_SIG), NULL,
DYNAMIC_TYPE_ECC);
if (sig == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA signature failure");
err = 1;
}
if (!err) {
/* Set s to NULL in case of error. */
sig->s = NULL;
/* Allocate BN into r. */
sig->r = wolfSSL_BN_new();
if (sig->r == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA r failure");
err = 1;
}
}
if (!err) {
/* Allocate BN into s. */
sig->s = wolfSSL_BN_new();
if (sig->s == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA s failure");
err = 1;
}
}
if (err && (sig != NULL)) {
/* Dispose of allocated memory. */
wolfSSL_ECDSA_SIG_free(sig);
sig = NULL;
}
return sig;
}
/* Dispose of ECDSA signature object.
*
* Cannot use object after this call.
*
* @param [in] sig ECDSA signature object to free.
*/
void wolfSSL_ECDSA_SIG_free(WOLFSSL_ECDSA_SIG *sig)
{
WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_free");
if (sig != NULL) {
/* Dispose of BNs allocated for r and s. */
wolfSSL_BN_free(sig->r);
wolfSSL_BN_free(sig->s);
/* Dispose of memory associated with ECDSA signature object. */
XFREE(sig, NULL, DYNAMIC_TYPE_ECC);
}
}
/* Create an ECDSA signature from the DER encoding.
*
* @param [in, out] sig Reference to ECDSA signature object. May be NULL.
* @param [in, out] pp On in, reference to buffer containing DER encoding.
* On out, reference to buffer after signature data.
* @param [in] len Length of the data in the buffer. May be more than
* the length of the signature.
* @return ECDSA signature object on success.
* @return NULL on error.
*/
WOLFSSL_ECDSA_SIG* wolfSSL_d2i_ECDSA_SIG(WOLFSSL_ECDSA_SIG** sig,
const unsigned char** pp, long len)
{
int err = 0;
/* ECDSA signature object to return. */
WOLFSSL_ECDSA_SIG *s = NULL;
/* Validate parameter. */
if (pp == NULL) {
err = 1;
}
if (!err) {
if (sig != NULL) {
/* Use the ECDSA signature object passed in. */
s = *sig;
}
if (s == NULL) {
/* No ECDSA signature object passed in - create a new one. */
s = wolfSSL_ECDSA_SIG_new();
if (s == NULL) {
err = 1;
}
}
}
if (!err) {
/* DecodeECC_DSA_Sig calls mp_init, so free these. */
mp_free((mp_int*)s->r->internal);
mp_free((mp_int*)s->s->internal);
/* Decode the signature into internal r and s fields. */
if (DecodeECC_DSA_Sig(*pp, (word32)len, (mp_int*)s->r->internal,
(mp_int*)s->s->internal) != MP_OKAY) {
err = 1;
}
}
if (!err) {
/* Move pointer passed signature data successfully decoded. */
*pp += wolfssl_der_length(*pp, (int)len);
if (sig != NULL) {
/* Update reference to ECDSA signature object. */
*sig = s;
}
}
/* Dispose of newly allocated object on error. */
if (err) {
if ((s != NULL) && ((sig == NULL) || (*sig != s))) {
wolfSSL_ECDSA_SIG_free(s);
}
/* Return NULL for object on error. */
s = NULL;
}
return s;
}
/* Encode the ECDSA signature as DER.
*
* @param [in] sig ECDSA signature object.
* @param [in, out] pp On in, reference to buffer in which to place encoding.
* On out, reference to buffer after encoding.
* May be NULL or point to NULL in which case no encoding
* is done.
* @return Length of encoding on success.
* @return 0 on error.
*/
int wolfSSL_i2d_ECDSA_SIG(const WOLFSSL_ECDSA_SIG *sig, unsigned char **pp)
{
word32 len = 0;
/* Validate parameter. */
if (sig != NULL) {
/* ASN.1: SEQ + INT + INT
* ASN.1 Integer must be a positive value - prepend zero if number has
* top bit set.
*/
/* Get total length of r including any prepended zero. */
word32 rLen = (word32)(mp_leading_bit((mp_int*)sig->r->internal) +
mp_unsigned_bin_size((mp_int*)sig->r->internal));
/* Get total length of s including any prepended zero. */
word32 sLen = (word32)(mp_leading_bit((mp_int*)sig->s->internal) +
mp_unsigned_bin_size((mp_int*)sig->s->internal));
/* Calculate length of data in sequence. */
len = (word32)1 + ASN_LEN_SIZE(rLen) + rLen +
(word32)1 + ASN_LEN_SIZE(sLen) + sLen;
/* Add in the length of the SEQUENCE. */
len += (word32)1 + ASN_LEN_SIZE(len);
/* Encode only if there is a buffer to encode into. */
if ((pp != NULL) && (*pp != NULL)) {
/* Encode using the internal representations of r and s. */
if (StoreECC_DSA_Sig(*pp, &len, (mp_int*)sig->r->internal,
(mp_int*)sig->s->internal) != MP_OKAY) {
/* No bytes encoded. */
len = 0;
}
else {
/* Update pointer to after encoding. */
*pp += len;
}
}
}
return (int)len;
}
/* Get the pointer to the fields of the ECDSA signature.
*
* r and s untouched when sig is NULL.
*
* @param [in] sig ECDSA signature object.
* @param [out] r R field of ECDSA signature as a BN. May be NULL.
* @param [out] s S field of ECDSA signature as a BN. May be NULL.
*/
void wolfSSL_ECDSA_SIG_get0(const WOLFSSL_ECDSA_SIG* sig,
const WOLFSSL_BIGNUM** r, const WOLFSSL_BIGNUM** s)
{
/* Validate parameter. */
if (sig != NULL) {
/* Return the r BN when pointer to return through. */
if (r != NULL) {
*r = sig->r;
}
/* Return the s BN when pointer to return through. */
if (s != NULL) {
*s = sig->s;
}
}
}
/* Set the pointers to the fields of the ECDSA signature.
*
* @param [in, out] sig ECDSA signature object to update.
* @param [in] r R field of ECDSA signature as a BN.
* @param [in] s S field of ECDSA signature as a BN.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_ECDSA_SIG_set0(WOLFSSL_ECDSA_SIG* sig, WOLFSSL_BIGNUM* r,
WOLFSSL_BIGNUM* s)
{
int ret = 1;
/* Validate parameters. */
if ((sig == NULL) || (r == NULL) || (s == NULL)) {
ret = 0;
}
if (ret == 1) {
/* Dispose of old BN objects. */
wolfSSL_BN_free(sig->r);
wolfSSL_BN_free(sig->s);
/* Assign new BN objects. */
sig->r = r;
sig->s = s;
}
return ret;
}
/* End ECDSA_SIG */
/* Start ECDSA */
/* Calculate maximum size of the DER encoded ECDSA signature for the curve.
*
* @param [in] key EC key.
* @return Size of DER encoded signature on success.
* @return 0 on error.
*/
int wolfSSL_ECDSA_size(const WOLFSSL_EC_KEY *key)
{
int err = 0;
int len = 0;
const EC_GROUP *group = NULL;
int bits = 0;
/* Validate parameter. */
if (key == NULL) {
err = 1;
}
/* Get group from key to get order bits. */
if ((!err) && ((group = wolfSSL_EC_KEY_get0_group(key)) == NULL)) {
err = 1;
}
/* Get order bits of group. */
if ((!err) && ((bits = wolfSSL_EC_GROUP_order_bits(group)) == 0)) {
/* Group is not set. */
err = 1;
}
if (!err) {
/* r and s are mod order. */
int bytes = (bits + 7) / 8; /* Bytes needed to hold bits. */
len = SIG_HEADER_SZ + /* 2*ASN_TAG + 2*LEN(ENUM) */
ECC_MAX_PAD_SZ + /* possible leading zeroes in r and s */
bytes + bytes; /* max r and s in bytes */
}
return len;
}
/* Create ECDSA signature by signing digest with key.
*
* @param [in] dgst Digest to sign.
* @param [in] dLen Length of digest in bytes.
* @param [in] key EC key to sign with.
* @return ECDSA signature object on success.
* @return NULL on error.
*/
WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_do_sign(const unsigned char *dgst, int dLen,
WOLFSSL_EC_KEY *key)
{
int err = 0;
WOLFSSL_ECDSA_SIG *sig = NULL;
#ifdef WOLFSSL_SMALL_STACK
byte* out = NULL;
#else
byte out[ECC_BUFSIZE];
#endif
unsigned int outLen = ECC_BUFSIZE;
WOLFSSL_ENTER("wolfSSL_ECDSA_do_sign");
/* Validate parameters. */
if ((dgst == NULL) || (key == NULL) || (key->internal == NULL)) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad arguments");
err = 1;
}
/* Ensure internal EC key is set from external. */
if ((!err) && (key->inSet == 0)) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign No EC key internal set, do it");
if (SetECKeyInternal(key) != 1) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign SetECKeyInternal failed");
err = 1;
}
}
#ifdef WOLFSSL_SMALL_STACK
if (!err) {
/* Allocate buffer to hold encoded signature. */
out = (byte*)XMALLOC(outLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (out == NULL) {
err = 1;
}
}
#endif
/* Sign the digest with the key to create encoded ECDSA signature. */
if ((!err) && (wolfSSL_ECDSA_sign(0, dgst, dLen, out, &outLen, key) != 1)) {
err = 1;
}
if (!err) {
const byte* p = out;
/* Decode the ECDSA signature into a new object. */
sig = wolfSSL_d2i_ECDSA_SIG(NULL, &p, outLen);
}
#ifdef WOLFSSL_SMALL_STACK
/* Dispose of any temporary dynamically allocated data. */
XFREE(out, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return sig;
}
/* Verify ECDSA signature in the object using digest and key.
*
* Return code compliant with OpenSSL.
*
* @param [in] dgst Digest to verify.
* @param [in] dLen Length of the digest in bytes.
* @param [in] sig ECDSA signature object.
* @param [in] key EC key containing public key.
* @return 1 when signature is valid.
* @return 0 when signature is invalid.
* @return -1 on error.
*/
int wolfSSL_ECDSA_do_verify(const unsigned char *dgst, int dLen,
const WOLFSSL_ECDSA_SIG *sig, WOLFSSL_EC_KEY *key)
{
int ret = 1;
int verified = 0;
#ifdef WOLF_CRYPTO_CB_ONLY_ECC
byte signature[ECC_MAX_SIG_SIZE];
int signatureLen;
byte* p = signature;
#endif
WOLFSSL_ENTER("wolfSSL_ECDSA_do_verify");
/* Validate parameters. */
if ((dgst == NULL) || (sig == NULL) || (key == NULL) ||
(key->internal == NULL)) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_verify Bad arguments");
ret = -1;
}
/* Ensure internal EC key is set from external. */
if ((ret == 1) && (key->inSet == 0)) {
WOLFSSL_MSG("No EC key internal set, do it");
if (SetECKeyInternal(key) != 1) {
WOLFSSL_MSG("SetECKeyInternal failed");
ret = -1;
}
}
if (ret == 1) {
#ifndef WOLF_CRYPTO_CB_ONLY_ECC
/* Verify hash using digest, r and s as MP ints and internal EC key. */
if (wc_ecc_verify_hash_ex((mp_int*)sig->r->internal,
(mp_int*)sig->s->internal, dgst, (word32)dLen, &verified,
(ecc_key *)key->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_verify_hash failed");
ret = -1;
}
else if (verified == 0) {
WOLFSSL_MSG("wc_ecc_verify_hash incorrect signature detected");
ret = 0;
}
#else
signatureLen = i2d_ECDSA_SIG(sig, &p);
if (signatureLen > 0) {
/* verify hash. expects to call wc_CryptoCb_EccVerify internally */
ret = wc_ecc_verify_hash(signature, signatureLen, dgst,
(word32)dLen, &verified, (ecc_key*)key->internal);
if (ret != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_verify_hash failed");
ret = -1;
}
else if (verified == 0) {
WOLFSSL_MSG("wc_ecc_verify_hash incorrect signature detected");
ret = 0;
}
}
#endif /* WOLF_CRYPTO_CB_ONLY_ECC */
}
return ret;
}
/* Sign the digest with the key to produce a DER encode signature.
*
* @param [in] type Digest algorithm used to create digest. Unused.
* @param [in] digest Digest of the message to sign.
* @param [in] digestSz Size of the digest in bytes.
* @param [out] sig Buffer to hold signature.
* @param [in, out] sigSz On in, size of buffer in bytes.
* On out, size of signatre in bytes.
* @param [in] key EC key containing private key.
* @return 1 on success.
* @return 0 on error.
*/
int wolfSSL_ECDSA_sign(int type, const unsigned char *digest, int digestSz,
unsigned char *sig, unsigned int *sigSz, WOLFSSL_EC_KEY *key)
{
int ret = 1;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRng = NULL;
#else
WC_RNG tmpRng[1];
#endif
int initTmpRng = 0;
WOLFSSL_ENTER("wolfSSL_ECDSA_sign");
/* Digest algorithm not used in DER encoding. */
(void)type;
/* Validate parameters. */
if (key == NULL) {
ret = 0;
}
if (ret == 1) {
/* Make an RNG - create local or get global. */
rng = wolfssl_make_rng(tmpRng, &initTmpRng);
if (rng == NULL) {
ret = 0;
}
}
/* Sign the digest with the key using the RNG and put signature into buffer
* update sigSz to be actual length.
*/
if ((ret == 1) && (wc_ecc_sign_hash(digest, (word32)digestSz, sig, sigSz,
rng, (ecc_key*)key->internal) != 0)) {
ret = 0;
}
if (initTmpRng) {
wc_FreeRng(rng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
return ret;
}
/* Verify the signature with the digest and key.
*
* @param [in] type Digest algorithm used to create digest. Unused.
* @param [in] digest Digest of the message to verify.
* @param [in] digestSz Size of the digest in bytes.
* @param [in] sig Buffer holding signature.
* @param [in] sigSz Size of signature data in bytes.
* @param [in] key EC key containing public key.
* @return 1 when signature is valid.
* @return 0 when signature is invalid or error.
*/
int wolfSSL_ECDSA_verify(int type, const unsigned char *digest, int digestSz,
const unsigned char *sig, int sigSz, WOLFSSL_EC_KEY *key)
{
int ret = 1;
int verify = 0;
WOLFSSL_ENTER("wolfSSL_ECDSA_verify");
/* Digest algorithm not used in DER encoding. */
(void)type;
/* Validate parameters. */
if (key == NULL) {
ret = 0;
}
/* Verify signature using digest and key. */
if ((ret == 1) && (wc_ecc_verify_hash(sig, (word32)sigSz, digest,
(word32)digestSz, &verify, (ecc_key*)key->internal) != 0)) {
ret = 0;
}
/* When no error, verification may still have failed - check now. */
if ((ret == 1) && (verify != 1)) {
WOLFSSL_MSG("wolfSSL_ECDSA_verify failed");
ret = 0;
}
return ret;
}
/* End ECDSA */
/* Start ECDH */
#ifndef WOLF_CRYPTO_CB_ONLY_ECC
/* Compute the shared secret (key) using ECDH.
*
* KDF not supported.
*
* Return code compliant with OpenSSL.
*
* @param [out] out Buffer to hold key.
* @param [in] outLen Length of buffer in bytes.
* @param [in] pubKey Public key as an EC point.
* @param [in] privKey EC key holding a private key.
* @param [in] kdf Key derivation function to apply to secret.
* @return Length of computed key on success
* @return 0 on error.
*/
int wolfSSL_ECDH_compute_key(void *out, size_t outLen,
const WOLFSSL_EC_POINT *pubKey, WOLFSSL_EC_KEY *privKey,
void *(*kdf) (const void *in, size_t inlen, void *out, size_t *outLen))
{
int err = 0;
word32 len = 0;
ecc_key* key = NULL;
#if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) && \
(!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,0))
int setGlobalRNG = 0;
#endif
/* TODO: support using the KDF. */
(void)kdf;
WOLFSSL_ENTER("wolfSSL_ECDH_compute_key");
/* Validate parameters. */
if ((out == NULL) || (pubKey == NULL) || (pubKey->internal == NULL) ||
(privKey == NULL) || (privKey->internal == NULL)) {
WOLFSSL_MSG("Bad function arguments");
err = 1;
}
/* Ensure internal EC key is set from external. */
if ((!err) && (privKey->inSet == 0)) {
WOLFSSL_MSG("No EC key internal set, do it");
if (SetECKeyInternal(privKey) != 1) {
WOLFSSL_MSG("SetECKeyInternal failed");
err = 1;
}
}
if (!err) {
int ret;
/* Get the internal key. */
key = (ecc_key*)privKey->internal;
/* Set length into variable of type suitable for wolfSSL API. */
len = (word32)outLen;
#if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) && \
(!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,0))
/* An RNG is needed. */
if (key->rng == NULL) {
key->rng = wolfssl_make_global_rng();
/* RNG set and needs to be unset. */
setGlobalRNG = 1;
}
#endif
PRIVATE_KEY_UNLOCK();
/* Create secret using wolfSSL. */
ret = wc_ecc_shared_secret_ex(key, (ecc_point*)pubKey->internal,
(byte *)out, &len);
PRIVATE_KEY_LOCK();
if (ret != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_shared_secret failed");
err = 1;
}
}
#if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) && \
(!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,0))
/* Remove global from key. */
if (setGlobalRNG) {
key->rng = NULL;
}
#endif
if (err) {
/* Make returned value zero. */
len = 0;
}
return (int)len;
}
#endif /* WOLF_CRYPTO_CB_ONLY_ECC */
/* End ECDH */
#endif /* OPENSSL_EXTRA */
#endif /* HAVE_ECC */
/*******************************************************************************
* END OF EC API
******************************************************************************/
#endif /* !WOLFSSL_PK_INCLUDED */