wolfssl-w32/src/internal.c

40019 lines
1.3 MiB

/* internal.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
/*
* WOLFSSL_SMALL_CERT_VERIFY:
* Verify the certificate signature without using DecodedCert. Doubles up
* on some code but allows smaller peak heap memory usage.
* Cannot be used with WOLFSSL_NONBLOCK_OCSP.
* WOLFSSL_ALT_CERT_CHAINS:
* Allows CA's to be presented by peer, but not part of a valid chain.
* Default wolfSSL behavior is to require validation of all presented peer
* certificates. This also allows loading intermediate CA's as trusted
* and ignoring no signer failures for CA's up the chain to root.
* WOLFSSL_DTLS_RESEND_ONLY_TIMEOUT:
* Enable resending the previous DTLS handshake flight only on a network
* read timeout. By default we resend in two more cases, when we receive:
* - an out of order last msg of the peer's flight
* - a duplicate of the first msg from the peer's flight
* WOLFSSL_NO_DEF_TICKET_ENC_CB:
* No default ticket encryption callback.
* Server only.
* Application must set its own callback to use session tickets.
* WOLFSSL_TICKET_ENC_CHACHA20_POLY1305
* Use ChaCha20-Poly1305 to encrypt/decrypt session tickets in default
* callback. Default algorithm if none defined and algorithms compiled in.
* Server only.
* WOLFSSL_TICKET_ENC_AES128_GCM
* Use AES128-GCM to encrypt/decrypt session tickets in default callback.
* Server only. Default algorithm if ChaCha20/Poly1305 not compiled in.
* WOLFSSL_TICKET_ENC_AES256_GCM
* Use AES256-GCM to encrypt/decrypt session tickets in default callback.
* Server only.
* WOLFSSL_TICKET_DECRYPT_NO_CREATE
* Default callback will not request creation of new ticket on successful
* decryption.
* Server only.
* WOLFSSL_TLS13_NO_PEEK_HANDSHAKE_DONE
* Once a normal TLS 1.3 handshake is complete, a session ticket message
* may be received by a client. To support detecting this, peek will
* return WOLFSSL_ERROR_WANT_READ.
* This define turns off this behaviour.
* WOLFSSL_HOSTNAME_VERIFY_ALT_NAME_ONLY
* Verify hostname/ip address using alternate name (SAN) only and do not
* use the common name. Forces use of the alternate name, so certificates
* missing SAN will be rejected during the handshake
* WOLFSSL_CHECK_SIG_FAULTS
* Verifies the ECC signature after signing in case of faults in the
* calculation of the signature. Useful when signature fault injection is a
* possible attack.
* WOLFSSL_TLS13_IGNORE_AEAD_LIMITS
* Ignore the AEAD limits for messages specified in the RFC. After
* reaching the limit, we initiate a key update. We enforce the AEAD limits
* by default.
* https://www.rfc-editor.org/rfc/rfc8446#section-5.5
* https://www.rfc-editor.org/rfc/rfc9147.html#name-aead-limits
* WOLFSSL_HARDEN_TLS
* Implement the recommendations specified in RFC9325. This macro needs to
* be defined to the desired number of bits of security. The currently
* implemented values are 112 and 128 bits. The following macros disable
* certain checks.
* - WOLFSSL_HARDEN_TLS_ALLOW_TRUNCATED_HMAC
* - WOLFSSL_HARDEN_TLS_ALLOW_OLD_TLS
* - WOLFSSL_HARDEN_TLS_NO_SCR_CHECK
* - WOLFSSL_HARDEN_TLS_NO_PKEY_CHECK
* - WOLFSSL_HARDEN_TLS_ALLOW_ALL_CIPHERSUITES
* WOLFSSL_NO_INIT_CTX_KEY
* Allows SSL objects to be created from a CTX without a loaded key/cert
* pair
*/
#ifdef EXTERNAL_OPTS_OPENVPN
#error EXTERNAL_OPTS_OPENVPN should not be defined\
when building wolfSSL
#endif
#ifndef WOLFCRYPT_ONLY
#include <wolfssl/internal.h>
#include <wolfssl/error-ssl.h>
#include <wolfssl/wolfcrypt/asn.h>
#include <wolfssl/wolfcrypt/dh.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA)
#include <wolfssl/wolfcrypt/srp.h>
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_SECRET_CALLBACK)
#include <wolfssl/wolfcrypt/coding.h>
#endif
#ifdef HAVE_LIBZ
#include "zlib.h"
#endif
#ifdef WOLFSSL_QNX_CAAM
/* included to get CAAM devId value */
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
#endif
#ifdef HAVE_ARIA
/* included to get ARIA devId value */
#include <wolfssl/wolfcrypt/port/aria/aria-cryptocb.h>
#endif
#if defined(DEBUG_WOLFSSL) || defined(SHOW_SECRETS) || \
defined(CHACHA_AEAD_TEST) || defined(WOLFSSL_SESSION_EXPORT_DEBUG)
#ifndef NO_STDIO_FILESYSTEM
#ifdef FUSION_RTOS
#include <fclstdio.h>
#else
#include <stdio.h>
#endif
#endif
#endif
#ifdef __sun
#include <sys/filio.h>
#endif
#define ERROR_OUT(err, eLabel) { ret = (err); goto eLabel; }
#ifdef _MSC_VER
/* disable for while(0) cases at the .c level for now */
#pragma warning(disable:4127)
#endif
#if defined(WOLFSSL_CALLBACKS) && !defined(LARGE_STATIC_BUFFERS)
#error \
WOLFSSL_CALLBACKS needs LARGE_STATIC_BUFFERS, please add LARGE_STATIC_BUFFERS
#endif
#if defined(HAVE_SECURE_RENEGOTIATION) && defined(HAVE_RENEGOTIATION_INDICATION)
#error Cannot use both secure-renegotiation and renegotiation-indication
#endif
#ifndef WOLFSSL_NO_TLS12
#ifndef NO_WOLFSSL_CLIENT
static int DoServerKeyExchange(WOLFSSL* ssl, const byte* input,
word32* inOutIdx, word32 size);
#ifndef NO_CERTS
static int DoCertificateRequest(WOLFSSL* ssl, const byte* input,
word32* inOutIdx, word32 size);
#endif
#ifdef HAVE_SESSION_TICKET
static int DoSessionTicket(WOLFSSL* ssl, const byte* input,
word32* inOutIdx, word32 size);
#endif
#endif
#ifndef NO_WOLFSSL_SERVER
static int DoClientKeyExchange(WOLFSSL* ssl, byte* input,
word32* inOutIdx, word32 size);
#if (!defined(NO_RSA) || defined(HAVE_ECC) || defined(HAVE_ED25519) || \
defined(HAVE_ED448)) && !defined(WOLFSSL_NO_CLIENT_AUTH)
static int DoCertificateVerify(WOLFSSL* ssl, byte* input,
word32* inOutIdx, word32 size);
#endif
#endif /* !NO_WOLFSSL_SERVER */
#endif /* !WOLFSSL_NO_TLS12 */
#if !defined(NO_WOLFSSL_SERVER) && defined(HAVE_SESSION_TICKET)
#if defined(WOLFSSL_HAPROXY)
#define SSL_TICKET_CTX(ssl) ssl->initial_ctx->ticketEncCtx
#else
#define SSL_TICKET_CTX(ssl) ssl->ctx->ticketEncCtx
#endif
#if !defined(WOLFSSL_NO_DEF_TICKET_ENC_CB)
static int TicketEncCbCtx_Init(WOLFSSL_CTX* ctx,
TicketEncCbCtx* keyCtx);
static void TicketEncCbCtx_Free(TicketEncCbCtx* keyCtx);
static int DefTicketEncCb(WOLFSSL* ssl,
byte key_name[WOLFSSL_TICKET_NAME_SZ],
byte iv[WOLFSSL_TICKET_IV_SZ],
byte mac[WOLFSSL_TICKET_MAC_SZ],
int enc, byte* ticket, int inLen, int* outLen,
void* userCtx);
#endif
#endif
#ifdef WOLFSSL_DTLS
static int _DtlsCheckWindow(WOLFSSL* ssl);
#endif
#if defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS)
#include <Security/SecCertificate.h>
#include <Security/SecTrust.h>
#include <Security/SecPolicy.h>
static int DoAppleNativeCertValidation(const WOLFSSL_BUFFER_INFO* certs,
int totalCerts);
#endif /* #if defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS) */
#ifdef WOLFSSL_DTLS13
#ifndef WOLFSSL_DTLS13_SEND_MOREACK_DEFAULT
#define WOLFSSL_DTLS13_SEND_MOREACK_DEFAULT 0
#endif
#endif /* WOLFSSL_DTLS13 */
enum processReply {
doProcessInit = 0,
#ifndef NO_WOLFSSL_SERVER
runProcessOldClientHello,
#endif
getRecordLayerHeader,
getData,
verifyEncryptedMessage,
decryptMessage,
verifyMessage,
runProcessingOneRecord,
runProcessingOneMessage
};
#ifndef WOLFSSL_NO_TLS12
#if !defined(NO_WOLFSSL_SERVER) || !defined(NO_WOLFSSL_CLIENT)
/* Server random bytes for TLS v1.3 described downgrade protection mechanism. */
static const byte tls13Downgrade[7] = {
0x44, 0x4f, 0x57, 0x4e, 0x47, 0x52, 0x44
};
#define TLS13_DOWNGRADE_SZ sizeof(tls13Downgrade)
#endif /* !NO_WOLFSSL_SERVER || !NO_WOLFSSL_CLIENT */
#if !defined(NO_OLD_TLS) && !defined(WOLFSSL_AEAD_ONLY)
static int SSL_hmac(WOLFSSL* ssl, byte* digest, const byte* in, word32 sz,
int padLen, int content, int verify, int epochOrder);
#endif
#endif /* !WOLFSSL_NO_TLS12 */
#if defined(WOLFSSL_RENESAS_FSPSM_TLS) || defined(WOLFSSL_RENESAS_TSIP_TLS)
#include <wolfssl/wolfcrypt/port/Renesas/renesas_cmn.h>
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_SECRET_CALLBACK)
static int SessionSecret_callback(WOLFSSL* ssl, void* secret,
int* secretSz, void* ctx);
#ifdef WOLFSSL_TLS13
static int SessionSecret_callback_Tls13(WOLFSSL* ssl, int id,
const unsigned char* secret, int secretSz, void* ctx);
#endif
/* Label string for client random. */
#define SSC_CR "CLIENT_RANDOM"
/*
* This function builds up string for key-logging then call user's
* key-log-callback to pass the string for TLS1.2 and older.
* The user's key-logging callback has been set via
* wolfSSL_CTX_set_keylog_callback function. The logging string format is:
* "CLIENT_RANDOM <hex-encoded client random> <hex-encoded master-secret>"
* parameter
* - ssl: WOLFSSL object
* - secret: pointer to the buffer holding master-secret
* - secretSz: size of secret
* - ctx: not used
* returns 0 on success, negative value on failure.
*/
static int SessionSecret_callback(WOLFSSL* ssl, void* secret,
int* secretSz, void* ctx)
{
wolfSSL_CTX_keylog_cb_func logCb = NULL;
int msSz;
int hasVal;
int i;
const char* label = SSC_CR;
int labelSz = sizeof(SSC_CR);
int buffSz;
byte* log = NULL;
word32 outSz;
int idx;
int ret;
(void)ctx;
if (ssl == NULL || secret == NULL || *secretSz == 0)
return BAD_FUNC_ARG;
if (ssl->arrays == NULL)
return BAD_FUNC_ARG;
/* get the user-callback func from CTX*/
logCb = ssl->ctx->keyLogCb;
if (logCb == NULL)
return 0;
/* need to make sure the given master-secret has a meaningful value */
msSz = *secretSz;
hasVal = 0;
for (i = 0; i < msSz; i++) {
if (*((byte*)secret) != 0) {
hasVal = 1;
break;
}
}
if (hasVal == 0)
return 0; /* master-secret looks invalid */
/* build up a hex-decoded keylog string
"CLIENT_RANDOM <hex-encoded client random> <hex-encoded master-secret>"
note that each keylog string does not have CR/LF.
*/
buffSz = labelSz + (RAN_LEN * 2) + 1 + ((*secretSz) * 2) + 1;
log = XMALLOC(buffSz, ssl->heap, DYNAMIC_TYPE_SECRET);
if (log == NULL)
return MEMORY_E;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("SessionSecret log", log, buffSz);
#endif
XMEMSET(log, 0, buffSz);
XMEMCPY(log, label, labelSz -1); /* put label w/o terminator */
log[labelSz - 1] = ' '; /* '\0' -> ' ' */
idx = labelSz;
outSz = buffSz - idx;
if ((ret = Base16_Encode(ssl->arrays->clientRandom, RAN_LEN,
log + idx, &outSz)) == 0) {
idx += (outSz - 1); /* reduce terminator byte */
outSz = buffSz - idx;
if (outSz > 1) {
log[idx++] = ' '; /* add space*/
outSz = buffSz - idx;
if ((ret = Base16_Encode((byte*)secret, *secretSz,
log + idx, &outSz)) == 0) {
/* pass the log to the client callback*/
logCb(ssl, (char*)log);
ret = 0;
}
}
else
ret = MEMORY_E;
}
/* Zero out Base16 encoded secret and other data. */
ForceZero(log, buffSz);
XFREE(log, ssl->heap, DYNAMIC_TYPE_SECRET);
return ret;
}
#if defined(WOLFSSL_TLS13)
/* Label string for client early traffic secret. */
#define SSC_TLS13_CETS "CLIENT_EARLY_TRAFFIC_SECRET"
/* Label string for client handshake traffic secret. */
#define SSC_TLS13_CHTS "CLIENT_HANDSHAKE_TRAFFIC_SECRET"
/* Label string for server handshake traffic secret. */
#define SSC_TLS13_SHTS "SERVER_HANDSHAKE_TRAFFIC_SECRET"
/* Label string for client traffic secret. */
#define SSC_TLS13_CTS "CLIENT_TRAFFIC_SECRET_0"
/* Label string for server traffic secret. */
#define SSC_TLS13_STS "SERVER_TRAFFIC_SECRET_0"
/* Label string for early exporter secret. */
#define SSC_TLS13_EES "EARLY_EXPORTER_SECRET"
/* Label string for exporter secret. */
#define SSC_TLS13_ES "EXPORTER_SECRET"
/*
* This function builds up string for key-logging then call user's
* key-log-callback to pass the string for TLS1.3.
* The user's key-logging callback has been set via
* wolfSSL_CTX_set_keylog_callback function. The logging string format is:
* "<Label> <hex-encoded client random> <hex-encoded secret>"
*
* parameter
* - ssl: WOLFSSL object
* - id: type of secret for logging
* - secret: pointer to the buffer holding secret
* - secretSz: size of secret
* - ctx: not used
* returns 0 on success, negative value on failure.
*/
static int SessionSecret_callback_Tls13(WOLFSSL* ssl, int id,
const unsigned char* secret, int secretSz, void* ctx)
{
wolfSSL_CTX_keylog_cb_func logCb = NULL;
const char* label;
int labelSz = 0;
int buffSz = 0;
byte* log = NULL;
word32 outSz;
int idx;
int ret;
(void)ctx;
if (ssl == NULL || secret == NULL || secretSz == 0)
return BAD_FUNC_ARG;
if (ssl->arrays == NULL)
return BAD_FUNC_ARG;
/* get the user-callback func from CTX*/
logCb = ssl->ctx->keyLogCb;
if (logCb == NULL)
return 0;
switch (id) {
case CLIENT_EARLY_TRAFFIC_SECRET:
labelSz = sizeof(SSC_TLS13_CETS);
label = SSC_TLS13_CETS;
break;
case CLIENT_HANDSHAKE_TRAFFIC_SECRET:
labelSz = sizeof(SSC_TLS13_CHTS);
label = SSC_TLS13_CHTS;
break;
case SERVER_HANDSHAKE_TRAFFIC_SECRET:
labelSz = sizeof(SSC_TLS13_SHTS);
label = SSC_TLS13_SHTS;
break;
case CLIENT_TRAFFIC_SECRET:
labelSz = sizeof(SSC_TLS13_CTS);
label = SSC_TLS13_CTS;
break;
case SERVER_TRAFFIC_SECRET:
labelSz = sizeof(SSC_TLS13_STS);
label = SSC_TLS13_STS;
break;
case EARLY_EXPORTER_SECRET:
labelSz = sizeof(SSC_TLS13_EES);
label = SSC_TLS13_EES;
break;
case EXPORTER_SECRET:
labelSz = sizeof(SSC_TLS13_ES);
label = SSC_TLS13_ES;
break;
default:
return BAD_FUNC_ARG;
}
/* prepare a log string for passing user callback
* "<Label> <hex-encoded client random> <hex-encoded secret>" */
buffSz = labelSz + (RAN_LEN * 2) + 1 + secretSz * 2 + 1;
log = XMALLOC(buffSz, ssl->heap, DYNAMIC_TYPE_SECRET);
if (log == NULL)
return MEMORY_E;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("SessionSecret log", log, buffSz);
#endif
XMEMSET(log, 0, buffSz);
XMEMCPY(log, label, labelSz - 1); /* put label w/o terminator */
log[labelSz - 1] = ' '; /* '\0' -> ' ' */
idx = labelSz;
outSz = buffSz - idx;
if ((ret = Base16_Encode(ssl->arrays->clientRandom, RAN_LEN,
log + idx, &outSz)) == 0) {
idx += (outSz - 1); /* reduce terminator byte */
outSz = buffSz - idx;
if (outSz >1) {
log[idx++] = ' '; /* add space*/
outSz = buffSz - idx;
if ((ret = Base16_Encode((byte*)secret, secretSz,
log + idx, &outSz)) == 0) {
logCb(ssl, (char*)log);
ret = 0;
}
}
else
ret = MEMORY_E;
}
/* Zero out Base16 encoded secret and other data. */
ForceZero(log, buffSz);
XFREE(log, ssl->heap, DYNAMIC_TYPE_SECRET);
return ret;
}
#endif /* WOLFSSL_TLS13*/
#endif /* OPENSSL_EXTRA && HAVE_SECRET_CALLBACK*/
int IsTLS(const WOLFSSL* ssl)
{
if (ssl->version.major == SSLv3_MAJOR && ssl->version.minor >=TLSv1_MINOR)
return 1;
return 0;
}
int IsAtLeastTLSv1_2(const WOLFSSL* ssl)
{
if (ssl->version.major == SSLv3_MAJOR && ssl->version.minor >=TLSv1_2_MINOR)
return 1;
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR && ssl->version.minor <= DTLSv1_2_MINOR)
return 1;
#endif
return 0;
}
int IsAtLeastTLSv1_3(const ProtocolVersion pv)
{
int ret;
ret = (pv.major == SSLv3_MAJOR && pv.minor >= TLSv1_3_MINOR);
#ifdef WOLFSSL_DTLS13
if (ret == 0 && pv.major == DTLS_MAJOR && pv.minor <= DTLSv1_3_MINOR)
return 1;
#endif
return ret;
}
int IsEncryptionOn(const WOLFSSL* ssl, int isSend)
{
#ifdef WOLFSSL_DTLS
/* For DTLS, epoch 0 is always not encrypted. */
if (ssl->options.dtls && !isSend) {
if (!IsAtLeastTLSv1_3(ssl->version) && ssl->keys.curEpoch == 0)
return 0;
#ifdef WOLFSSL_DTLS13
else if (IsAtLeastTLSv1_3(ssl->version)
&& w64IsZero(ssl->keys.curEpoch64))
return 0;
#endif /* WOLFSSL_DTLS13 */
}
#endif /* WOLFSSL_DTLS */
#ifdef WOLFSSL_QUIC
if (WOLFSSL_IS_QUIC(ssl) && IsAtLeastTLSv1_3(ssl->version)) {
return 0;
}
#endif
return ssl->keys.encryptionOn &&
(isSend ? ssl->encrypt.setup : ssl->decrypt.setup);
}
#ifdef WOLFSSL_DTLS
/* Stream Control Transmission Protocol */
/* If SCTP is not enabled returns the state of the dtls option.
* If SCTP is enabled returns dtls && !sctp. */
int IsDtlsNotSctpMode(WOLFSSL* ssl)
{
#ifdef WOLFSSL_SCTP
return ssl->options.dtls && !ssl->options.dtlsSctp;
#else
return ssl->options.dtls;
#endif
}
#if !defined(WOLFSSL_NO_TLS12) && !defined(NO_WOLFSSL_SERVER)
/* Secure Real-time Transport Protocol */
/* If SRTP is not enabled returns the state of the dtls option.
* If SRTP is enabled returns dtls && !dtlsSrtpProfiles. */
int IsDtlsNotSrtpMode(WOLFSSL* ssl)
{
#ifdef WOLFSSL_SRTP
return ssl->options.dtls && !ssl->dtlsSrtpProfiles;
#else
return ssl->options.dtls;
#endif
}
#endif /* !WOLFSSL_NO_TLS12 && !NO_WOLFSSL_SERVER */
#endif /* WOLFSSL_DTLS */
#ifdef HAVE_LIBZ
/* alloc user allocs to work with zlib */
static void* myAlloc(void* opaque, unsigned int item, unsigned int size)
{
(void)opaque;
return (void *)XMALLOC(item * size, opaque, DYNAMIC_TYPE_LIBZ);
}
static void myFree(void* opaque, void* memory)
{
(void)opaque;
XFREE(memory, opaque, DYNAMIC_TYPE_LIBZ);
}
/* init zlib comp/decomp streams, 0 on success */
static int InitStreams(WOLFSSL* ssl)
{
ssl->c_stream.zalloc = (alloc_func)myAlloc;
ssl->c_stream.zfree = (free_func)myFree;
ssl->c_stream.opaque = (voidpf)ssl->heap;
if (deflateInit(&ssl->c_stream, Z_DEFAULT_COMPRESSION) != Z_OK)
return ZLIB_INIT_ERROR;
ssl->didStreamInit = 1;
ssl->d_stream.zalloc = (alloc_func)myAlloc;
ssl->d_stream.zfree = (free_func)myFree;
ssl->d_stream.opaque = (voidpf)ssl->heap;
if (inflateInit(&ssl->d_stream) != Z_OK) return ZLIB_INIT_ERROR;
return 0;
}
static void FreeStreams(WOLFSSL* ssl)
{
if (ssl->didStreamInit) {
deflateEnd(&ssl->c_stream);
inflateEnd(&ssl->d_stream);
}
}
/* compress in to out, return out size or error */
static int myCompress(WOLFSSL* ssl, byte* in, int inSz, byte* out, int outSz)
{
int err;
int currTotal = (int)ssl->c_stream.total_out;
ssl->c_stream.next_in = in;
ssl->c_stream.avail_in = inSz;
ssl->c_stream.next_out = out;
ssl->c_stream.avail_out = outSz;
err = deflate(&ssl->c_stream, Z_SYNC_FLUSH);
if (err != Z_OK && err != Z_STREAM_END) return ZLIB_COMPRESS_ERROR;
return (int)ssl->c_stream.total_out - currTotal;
}
/* decompress in to out, return out size or error */
static int myDeCompress(WOLFSSL* ssl, byte* in,int inSz, byte* out,int outSz)
{
int err;
int currTotal = (int)ssl->d_stream.total_out;
ssl->d_stream.next_in = in;
ssl->d_stream.avail_in = inSz;
ssl->d_stream.next_out = out;
ssl->d_stream.avail_out = outSz;
err = inflate(&ssl->d_stream, Z_SYNC_FLUSH);
if (err != Z_OK && err != Z_STREAM_END) return ZLIB_DECOMPRESS_ERROR;
return (int)ssl->d_stream.total_out - currTotal;
}
#endif /* HAVE_LIBZ */
#ifdef WOLFSSL_SESSION_EXPORT
/**
* serializes the cipher specs struct for exporting
* @return the amount written to 'exp' buffer
*/
static int ExportCipherSpecState(WOLFSSL* ssl, byte* exp, word32 len, byte ver,
int type)
{
word32 idx = 0;
CipherSpecs* specs;
WOLFSSL_ENTER("ExportCipherSpecState");
if (exp == NULL || ssl == NULL) {
return BAD_FUNC_ARG;
}
specs = &ssl->specs;
if (WOLFSSL_EXPORT_SPC_SZ > len) {
return BUFFER_E;
}
XMEMSET(exp, 0, WOLFSSL_EXPORT_SPC_SZ);
c16toa(specs->key_size, exp + idx); idx += OPAQUE16_LEN;
c16toa(specs->iv_size, exp + idx); idx += OPAQUE16_LEN;
c16toa(specs->block_size, exp + idx); idx += OPAQUE16_LEN;
c16toa(specs->aead_mac_size, exp + idx); idx += OPAQUE16_LEN;
exp[idx++] = specs->bulk_cipher_algorithm;
exp[idx++] = specs->cipher_type;
exp[idx++] = specs->mac_algorithm;
exp[idx++] = specs->kea;
exp[idx++] = specs->sig_algo;
exp[idx++] = specs->hash_size;
exp[idx++] = specs->pad_size;
exp[idx++] = specs->static_ecdh;
if (idx != WOLFSSL_EXPORT_SPC_SZ) {
WOLFSSL_MSG("WOLFSSL_EXPORT_SPC_SZ needs updated and export version");
return DTLS_EXPORT_VER_E;
}
/* send over state of AES too */
if (type == WOLFSSL_EXPORT_TLS &&
ssl->specs.bulk_cipher_algorithm == wolfssl_aes) {
byte *pt = (byte*)ssl->encrypt.aes->reg;
if ((idx + 2*AES_BLOCK_SIZE) > len) {
WOLFSSL_MSG("Can not fit AES state into buffer");
return BUFFER_E;
}
XMEMCPY(exp + idx, pt, AES_BLOCK_SIZE);
idx += AES_BLOCK_SIZE;
pt = (byte*)ssl->decrypt.aes->reg;
XMEMCPY(exp + idx, pt, AES_BLOCK_SIZE);
idx += AES_BLOCK_SIZE;
}
WOLFSSL_LEAVE("ExportCipherSpecState", idx);
(void)ver;
return idx;
}
/* serializes the key struct for exporting */
static int ExportKeyState(WOLFSSL* ssl, byte* exp, word32 len, byte ver,
byte small, int type)
{
word32 idx = 0;
byte sz;
Keys* keys;
WOLFSSL_ENTER("ExportKeyState");
if (exp == NULL || ssl == NULL) {
return BAD_FUNC_ARG;
}
keys = &(ssl->keys);
if (DTLS_EXPORT_MIN_KEY_SZ > len) {
WOLFSSL_MSG("Buffer not large enough for minimum key struct size");
return BUFFER_E;
}
XMEMSET(exp, 0, DTLS_EXPORT_MIN_KEY_SZ);
c32toa(keys->peer_sequence_number_hi, exp + idx); idx += OPAQUE32_LEN;
c32toa(keys->peer_sequence_number_lo, exp + idx); idx += OPAQUE32_LEN;
c32toa(keys->sequence_number_hi, exp + idx); idx += OPAQUE32_LEN;
c32toa(keys->sequence_number_lo, exp + idx); idx += OPAQUE32_LEN;
#if defined(WOLFSSL_DTLS)
if (type == WOLFSSL_EXPORT_DTLS) {
c16toa(keys->peerSeq[0].nextEpoch, exp + idx); idx += OPAQUE16_LEN;
c16toa(keys->peerSeq[0].nextSeq_hi, exp + idx); idx += OPAQUE16_LEN;
c32toa(keys->peerSeq[0].nextSeq_lo, exp + idx); idx += OPAQUE32_LEN;
c16toa(keys->curEpoch, exp + idx); idx += OPAQUE16_LEN;
c16toa(keys->curSeq_hi, exp + idx); idx += OPAQUE16_LEN;
c32toa(keys->curSeq_lo, exp + idx); idx += OPAQUE32_LEN;
c16toa(keys->peerSeq[0].prevSeq_hi, exp + idx); idx += OPAQUE16_LEN;
c32toa(keys->peerSeq[0].prevSeq_lo, exp + idx); idx += OPAQUE32_LEN;
c16toa(keys->dtls_peer_handshake_number, exp + idx);
idx += OPAQUE16_LEN;
c16toa(keys->dtls_expected_peer_handshake_number, exp + idx);
idx += OPAQUE16_LEN;
c16toa(keys->dtls_sequence_number_hi, exp + idx); idx += OPAQUE16_LEN;
c32toa(keys->dtls_sequence_number_lo, exp + idx); idx += OPAQUE32_LEN;
c16toa(keys->dtls_prev_sequence_number_hi, exp + idx);
idx += OPAQUE16_LEN;
c32toa(keys->dtls_prev_sequence_number_lo, exp + idx);
idx += OPAQUE32_LEN;
c16toa(keys->dtls_epoch, exp + idx); idx += OPAQUE16_LEN;
c16toa(keys->dtls_handshake_number, exp + idx); idx += OPAQUE16_LEN;
}
#endif
c32toa(keys->encryptSz, exp + idx); idx += OPAQUE32_LEN;
c32toa(keys->padSz, exp + idx); idx += OPAQUE32_LEN;
exp[idx++] = keys->encryptionOn;
exp[idx++] = keys->decryptedCur;
/* from here on the buffer needs checked because is variable length that
* can be larger than DTLS_EXPORT_MIN_KEY_SZ */
#ifdef WOLFSSL_DTLS
if (type == WOLFSSL_EXPORT_DTLS) {
word32 i;
if ((OPAQUE16_LEN * 2) + idx +
(2 * (WOLFSSL_DTLS_WINDOW_WORDS * OPAQUE32_LEN)) > len) {
WOLFSSL_MSG("Buffer not large enough for WOLFSSL_DTLS_WINDOW_WORDS");
return BUFFER_E;
}
c16toa(WOLFSSL_DTLS_WINDOW_WORDS, exp + idx); idx += OPAQUE16_LEN;
for (i = 0; i < WOLFSSL_DTLS_WINDOW_WORDS; i++) {
c32toa(keys->peerSeq[0].window[i], exp + idx);
idx += OPAQUE32_LEN;
}
c16toa(WOLFSSL_DTLS_WINDOW_WORDS, exp + idx); idx += OPAQUE16_LEN;
for (i = 0; i < WOLFSSL_DTLS_WINDOW_WORDS; i++) {
c32toa(keys->peerSeq[0].prevWindow[i], exp + idx);
idx += OPAQUE32_LEN;
}
}
#endif
if (idx >= len) {
WOLFSSL_MSG("Buffer not large enough for truncated hmac flag");
return BUFFER_E;
}
#ifdef HAVE_TRUNCATED_HMAC
sz = ssl->truncated_hmac ? TRUNCATED_HMAC_SZ: ssl->specs.hash_size;
exp[idx++] = ssl->truncated_hmac;
#else
sz = ssl->specs.hash_size;
exp[idx++] = 0; /* no truncated hmac */
#endif
sz = (small)? 0: sz;
if (idx + (sz * 2) + OPAQUE8_LEN > len) {
WOLFSSL_MSG("Buffer not large enough for MAC secret");
return BUFFER_E;
}
exp[idx++] = sz;
if (sz > 0) {
#ifndef WOLFSSL_AEAD_ONLY
XMEMCPY(exp + idx, keys->client_write_MAC_secret, sz); idx += sz;
XMEMCPY(exp + idx, keys->server_write_MAC_secret, sz); idx += sz;
#else
XMEMSET(exp + idx, 0, sz); idx += sz;
XMEMSET(exp + idx, 0, sz); idx += sz;
#endif
}
sz = (small)? 0: ssl->specs.key_size;
if (idx + (sz * 2) + OPAQUE8_LEN > len) {
WOLFSSL_MSG("Buffer not large enough for write key");
return BUFFER_E;
}
exp[idx++] = sz;
if (sz > 0) {
XMEMCPY(exp + idx, keys->client_write_key, sz); idx += sz;
XMEMCPY(exp + idx, keys->server_write_key, sz); idx += sz;
}
sz = (small)? 0: ssl->specs.iv_size;
if (idx + (sz * 2) + OPAQUE8_LEN + AEAD_MAX_EXP_SZ > len) {
WOLFSSL_MSG("Buffer not large enough for IVs");
return BUFFER_E;
}
exp[idx++] = sz;
if (sz > 0) {
XMEMCPY(exp + idx, keys->client_write_IV, sz); idx += sz;
XMEMCPY(exp + idx, keys->server_write_IV, sz); idx += sz;
}
XMEMCPY(exp + idx, keys->aead_exp_IV, AEAD_MAX_EXP_SZ);
idx += AEAD_MAX_EXP_SZ;
sz = (small)? 0: AEAD_MAX_IMP_SZ;
if (idx + (sz * 2) + OPAQUE8_LEN > len) {
WOLFSSL_MSG("Buffer not large enough for imp IVs");
return BUFFER_E;
}
exp[idx++] = sz;
if (sz > 0) {
XMEMCPY(exp + idx, keys->aead_enc_imp_IV, sz); idx += sz;
XMEMCPY(exp + idx, keys->aead_dec_imp_IV, sz); idx += sz;
}
/* DTLS_EXPORT_KEY_SZ is max value. idx size can vary */
if (idx > DTLS_EXPORT_KEY_SZ) {
WOLFSSL_MSG("DTLS_EXPORT_KEY_SZ needs updated and export version");
return DTLS_EXPORT_VER_E;
}
WOLFSSL_LEAVE("ExportKeyState", idx);
(void)ver;
(void)type;
return idx;
}
/**
* Imports the buffer 'exp' into the 'ssl' CipherSpec structure.
* @param ssl WOLFSSL structure to import into
* @param exp input buffer to read from
* @param len length of exp buffer
* @param ver version of import buffer found
* @param type flag for importing a TLS session or DTLS
*
* @return size of exp buffer consumed on success and negative value on fail
*/
static int ImportCipherSpecState(WOLFSSL* ssl, const byte* exp, word32 len,
byte ver, int type)
{
word32 idx = 0;
CipherSpecs* specs;
word32 tmp_seq_peer_lo;
word32 tmp_seq_peer_hi;
word32 tmp_seq_lo;
word32 tmp_seq_hi;
int ret;
WOLFSSL_ENTER("ImportCipherSpecState");
if (exp == NULL || ssl == NULL) {
return BAD_FUNC_ARG;
}
specs= &(ssl->specs);
if (WOLFSSL_EXPORT_SPC_SZ > len) {
WOLFSSL_MSG("Buffer not large enough for max spec struct size");
return BUFFER_E;
}
ato16(exp + idx, &specs->key_size); idx += OPAQUE16_LEN;
ato16(exp + idx, &specs->iv_size); idx += OPAQUE16_LEN;
ato16(exp + idx, &specs->block_size); idx += OPAQUE16_LEN;
ato16(exp + idx, &specs->aead_mac_size); idx += OPAQUE16_LEN;
specs->bulk_cipher_algorithm = exp[idx++];
specs->cipher_type = exp[idx++];
specs->mac_algorithm = exp[idx++];
specs->kea = exp[idx++];
specs->sig_algo = exp[idx++];
specs->hash_size = exp[idx++];
specs->pad_size = exp[idx++];
specs->static_ecdh = exp[idx++];
if (specs->pad_size != PAD_MD5 && specs->pad_size != PAD_SHA) {
WOLFSSL_MSG("Importing bad or unknown pad size");
return BAD_STATE_E;
}
/* temporarily save the sequence numbers */
tmp_seq_peer_lo = ssl->keys.peer_sequence_number_lo;
tmp_seq_peer_hi = ssl->keys.peer_sequence_number_hi;
tmp_seq_lo = ssl->keys.sequence_number_lo;
tmp_seq_hi = ssl->keys.sequence_number_hi;
if ((ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE)) < 0) {
return ret;
}
/* reset sequence numbers after setting keys */
ssl->keys.peer_sequence_number_lo = tmp_seq_peer_lo;
ssl->keys.peer_sequence_number_hi = tmp_seq_peer_hi;
ssl->keys.sequence_number_lo = tmp_seq_lo;
ssl->keys.sequence_number_hi = tmp_seq_hi;
if (type == WOLFSSL_EXPORT_TLS &&
ssl->specs.bulk_cipher_algorithm == wolfssl_aes) {
byte *pt = (byte*)ssl->encrypt.aes->reg;
XMEMCPY(pt, exp + idx, AES_BLOCK_SIZE);
idx += AES_BLOCK_SIZE;
pt = (byte*)ssl->decrypt.aes->reg;
XMEMCPY(pt, exp + idx, AES_BLOCK_SIZE);
idx += AES_BLOCK_SIZE;
}
WOLFSSL_LEAVE("ImportCipherSpecState", idx);
(void)ver;
return idx;
}
/**
* Import the Key structure
*
* @param ssl WOLFSSL structure to import into
* @param exp buffer to read Key values from
* @param len max length of buffer 'exp'
* @param ver version of import buffer found
* @param type flag for TLS vs DTLS
*
* @return amount of data read from exp on success or negative on fail
*/
static int ImportKeyState(WOLFSSL* ssl, const byte* exp, word32 len, byte ver,
int type)
{
word32 idx = 0;
byte sz;
Keys *keys;
WOLFSSL_ENTER("ImportKeyState");
if (exp == NULL || ssl == NULL) {
return BAD_FUNC_ARG;
}
keys = &(ssl->keys);
/* check minimum length -- includes byte used for size indicators */
if (len < DTLS_EXPORT_MIN_KEY_SZ) {
WOLFSSL_MSG("Buffer not large enough for minimum expected size");
return BUFFER_E;
}
ato32(exp + idx, &keys->peer_sequence_number_hi); idx += OPAQUE32_LEN;
ato32(exp + idx, &keys->peer_sequence_number_lo); idx += OPAQUE32_LEN;
ato32(exp + idx, &keys->sequence_number_hi); idx += OPAQUE32_LEN;
ato32(exp + idx, &keys->sequence_number_lo); idx += OPAQUE32_LEN;
#if defined(WOLFSSL_DTLS)
if (type == WOLFSSL_EXPORT_DTLS) {
ato16(exp + idx, &keys->peerSeq[0].nextEpoch); idx += OPAQUE16_LEN;
ato16(exp + idx, &keys->peerSeq[0].nextSeq_hi); idx += OPAQUE16_LEN;
ato32(exp + idx, &keys->peerSeq[0].nextSeq_lo); idx += OPAQUE32_LEN;
ato16(exp + idx, &keys->curEpoch); idx += OPAQUE16_LEN;
ato16(exp + idx, &keys->curSeq_hi); idx += OPAQUE16_LEN;
ato32(exp + idx, &keys->curSeq_lo); idx += OPAQUE32_LEN;
ato16(exp + idx, &keys->peerSeq[0].prevSeq_hi); idx += OPAQUE16_LEN;
ato32(exp + idx, &keys->peerSeq[0].prevSeq_lo); idx += OPAQUE32_LEN;
ato16(exp + idx, &keys->dtls_peer_handshake_number);
idx += OPAQUE16_LEN;
ato16(exp + idx, &keys->dtls_expected_peer_handshake_number);
idx += OPAQUE16_LEN;
ato16(exp + idx, &keys->dtls_sequence_number_hi); idx += OPAQUE16_LEN;
ato32(exp + idx, &keys->dtls_sequence_number_lo); idx += OPAQUE32_LEN;
ato16(exp + idx, &keys->dtls_prev_sequence_number_hi);
idx += OPAQUE16_LEN;
ato32(exp + idx, &keys->dtls_prev_sequence_number_lo);
idx += OPAQUE32_LEN;
ato16(exp + idx, &keys->dtls_epoch); idx += OPAQUE16_LEN;
ato16(exp + idx, &keys->dtls_handshake_number); idx += OPAQUE16_LEN;
}
#endif
ato32(exp + idx, &keys->encryptSz); idx += OPAQUE32_LEN;
ato32(exp + idx, &keys->padSz); idx += OPAQUE32_LEN;
keys->encryptionOn = exp[idx++];
keys->decryptedCur = exp[idx++];
#if defined(WOLFSSL_DTLS)
if (type == WOLFSSL_EXPORT_DTLS) {
word16 i, wordCount, wordAdj = 0;
/* do window */
ato16(exp + idx, &wordCount);
idx += OPAQUE16_LEN;
if (wordCount > WOLFSSL_DTLS_WINDOW_WORDS) {
wordCount = WOLFSSL_DTLS_WINDOW_WORDS;
wordAdj = (WOLFSSL_DTLS_WINDOW_WORDS - wordCount) * sizeof(word32);
}
XMEMSET(keys->peerSeq[0].window, 0xFF, DTLS_SEQ_SZ);
for (i = 0; i < wordCount; i++) {
ato32(exp + idx, &keys->peerSeq[0].window[i]);
idx += OPAQUE32_LEN;
}
idx += wordAdj;
/* do prevWindow */
ato16(exp + idx, &wordCount);
idx += OPAQUE16_LEN;
if (wordCount > WOLFSSL_DTLS_WINDOW_WORDS) {
wordCount = WOLFSSL_DTLS_WINDOW_WORDS;
wordAdj = (WOLFSSL_DTLS_WINDOW_WORDS - wordCount) * sizeof(word32);
}
XMEMSET(keys->peerSeq[0].prevWindow, 0xFF, DTLS_SEQ_SZ);
for (i = 0; i < wordCount; i++) {
ato32(exp + idx, &keys->peerSeq[0].prevWindow[i]);
idx += OPAQUE32_LEN;
}
idx += wordAdj;
}
#endif
#ifdef HAVE_TRUNCATED_HMAC
ssl->truncated_hmac = exp[idx++];
#else
idx++; /* no truncated hmac */
#endif
sz = exp[idx++];
#ifndef WOLFSSL_AEAD_ONLY
if (sz > sizeof(keys->client_write_MAC_secret) || (sz * 2) + idx > len) {
WOLFSSL_MSG("Buffer not large enough for MAC import");
return BUFFER_E;
}
if (sz > 0) {
XMEMCPY(keys->client_write_MAC_secret, exp + idx, sz); idx += sz;
XMEMCPY(keys->server_write_MAC_secret, exp + idx, sz); idx += sz;
}
#else
if (sz + idx > len) {
return BUFFER_E;
}
idx += sz; idx += sz;
#endif
sz = exp[idx++];
if (sz > sizeof(keys->client_write_key) || (sz * 2) + idx > len) {
WOLFSSL_MSG("Buffer not large enough for key import");
return BUFFER_E;
}
if (sz > 0) {
XMEMCPY(keys->client_write_key, exp + idx, sz); idx += sz;
XMEMCPY(keys->server_write_key, exp + idx, sz); idx += sz;
}
sz = exp[idx++];
if (sz > sizeof(keys->client_write_IV) || (sz * 2) + idx > len) {
WOLFSSL_MSG("Buffer not large enough for write IV import");
return BUFFER_E;
}
if (sz > 0) {
XMEMCPY(keys->client_write_IV, exp + idx, sz); idx += sz;
XMEMCPY(keys->server_write_IV, exp + idx, sz); idx += sz;
}
XMEMCPY(keys->aead_exp_IV, exp + idx, AEAD_MAX_EXP_SZ);
idx += AEAD_MAX_EXP_SZ;
sz = exp[idx++];
if (sz > sizeof(keys->aead_enc_imp_IV) || (sz * 2) + idx > len) {
WOLFSSL_MSG("Buffer not large enough for imp IV import");
return BUFFER_E;
}
if (sz > 0) {
XMEMCPY(keys->aead_enc_imp_IV, exp + idx, sz); idx += sz;
XMEMCPY(keys->aead_dec_imp_IV, exp + idx, sz); idx += sz;
}
WOLFSSL_LEAVE("ImportKeyState", idx);
(void)ver;
(void)type;
return idx;
}
/* copy over necessary information from Options struct to buffer
* On success returns size of buffer used on failure returns a negative value */
static int ExportOptions(WOLFSSL* ssl, byte* exp, word32 len, byte ver,
int type)
{
int idx = 0;
word16 zero = 0;
Options *options;
WOLFSSL_ENTER("ExportOptions");
if (ssl == NULL || exp == NULL || len < DTLS_EXPORT_OPT_SZ) {
return BAD_FUNC_ARG;
}
options = &ssl->options;
if (options == NULL) {
return BAD_FUNC_ARG;
}
XMEMSET(exp, 0, DTLS_EXPORT_OPT_SZ);
/* these options are kept and sent to indicate verify status and strength
* of handshake */
exp[idx++] = options->sendVerify;
exp[idx++] = options->verifyPeer;
exp[idx++] = options->verifyNone;
exp[idx++] = options->downgrade;
#ifndef NO_DH
c16toa(options->minDhKeySz, exp + idx); idx += OPAQUE16_LEN;
c16toa(options->maxDhKeySz, exp + idx); idx += OPAQUE16_LEN;
c16toa(options->dhKeySz, exp + idx); idx += OPAQUE16_LEN;
#else
c16toa(zero, exp + idx); idx += OPAQUE16_LEN;
c16toa(zero, exp + idx); idx += OPAQUE16_LEN;
c16toa(zero, exp + idx); idx += OPAQUE16_LEN;
#endif
#ifndef NO_RSA
c16toa((word16)(options->minRsaKeySz), exp + idx); idx += OPAQUE16_LEN;
#else
c16toa(zero, exp + idx); idx += OPAQUE16_LEN;
#endif
#ifdef HAVE_ECC
c16toa((word16)(options->minEccKeySz), exp + idx); idx += OPAQUE16_LEN;
#else
c16toa(zero, exp + idx); idx += OPAQUE16_LEN;
#endif
/* these options are kept to indicate state and behavior */
#ifndef NO_PSK
exp[idx++] = options->havePSK;
#else
exp[idx++] = 0;
#endif
exp[idx++] = options->sessionCacheOff;
exp[idx++] = options->sessionCacheFlushOff;
exp[idx++] = options->side;
exp[idx++] = options->resuming;
exp[idx++] = options->haveSessionId;
exp[idx++] = options->tls;
exp[idx++] = options->tls1_1;
exp[idx++] = options->dtls;
exp[idx++] = options->connReset;
exp[idx++] = options->isClosed;
exp[idx++] = options->closeNotify;
exp[idx++] = options->sentNotify;
exp[idx++] = options->usingCompression;
exp[idx++] = options->haveRSA;
exp[idx++] = options->haveECC;
exp[idx++] = options->haveDH;
exp[idx++] = 0; /* Historical: haveNTRU */
exp[idx++] = 0; /* Historical: haveQSH */
exp[idx++] = options->haveECDSAsig;
exp[idx++] = options->haveStaticECC;
exp[idx++] = options->havePeerVerify;
exp[idx++] = options->usingPSK_cipher;
exp[idx++] = options->usingAnon_cipher;
exp[idx++] = 0; /* Historical: options->sendAlertState */
exp[idx++] = options->partialWrite;
exp[idx++] = options->quietShutdown;
exp[idx++] = options->groupMessages;
#ifdef HAVE_POLY1305
exp[idx++] = options->oldPoly;
#else
exp[idx++] = 0;
#endif
#ifdef HAVE_ANON
exp[idx++] = options->haveAnon;
#else
exp[idx++] = 0;
#endif
#ifdef HAVE_SESSION_TICKET
exp[idx++] = options->createTicket;
exp[idx++] = options->useTicket;
exp[idx++] = options->noTicketTls12;
#ifdef WOLFSSL_TLS13
if (ver > WOLFSSL_EXPORT_VERSION_3) {
exp[idx++] = options->noTicketTls13;
}
#else
if (ver > WOLFSSL_EXPORT_VERSION_3) {
exp[idx++] = 0;
}
#endif
#else
exp[idx++] = 0;
exp[idx++] = 0;
exp[idx++] = 0;
if (ver > WOLFSSL_EXPORT_VERSION_3) {
exp[idx++] = 0;
}
#endif
exp[idx++] = options->processReply;
exp[idx++] = options->cipherSuite0;
exp[idx++] = options->cipherSuite;
exp[idx++] = options->serverState;
exp[idx++] = options->clientState;
exp[idx++] = options->handShakeState;
exp[idx++] = options->handShakeDone;
exp[idx++] = options->minDowngrade;
exp[idx++] = options->connectState;
exp[idx++] = options->acceptState;
exp[idx++] = options->asyncState;
if (type == WOLFSSL_EXPORT_TLS) {
#ifdef HAVE_ENCRYPT_THEN_MAC
exp[idx++] = options->disallowEncThenMac;
exp[idx++] = options->encThenMac;
exp[idx++] = options->startedETMRead;
exp[idx++] = options->startedETMWrite;
#else
exp[idx++] = 0;
exp[idx++] = 0;
exp[idx++] = 0;
exp[idx++] = 0;
#endif
}
if (ver > WOLFSSL_EXPORT_VERSION_4) {
#ifdef WOLFSSL_DTLS
exp[idx++] = options->dtlsStateful;
#else
exp[idx++] = 0;
#endif
}
/* version of connection */
exp[idx++] = ssl->version.major;
exp[idx++] = ssl->version.minor;
(void)zero;
/* check if changes were made and notify of need to update export version */
switch (ver) {
case WOLFSSL_EXPORT_VERSION_3:
if (idx != DTLS_EXPORT_OPT_SZ_3) {
WOLFSSL_MSG("Update DTLS_EXPORT_OPT_SZ and version of export");
return DTLS_EXPORT_VER_E;
}
break;
case WOLFSSL_EXPORT_VERSION_4:
if (idx != DTLS_EXPORT_OPT_SZ_4 && type == WOLFSSL_EXPORT_DTLS) {
WOLFSSL_MSG("Update DTLS_EXPORT_OPT_SZ and version of export");
return DTLS_EXPORT_VER_E;
}
break;
case WOLFSSL_EXPORT_VERSION:
if (idx != DTLS_EXPORT_OPT_SZ && type == WOLFSSL_EXPORT_DTLS) {
WOLFSSL_MSG("Update DTLS_EXPORT_OPT_SZ and version of export");
return DTLS_EXPORT_VER_E;
}
break;
default:
WOLFSSL_MSG("New version case needs added to wolfSSL export");
return DTLS_EXPORT_VER_E;
}
WOLFSSL_LEAVE("ExportOptions", idx);
(void)type;
return idx;
}
/* copy items from Export struct to Options struct
* On success returns size of buffer used on failure returns a negative value */
static int ImportOptions(WOLFSSL* ssl, const byte* exp, word32 len, byte ver,
int type)
{
int idx = 0;
Options* options = &ssl->options;
switch (ver) {
case WOLFSSL_EXPORT_VERSION:
if (len < DTLS_EXPORT_OPT_SZ) {
WOLFSSL_MSG("Sanity check on buffer size failed");
return BAD_FUNC_ARG;
}
break;
case WOLFSSL_EXPORT_VERSION_4:
if (len < DTLS_EXPORT_OPT_SZ_4) {
WOLFSSL_MSG("Sanity check on buffer size failed");
return BAD_FUNC_ARG;
}
break;
case WOLFSSL_EXPORT_VERSION_3:
if (len < DTLS_EXPORT_OPT_SZ_3) {
WOLFSSL_MSG("Sanity check on buffer size failed");
return BAD_FUNC_ARG;
}
break;
default:
WOLFSSL_MSG("Export version not supported");
return BAD_FUNC_ARG;
}
if (exp == NULL || options == NULL) {
return BAD_FUNC_ARG;
}
/* these options are kept and sent to indicate verify status and strength
* of handshake */
options->sendVerify = exp[idx++];
options->verifyPeer = exp[idx++];
options->verifyNone = exp[idx++];
options->downgrade = exp[idx++];
#ifndef NO_DH
ato16(exp + idx, &(options->minDhKeySz)); idx += OPAQUE16_LEN;
ato16(exp + idx, &(options->maxDhKeySz)); idx += OPAQUE16_LEN;
ato16(exp + idx, &(options->dhKeySz)); idx += OPAQUE16_LEN;
#else
idx += OPAQUE16_LEN;
idx += OPAQUE16_LEN;
idx += OPAQUE16_LEN;
#endif
#ifndef NO_RSA
ato16(exp + idx, (word16*)&(options->minRsaKeySz)); idx += OPAQUE16_LEN;
#else
idx += OPAQUE16_LEN;
#endif
#ifdef HAVE_ECC
ato16(exp + idx, (word16*)&(options->minEccKeySz)); idx += OPAQUE16_LEN;
#else
idx += OPAQUE16_LEN;
#endif
/* these options are kept to indicate state and behavior */
#ifndef NO_PSK
options->havePSK = exp[idx++];
#else
idx++;
#endif
options->sessionCacheOff = exp[idx++];
options->sessionCacheFlushOff = exp[idx++];
options->side = exp[idx++];
options->resuming = exp[idx++];
options->haveSessionId = exp[idx++];
options->tls = exp[idx++];
options->tls1_1 = exp[idx++];
options->dtls = exp[idx++];
options->connReset = exp[idx++];
options->isClosed = exp[idx++];
options->closeNotify = exp[idx++];
options->sentNotify = exp[idx++];
options->usingCompression = exp[idx++];
options->haveRSA = exp[idx++];
options->haveECC = exp[idx++];
options->haveDH = exp[idx++];
idx++; /* Historical: haveNTRU */
idx++; /* Historical: haveQSH */
options->haveECDSAsig = exp[idx++];
options->haveStaticECC = exp[idx++];
options->havePeerVerify = exp[idx++];
options->usingPSK_cipher = exp[idx++];
options->usingAnon_cipher = exp[idx++];
idx++; /* Historical: options->sendAlertState */
options->partialWrite = exp[idx++];
options->quietShutdown = exp[idx++];
options->groupMessages = exp[idx++];
#ifdef HAVE_POLY1305
options->oldPoly = exp[idx++]; /* set when to use old rfc way of poly*/
#else
idx++;
#endif
#ifdef HAVE_ANON
options->haveAnon = exp[idx++]; /* User wants to allow Anon suites */
#else
idx++;
#endif
#ifdef HAVE_SESSION_TICKET
options->createTicket = exp[idx++]; /* Server to create new Ticket */
options->useTicket = exp[idx++]; /* Use Ticket not session cache */
options->noTicketTls12 = exp[idx++]; /* Server won't create new Ticket */
#ifdef WOLFSSL_TLS13
if (ver > WOLFSSL_EXPORT_VERSION_3) {
options->noTicketTls13 = exp[idx++];/* Server won't create new Ticket */
}
#else
if (ver > WOLFSSL_EXPORT_VERSION_3) {
idx++;
}
#endif
#else
idx++;
idx++;
idx++;
if (ver > WOLFSSL_EXPORT_VERSION_3) {
idx++;
}
#endif
options->processReply = exp[idx++];
options->cipherSuite0 = exp[idx++];
options->cipherSuite = exp[idx++];
options->serverState = exp[idx++];
options->clientState = exp[idx++];
options->handShakeState = exp[idx++];
options->handShakeDone = exp[idx++];
options->minDowngrade = exp[idx++];
options->connectState = exp[idx++];
options->acceptState = exp[idx++];
options->asyncState = exp[idx++];
if (type == WOLFSSL_EXPORT_TLS) {
#ifdef HAVE_ENCRYPT_THEN_MAC
options->disallowEncThenMac = exp[idx++];
options->encThenMac = exp[idx++];
options->startedETMRead = exp[idx++];
options->startedETMWrite = exp[idx++];
#else
idx++;
idx++;
idx++;
idx++;
#endif
}
/* If we had a connection established, let's assume that we can act
* statefully */
options->dtlsStateful = 1;
if (ver > WOLFSSL_EXPORT_VERSION_4) {
#ifdef WOLFSSL_DTLS
options->dtlsStateful = exp[idx++];
#else
idx++;
#endif
}
/* version of connection */
if (ssl->version.major != exp[idx++] || ssl->version.minor != exp[idx++]) {
WOLFSSL_MSG("Version mismatch ie DTLS v1 vs v1.2");
return VERSION_ERROR;
}
/* set TLS 1.3 flag in options if this was a TLS 1.3 connection */
if (ssl->version.major == SSLv3_MAJOR &&
ssl->version.minor == TLSv1_3_MINOR) {
options->tls1_3 = 1;
}
return idx;
}
#ifndef WOLFSSL_SESSION_EXPORT_NOPEER
static int ExportPeerInfo(WOLFSSL* ssl, byte* exp, word32 len, byte ver)
{
int idx = 0;
int ipSz = MAX_EXPORT_IP; /* start as max size */
int fam = 0;
word16 port = 0;
char ip[MAX_EXPORT_IP];
if (ver != WOLFSSL_EXPORT_VERSION) {
WOLFSSL_MSG("Export version not supported");
return BAD_FUNC_ARG;
}
if (ssl == NULL || exp == NULL ||
len < (sizeof(ip) + 3 * WOLFSSL_EXPORT_LEN)) {
return BAD_FUNC_ARG;
}
if (ssl->ctx->CBGetPeer == NULL) {
WOLFSSL_MSG("No get peer call back set");
return BAD_FUNC_ARG;
}
if (ssl->ctx->CBGetPeer(ssl, ip, &ipSz, &port, &fam) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Get peer callback error");
return SOCKET_ERROR_E;
}
/* check that ipSz/fam is not negative or too large since user can set cb */
if (ipSz < 0 || ipSz > MAX_EXPORT_IP || fam < 0) {
WOLFSSL_MSG("Bad ipSz or fam returned from get peer callback");
return SOCKET_ERROR_E;
}
c16toa((word16)fam, exp + idx); idx += WOLFSSL_EXPORT_LEN;
c16toa((word16)ipSz, exp + idx); idx += WOLFSSL_EXPORT_LEN;
XMEMCPY(exp + idx, ip, ipSz); idx += ipSz;
c16toa(port, exp + idx); idx += WOLFSSL_EXPORT_LEN;
return idx;
}
#endif /* !WOLFSSL_SESSION_EXPORT_NOPEER */
static int ImportPeerInfo(WOLFSSL* ssl, const byte* buf, word32 len, byte ver)
{
word16 idx = 0;
word16 ipSz;
word16 fam;
word16 port;
char ip[MAX_EXPORT_IP];
if (ver != WOLFSSL_EXPORT_VERSION && ver != WOLFSSL_EXPORT_VERSION_4 &&
ver != WOLFSSL_EXPORT_VERSION_3) {
WOLFSSL_MSG("Export version not supported");
return BAD_FUNC_ARG;
}
if (len == 0) {
WOLFSSL_MSG("No peer info sent");
return 0;
}
if (ssl == NULL || buf == NULL || len < 3 * WOLFSSL_EXPORT_LEN) {
return BAD_FUNC_ARG;
}
/* import sin family */
ato16(buf + idx, &fam); idx += WOLFSSL_EXPORT_LEN;
/* import ip address idx, and ipSz are unsigned but cast for enum */
ato16(buf + idx, &ipSz); idx += WOLFSSL_EXPORT_LEN;
if (ipSz >= sizeof(ip) || (word16)(idx + ipSz + WOLFSSL_EXPORT_LEN) > len) {
return BUFFER_E;
}
XMEMSET(ip, 0, sizeof(ip));
XMEMCPY(ip, buf + idx, ipSz); idx += ipSz;
ip[ipSz] = '\0'; /* with check that ipSz less than ip this is valid */
ato16(buf + idx, &port); idx += WOLFSSL_EXPORT_LEN;
/* sanity check for a function to call, then use it to import peer info */
if (ssl->ctx->CBSetPeer == NULL) {
WOLFSSL_MSG("No set peer function");
return BAD_FUNC_ARG;
}
if (ssl->ctx->CBSetPeer(ssl, ip, ipSz, port, fam) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error setting peer info");
return SOCKET_ERROR_E;
}
return idx;
}
#ifdef WOLFSSL_DTLS
/* WOLFSSL_LOCAL function that serializes the current WOLFSSL session state only
* buf is used to hold the serialized WOLFSSL struct and sz is the size of buf
* passed in.
* On success returns the size of serialized session state.*/
int wolfSSL_dtls_export_state_internal(WOLFSSL* ssl, byte* buf, word32 sz)
{
int ret;
word32 idx = 0;
word32 totalLen = 0;
WOLFSSL_ENTER("wolfSSL_dtls_export_state_internal");
if (buf == NULL || ssl == NULL) {
WOLFSSL_LEAVE("wolfSSL_dtls_export_state_internal", BAD_FUNC_ARG);
return BAD_FUNC_ARG;
}
totalLen += WOLFSSL_EXPORT_LEN * 2; /* 2 protocol bytes and 2 length bytes */
/* each of the following have a 2 byte length before data */
totalLen += WOLFSSL_EXPORT_LEN + DTLS_EXPORT_MIN_KEY_SZ;
if (totalLen > sz) {
WOLFSSL_LEAVE("wolfSSL_dtls_export_state_internal", BUFFER_E);
return BUFFER_E;
}
buf[idx++] = (byte)DTLS_EXPORT_STATE_PRO;
buf[idx++] = ((byte)DTLS_EXPORT_STATE_PRO & 0xF0) |
((byte)WOLFSSL_EXPORT_VERSION & 0X0F);
idx += WOLFSSL_EXPORT_LEN; /* leave room for total length */
/* export keys struct and dtls state -- variable length stored in ret */
idx += WOLFSSL_EXPORT_LEN; /* leave room for length */
if ((ret = ExportKeyState(ssl, buf + idx, sz - idx,
WOLFSSL_EXPORT_VERSION, 1, WOLFSSL_EXPORT_DTLS)) < 0) {
WOLFSSL_LEAVE("wolfSSL_dtls_export_state_internal", ret);
return ret;
}
c16toa((word16)ret, buf + idx - WOLFSSL_EXPORT_LEN); idx += ret;
/* place total length of exported buffer minus 2 bytes protocol/version */
c16toa((word16)(idx - WOLFSSL_EXPORT_LEN), buf + WOLFSSL_EXPORT_LEN);
#ifdef WOLFSSL_SESSION_EXPORT_DEBUG
/* if compiled with debug options then print the version, protocol, size */
{
char debug[256];
XSNPRINTF(debug, sizeof(debug), "Exporting DTLS session state\n"
"\tVersion : %d\n\tProtocol : %02X%01X\n\tLength of: %d\n\n"
, (int)WOLFSSL_EXPORT_VERSION, buf[0], (buf[1] >> 4), idx - 2);
WOLFSSL_MSG(debug);
}
#endif /* WOLFSSL_SESSION_EXPORT_DEBUG */
WOLFSSL_LEAVE("wolfSSL_dtls_export_state_internal", idx);
return idx;
}
/* On success return amount of buffer consumed */
int wolfSSL_dtls_import_state_internal(WOLFSSL* ssl, const byte* buf, word32 sz)
{
word32 idx = 0;
word16 length = 0;
int version;
int ret;
WOLFSSL_ENTER("wolfSSL_dtls_import_state_internal");
/* check at least enough room for protocol and length */
if (sz < WOLFSSL_EXPORT_LEN * 2 || ssl == NULL) {
WOLFSSL_LEAVE("wolfSSL_dtls_import_state_internal", BAD_FUNC_ARG);
return BAD_FUNC_ARG;
}
if (buf[idx++] != (byte)DTLS_EXPORT_STATE_PRO ||
(buf[idx] & 0xF0) != ((byte)DTLS_EXPORT_PRO & 0xF0)) {
WOLFSSL_MSG("Incorrect protocol");
return BAD_FUNC_ARG;
}
version = buf[idx++] & 0x0F;
ato16(buf + idx, &length); idx += WOLFSSL_EXPORT_LEN;
if (length > sz - WOLFSSL_EXPORT_LEN) { /* subtract 2 for protocol */
WOLFSSL_MSG("Buffer size sanity check failed");
return BUFFER_E;
}
#ifdef WOLFSSL_SESSION_EXPORT_DEBUG
/* if compiled with debug options then print the version, protocol, size */
{
char debug[256];
XSNPRINTF(debug, sizeof(debug), "Importing DTLS session state\n"
"\tVersion : %d\n\tProtocol : %02X%01X\n\tLength of: %d\n\n"
, (int)version, buf[0], (buf[1] >> 4), length);
WOLFSSL_MSG(debug);
}
#endif /* WOLFSSL_SESSION_EXPORT_DEBUG */
/* perform sanity checks and extract Options information used */
switch (version) {
case WOLFSSL_EXPORT_VERSION:
break;
default:
WOLFSSL_MSG("Bad export state version");
return BAD_FUNC_ARG;
}
/* perform sanity checks and extract Keys struct */
if (WOLFSSL_EXPORT_LEN + idx > sz) {
WOLFSSL_MSG("Import Key struct error");
return BUFFER_E;
}
ato16(buf + idx, &length); idx += WOLFSSL_EXPORT_LEN;
if (length > DTLS_EXPORT_KEY_SZ || length + idx > sz) {
WOLFSSL_MSG("Import Key struct error");
return BUFFER_E;
}
if ((ret = ImportKeyState(ssl, buf + idx, length, version,
WOLFSSL_EXPORT_DTLS)) < 0) {
WOLFSSL_MSG("Import Key struct error");
WOLFSSL_LEAVE("wolfSSL_dtls_import_state_internal", ret);
return ret;
}
idx += ret;
WOLFSSL_LEAVE("wolfSSL_dtls_import_state_internal", ret);
return idx;
}
#endif /* WOLFSSL_DTLS */
/**
* Imports a serialized buffer (both TLS and DTLS)
*
* @param ssl WOLFSSL structure to import into
* @param buf buffer containing serialized session
* @param sz size of buffer 'buf'
* @param type flag for TLS or DTLS
*
* @return the size of serialized buffer on success
*/
int wolfSSL_session_import_internal(WOLFSSL* ssl, const unsigned char* buf,
unsigned int sz, int type)
{
word32 idx = 0;
word16 length = 0;
int version = 0;
int ret = 0;
int optSz = 0;
int rc;
WOLFSSL_ENTER("wolfSSL_session_import_internal");
/* check at least enough room for protocol and length */
if (sz < WOLFSSL_EXPORT_LEN * 2 || ssl == NULL) {
ret = BAD_FUNC_ARG;
}
/* Check if is TLS export protocol */
if (ret == 0) {
byte validProto = 0; /* did we find a valid protocol */
if (buf[idx] == (byte)TLS_EXPORT_PRO &&
(buf[idx + 1] & 0xF0) == ((byte)TLS_EXPORT_PRO & 0xF0)) {
validProto = 1;
}
/* Check if is DTLS export protocol */
if (buf[idx] == (byte)DTLS_EXPORT_PRO &&
(buf[idx + 1] & 0xF0) == ((byte)DTLS_EXPORT_PRO & 0xF0)) {
validProto = 1;
}
if (validProto == 0) {
#ifdef WOLFSSL_DTLS
/* check if importing state only */
return wolfSSL_dtls_import_state_internal(ssl, buf, sz);
#else
WOLFSSL_MSG("Invalid serialized session protocol value");
ret = BAD_FUNC_ARG;
#endif
}
idx += 1;
}
if (ret == 0) {
version = buf[idx++] & 0x0F;
ato16(buf + idx, &length); idx += WOLFSSL_EXPORT_LEN;
if (length > sz - WOLFSSL_EXPORT_LEN) { /* subtract 2 for protocol */
ret = BUFFER_E;
}
}
/* if compiled with debug options then print the version, protocol, size */
#ifdef WOLFSSL_SESSION_EXPORT_DEBUG
{
char debug[256];
XSNPRINTF(debug, sizeof(debug), "Importing DTLS session\n"
"\tVersion : %d\n\tProtocol : %02X%01X\n\tLength of: %d\n\n"
, (int)version, buf[0], (buf[1] >> 4), length);
WOLFSSL_MSG(debug);
}
#endif /* WOLFSSL_SESSION_EXPORT_DEBUG */
/* perform sanity checks and extract Options information used */
if (ret == 0) {
switch (version) {
case WOLFSSL_EXPORT_VERSION:
if (type == WOLFSSL_EXPORT_DTLS) {
optSz = DTLS_EXPORT_OPT_SZ;
}
else {
optSz = TLS_EXPORT_OPT_SZ;
}
break;
case WOLFSSL_EXPORT_VERSION_4:
if (type == WOLFSSL_EXPORT_DTLS) {
optSz = DTLS_EXPORT_OPT_SZ_4;
}
else {
optSz = TLS_EXPORT_OPT_SZ;
}
break;
case WOLFSSL_EXPORT_VERSION_3:
WOLFSSL_MSG("Importing older version 3");
optSz = DTLS_EXPORT_OPT_SZ_3;
break;
default:
WOLFSSL_MSG("Bad export version");
ret = BAD_FUNC_ARG;
}
}
if (ret == 0 && (WOLFSSL_EXPORT_LEN + optSz + idx > sz)) {
WOLFSSL_MSG("Import Options struct error");
ret = BUFFER_E;
}
if (ret == 0) {
ato16(buf + idx, &length); idx += WOLFSSL_EXPORT_LEN;
if (length != optSz) {
WOLFSSL_MSG("Import Options struct error");
ret = BUFFER_E;
}
}
if (ret == 0) {
rc = ImportOptions(ssl, buf + idx, length, version, type);
if (rc < 0) {
WOLFSSL_MSG("Import Options struct error");
ret = rc;
}
else {
idx += length;
}
}
/* perform sanity checks and extract Keys struct */
if (ret == 0 && (WOLFSSL_EXPORT_LEN + idx > sz)) {
WOLFSSL_MSG("Import Key struct error");
ret = BUFFER_E;
}
if (ret == 0) {
ato16(buf + idx, &length); idx += WOLFSSL_EXPORT_LEN;
if (length > DTLS_EXPORT_KEY_SZ || length + idx > sz) {
WOLFSSL_MSG("Import Key struct error");
ret = BUFFER_E;
}
}
if (ret == 0) {
rc = ImportKeyState(ssl, buf + idx, length, version, type);
if (rc < 0) {
WOLFSSL_MSG("Import Key struct error");
ret = rc;
}
else {
idx += rc;
}
}
/* perform sanity checks and extract CipherSpecs struct */
if (ret == 0 && (WOLFSSL_EXPORT_LEN + WOLFSSL_EXPORT_SPC_SZ + idx > sz)) {
WOLFSSL_MSG("Import CipherSpecs struct error");
ret = BUFFER_E;
}
if (ret == 0) {
ato16(buf + idx, &length); idx += WOLFSSL_EXPORT_LEN;
if (length != WOLFSSL_EXPORT_SPC_SZ) {
WOLFSSL_MSG("Import CipherSpecs struct error");
ret = BUFFER_E;
}
}
if (ret == 0) {
rc = ImportCipherSpecState(ssl, buf + idx, length, version, type);
if (rc < 0) {
WOLFSSL_MSG("Import CipherSpecs struct error");
ret = rc;
}
else {
idx += rc;
}
}
/* perform sanity checks and extract DTLS peer info */
if (ret == 0 && (WOLFSSL_EXPORT_LEN + idx > sz)) {
WOLFSSL_MSG("Import DTLS peer info error");
ret = BUFFER_E;
}
if (ret == 0) {
ato16(buf + idx, &length); idx += WOLFSSL_EXPORT_LEN;
if (idx + length > sz) {
WOLFSSL_MSG("Import DTLS peer info error");
ret = BUFFER_E;
}
}
if (ret == 0) {
rc = ImportPeerInfo(ssl, buf + idx, length, version);
if (rc < 0) {
WOLFSSL_MSG("Import Peer Addr error");
ret = rc;
}
else {
idx += rc;
}
}
/* make sure is a valid suite used */
if (ret == 0 && wolfSSL_get_cipher(ssl) == NULL) {
WOLFSSL_MSG("Can not match cipher suite imported");
ret = MATCH_SUITE_ERROR;
}
#ifndef WOLFSSL_AEAD_ONLY
/* set hmac function to use when verifying */
if (ret == 0 && (ssl->options.tls == 1 || ssl->options.tls1_1 == 1 ||
ssl->options.dtls == 1)) {
#if !defined(WOLFSSL_RENESAS_FSPSM_TLS) && \
!defined(WOLFSSL_RENESAS_TSIP_TLS)
ssl->hmac = TLS_hmac;
#else
ssl->hmac = Renesas_cmn_TLS_hmac;
#endif
}
/* do not allow stream ciphers with DTLS, except for NULL cipher */
if (ret == 0 && ssl->specs.cipher_type == stream &&
ssl->specs.bulk_cipher_algorithm != wolfssl_cipher_null) {
WOLFSSL_MSG("Can not import stream ciphers for DTLS");
ret = SANITY_CIPHER_E;
}
#endif /* !WOLFSSL_AEAD_ONLY */
if (ret != 0) {
idx = ret;
}
WOLFSSL_LEAVE("wolfSSL_session_import_internal", idx);
return idx;
}
/**
* Handles serializing the session information.
*
* @param ssl WOLFSSL structure to serialize session from
* @param buf output buffer to hold serialized session
* @param sz the size of buffer 'buf', if too small then gets updated
* @param type if the input WOLFSSL structure is expected to be TLS or DTLS
* 1 for yes is TLS and 0 for no is DTLS
*
* @return the size of serialized buffer on success and negative values on fail
*/
int wolfSSL_session_export_internal(WOLFSSL* ssl, byte* buf, word32* sz,
int type)
{
int ret = 0;
word32 idx = 0;
word32 totalLen = 0;
WOLFSSL_ENTER("wolfSSL_session_export_internal");
if (ssl == NULL) {
WOLFSSL_MSG("unexpected null argument");
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
totalLen += WOLFSSL_EXPORT_LEN * 2; /* 2 protocol bytes and 2 length bytes */
/* each of the following have a 2 byte length before data */
totalLen += WOLFSSL_EXPORT_LEN + DTLS_EXPORT_OPT_SZ;
totalLen += WOLFSSL_EXPORT_LEN + DTLS_EXPORT_KEY_SZ;
totalLen += WOLFSSL_EXPORT_LEN + WOLFSSL_EXPORT_SPC_SZ;
#ifdef WOLFSSL_DTLS
if (type == WOLFSSL_EXPORT_DTLS) {
totalLen += WOLFSSL_EXPORT_LEN + ssl->buffers.dtlsCtx.peer.sz;
}
#endif
}
/* check is at least the minimum size needed, TLS cipher states add more */
if (ret == 0 && (totalLen > *sz || buf == NULL)) {
WOLFSSL_MSG("export buffer was too small or null");
*sz = totalLen;
/* possible AES state needed */
if (type == WOLFSSL_EXPORT_TLS) {
*sz += AES_BLOCK_SIZE*2;
}
ret = LENGTH_ONLY_E;
}
if (ret == 0) {
buf[idx++] = (byte)(type == WOLFSSL_EXPORT_TLS)? TLS_EXPORT_PRO :
DTLS_EXPORT_PRO;
buf[idx++] = ((byte)((type == WOLFSSL_EXPORT_TLS)? TLS_EXPORT_PRO :
DTLS_EXPORT_PRO) & 0xF0)
| ((byte)WOLFSSL_EXPORT_VERSION & 0X0F);
idx += WOLFSSL_EXPORT_LEN; /* leave spot for length of total buffer */
idx += WOLFSSL_EXPORT_LEN;
ret = ExportOptions(ssl, buf + idx, *sz - idx, WOLFSSL_EXPORT_VERSION,
type);
if (ret >= 0) {
c16toa((word16)ret, buf + idx - WOLFSSL_EXPORT_LEN);
idx += ret;
ret = 0;
}
}
/* export keys struct and dtls state -- variable length stored in ret */
if (ret == 0) {
idx += WOLFSSL_EXPORT_LEN; /* leave room for length */
ret = ExportKeyState(ssl, buf + idx, *sz - idx, WOLFSSL_EXPORT_VERSION,
0, type);
if (ret >= 0) {
c16toa((word16)ret, buf + idx - WOLFSSL_EXPORT_LEN); idx += ret;
ret = 0;
}
}
/* export of cipher specs struct */
if (ret == 0) {
c16toa((word16)WOLFSSL_EXPORT_SPC_SZ, buf + idx);
idx += WOLFSSL_EXPORT_LEN;
ret = ExportCipherSpecState(ssl, buf + idx, *sz - idx,
WOLFSSL_EXPORT_VERSION, type);
if (ret >= 0) {
idx += ret;
ret = 0;
}
}
/* export of peer information */
if (ret == 0) {
idx += WOLFSSL_EXPORT_LEN;
#ifdef WOLFSSL_SESSION_EXPORT_NOPEER
ret = 0; /* not saving peer port/ip information */
#else
ret = ExportPeerInfo(ssl, buf + idx, *sz - idx, WOLFSSL_EXPORT_VERSION);
#endif
if (ret >= 0) {
c16toa(ret, buf + idx - WOLFSSL_EXPORT_LEN);
idx += ret;
ret = 0;
}
}
if (ret != 0 && ret != LENGTH_ONLY_E && buf != NULL) {
/*in a fail case clear the buffer which could contain partial key info*/
XMEMSET(buf, 0, *sz);
}
/* place total length of exported buffer minus 2 bytes protocol/version */
if (ret == 0) {
c16toa((word16)(idx - WOLFSSL_EXPORT_LEN), buf + WOLFSSL_EXPORT_LEN);
ret = idx;
#ifdef WOLFSSL_SESSION_EXPORT_DEBUG
{
char debug[256];
XSNPRINTF(debug, sizeof(debug), "Exporting TLS session\n"
"\tVersion : %d\n\tProtocol : %02X%01X\n\tLength of: %d\n\n"
,(int)WOLFSSL_EXPORT_VERSION, buf[0], (buf[1] >> 4), idx - 2);
WOLFSSL_MSG(debug);
}
#endif /* WOLFSSL_SESSION_EXPORT_DEBUG */
}
if (ret >= 0) {
*sz = ret;
}
WOLFSSL_LEAVE("wolfSSL_session_export_internal", ret);
return ret;
}
#endif /* WOLFSSL_SESSION_EXPORT */
void InitSSL_Method(WOLFSSL_METHOD* method, ProtocolVersion pv)
{
method->version = pv;
method->side = WOLFSSL_CLIENT_END;
method->downgrade = 0;
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE) || \
defined(WOLFSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
int InitSSL_Side(WOLFSSL* ssl, word16 side)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
/* set side */
ssl->options.side = side;
/* reset options that are side specific */
#ifdef HAVE_ECC
if (ssl->options.side == WOLFSSL_CLIENT_END) {
ssl->options.haveECDSAsig = 1; /* always on client side */
ssl->options.haveECC = 1; /* server turns on with ECC key cert */
ssl->options.haveStaticECC = 1; /* server can turn on by loading key */
}
#elif defined(HAVE_ED25519) || defined(HAVE_ED448)
if (ssl->options.side == WOLFSSL_CLIENT_END) {
ssl->options.haveECDSAsig = 1; /* always on client side */
ssl->options.haveECC = 1; /* server turns on with ECC key cert */
}
#endif
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
if (ssl->options.side == WOLFSSL_CLIENT_END) {
ssl->options.haveFalconSig = 1; /* always on client side */
}
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
if (ssl->options.side == WOLFSSL_CLIENT_END) {
ssl->options.haveDilithiumSig = 1; /* always on client side */
}
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#if defined(HAVE_EXTENDED_MASTER) && !defined(NO_WOLFSSL_CLIENT)
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if ((ssl->ctx->method->version.major == SSLv3_MAJOR) &&
(ssl->ctx->method->version.minor >= TLSv1_MINOR)) {
ssl->options.haveEMS = 1;
}
#ifdef WOLFSSL_DTLS
if (ssl->ctx->method->version.major == DTLS_MAJOR)
ssl->options.haveEMS = 1;
#endif /* WOLFSSL_DTLS */
}
#endif /* HAVE_EXTENDED_MASTER && !NO_WOLFSSL_CLIENT */
#if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER)
if (ssl->options.dtls && ssl->options.side == WOLFSSL_SERVER_END) {
int ret;
ret = wolfSSL_DTLS_SetCookieSecret(ssl, NULL, 0);
if (ret != 0) {
WOLFSSL_MSG("DTLS Cookie Secret error");
return ret;
}
}
#endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */
return InitSSL_Suites(ssl);
}
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
/* Initialize SSL context, return 0 on success */
int InitSSL_Ctx(WOLFSSL_CTX* ctx, WOLFSSL_METHOD* method, void* heap)
{
int ret = 0;
XMEMSET(ctx, 0, sizeof(WOLFSSL_CTX));
ctx->method = method;
if (heap == NULL) {
ctx->heap = ctx; /* defaults to self */
}
else {
ctx->heap = heap; /* wolfSSL_CTX_load_static_memory sets */
}
ctx->timeout = WOLFSSL_SESSION_TIMEOUT;
#ifdef WOLFSSL_DTLS
if (method->version.major == DTLS_MAJOR) {
ctx->minDowngrade = WOLFSSL_MIN_DTLS_DOWNGRADE;
}
else
#endif /* WOLFSSL_DTLS */
{
/* current default: TLSv1_MINOR */
ctx->minDowngrade = WOLFSSL_MIN_DOWNGRADE;
}
wolfSSL_RefInit(&ctx->ref, &ret);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
if (ret < 0) {
WOLFSSL_MSG("Mutex error on CTX init");
ctx->err = CTX_INIT_MUTEX_E;
WOLFSSL_ERROR_VERBOSE(BAD_MUTEX_E);
return BAD_MUTEX_E;
}
#else
(void)ret;
#endif
#ifndef NO_CERTS
ctx->privateKeyDevId = INVALID_DEVID;
#endif
#ifndef NO_DH
ctx->minDhKeySz = MIN_DHKEY_SZ;
ctx->maxDhKeySz = MAX_DHKEY_SZ;
#endif
#ifndef NO_RSA
ctx->minRsaKeySz = MIN_RSAKEY_SZ;
#endif
#ifdef HAVE_ECC
ctx->minEccKeySz = MIN_ECCKEY_SZ;
ctx->eccTempKeySz = ECDHE_SIZE;
#endif
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
ctx->minFalconKeySz = MIN_FALCONKEY_SZ;
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
ctx->minDilithiumKeySz = MIN_DILITHIUMKEY_SZ;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
ctx->verifyDepth = MAX_CHAIN_DEPTH;
#ifdef OPENSSL_EXTRA
ctx->cbioFlag = WOLFSSL_CBIO_NONE;
#endif
#ifdef HAVE_NETX
ctx->CBIORecv = NetX_Receive;
ctx->CBIOSend = NetX_Send;
#elif defined(WOLFSSL_APACHE_MYNEWT) && !defined(WOLFSSL_LWIP)
ctx->CBIORecv = Mynewt_Receive;
ctx->CBIOSend = Mynewt_Send;
#elif defined WOLFSSL_LWIP_NATIVE
ctx->CBIORecv = LwIPNativeReceive;
ctx->CBIOSend = LwIPNativeSend;
#elif defined(WOLFSSL_GNRC)
ctx->CBIORecv = GNRC_ReceiveFrom;
ctx->CBIOSend = GNRC_SendTo;
#elif defined WOLFSSL_ISOTP
ctx->CBIORecv = ISOTP_Receive;
ctx->CBIOSend = ISOTP_Send;
#elif !defined(WOLFSSL_USER_IO)
#ifdef MICRIUM
ctx->CBIORecv = MicriumReceive;
ctx->CBIOSend = MicriumSend;
#ifdef WOLFSSL_DTLS
if (method->version.major == DTLS_MAJOR) {
ctx->CBIORecv = MicriumReceiveFrom;
ctx->CBIOSend = MicriumSendTo;
}
#ifdef WOLFSSL_SESSION_EXPORT
#error Micrium port does not support DTLS session export yet
#endif
#endif
#elif defined WOLFSSL_UIP
ctx->CBIORecv = uIPReceive;
ctx->CBIOSend = uIPSend;
#ifdef WOLFSSL_DTLS
if (method->version.major == DTLS_MAJOR) {
ctx->CBIOSendTo = uIPSendTo;
ctx->CBIORecvFrom = uIPRecvFrom;
}
#endif
#else
ctx->CBIORecv = EmbedReceive;
ctx->CBIOSend = EmbedSend;
#ifdef WOLFSSL_SESSION_EXPORT
ctx->CBGetPeer = EmbedGetPeer;
ctx->CBSetPeer = EmbedSetPeer;
#endif
#ifdef WOLFSSL_DTLS
if (method->version.major == DTLS_MAJOR) {
ctx->CBIORecv = EmbedReceiveFrom;
ctx->CBIOSend = EmbedSendTo;
}
#endif
#endif /* MICRIUM */
#endif /* WOLFSSL_USER_IO */
#if defined(HAVE_RPK)
wolfSSL_CTX_set_client_cert_type(ctx, NULL, 0); /* set to default */
wolfSSL_CTX_set_server_cert_type(ctx, NULL, 0); /* set to default */
#endif /* HAVE_RPK */
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
if (method->side == WOLFSSL_CLIENT_END)
ctx->haveFalconSig = 1; /* always on client side */
/* server can turn on by loading key */
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
if (method->side == WOLFSSL_CLIENT_END)
ctx->haveDilithiumSig = 1; /* always on client side */
/* server can turn on by loading key */
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#ifdef HAVE_ECC
if (method->side == WOLFSSL_CLIENT_END) {
ctx->haveECDSAsig = 1; /* always on client side */
ctx->haveECC = 1; /* server turns on with ECC key cert */
ctx->haveStaticECC = 1; /* server can turn on by loading key */
}
#elif defined(HAVE_ED25519) || defined(HAVE_ED448)
if (method->side == WOLFSSL_CLIENT_END) {
ctx->haveECDSAsig = 1; /* always on client side */
ctx->haveECC = 1; /* server turns on with ECC key cert */
}
#endif
#ifdef WOLFSSL_QNX_CAAM
/* default to try using CAAM when built */
ctx->devId = WOLFSSL_CAAM_DEVID;
#elif defined(HAVE_ARIA) && defined(WOLF_CRYPTO_CB)
ctx->devId = WOLFSSL_ARIA_DEVID;
#else
ctx->devId = INVALID_DEVID;
#endif
#if defined(WOLFSSL_DTLS)
#ifdef WOLFSSL_SCTP
ctx->dtlsMtuSz = MAX_RECORD_SIZE;
#elif defined(WOLFSSL_DTLS_MTU)
ctx->dtlsMtuSz = MAX_MTU;
#endif
#endif
#ifndef NO_CERTS
ctx->cm = wolfSSL_CertManagerNew_ex(heap);
if (ctx->cm == NULL) {
WOLFSSL_MSG("Bad Cert Manager New");
WOLFSSL_ERROR_VERBOSE(BAD_CERT_MANAGER_ERROR);
return BAD_CERT_MANAGER_ERROR;
}
#ifdef OPENSSL_EXTRA
/* setup WOLFSSL_X509_STORE */
ctx->x509_store.cm = ctx->cm;
/* set pointer back to x509 store */
ctx->cm->x509_store_p = &ctx->x509_store;
/* WOLFSSL_X509_VERIFY_PARAM */
if ((ctx->param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC(
sizeof(WOLFSSL_X509_VERIFY_PARAM),
heap, DYNAMIC_TYPE_OPENSSL)) == NULL) {
WOLFSSL_MSG("ctx->param memory error");
return MEMORY_E;
}
XMEMSET(ctx->param, 0, sizeof(WOLFSSL_X509_VERIFY_PARAM));
/* WOLFSSL_X509_LOOKUP */
if ((ctx->x509_store.lookup.dirs =
(WOLFSSL_BY_DIR*)XMALLOC(sizeof(WOLFSSL_BY_DIR),
heap, DYNAMIC_TYPE_OPENSSL)) == NULL) {
WOLFSSL_MSG("ctx-x509_store.lookup.dir memory allocation error");
XFREE(ctx->param, heap, DYNAMIC_TYPE_OPENSSL);
ctx->param = NULL;
return MEMORY_E;
}
XMEMSET(ctx->x509_store.lookup.dirs, 0, sizeof(WOLFSSL_BY_DIR));
if (wc_InitMutex(&ctx->x509_store.lookup.dirs->lock) != 0) {
WOLFSSL_MSG("Bad mutex init");
XFREE(ctx->param, heap, DYNAMIC_TYPE_OPENSSL);
ctx->param = NULL;
XFREE(ctx->x509_store.lookup.dirs, heap, DYNAMIC_TYPE_OPENSSL);
ctx->x509_store.lookup.dirs = NULL;
WOLFSSL_ERROR_VERBOSE(BAD_MUTEX_E);
return BAD_MUTEX_E;
}
#endif
#endif
#if defined(HAVE_EXTENDED_MASTER) && !defined(NO_WOLFSSL_CLIENT)
if (method->side == WOLFSSL_CLIENT_END) {
if ((method->version.major == SSLv3_MAJOR) &&
(method->version.minor >= TLSv1_MINOR)) {
ctx->haveEMS = 1;
}
#ifdef WOLFSSL_DTLS
if (method->version.major == DTLS_MAJOR)
ctx->haveEMS = 1;
#endif /* WOLFSSL_DTLS */
}
#endif /* HAVE_EXTENDED_MASTER && !NO_WOLFSSL_CLIENT */
#if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER)
#ifndef WOLFSSL_NO_DEF_TICKET_ENC_CB
ret = TicketEncCbCtx_Init(ctx, &ctx->ticketKeyCtx);
if (ret != 0) return ret;
ctx->ticketEncCb = DefTicketEncCb;
ctx->ticketEncCtx = (void*)&ctx->ticketKeyCtx;
#endif
ctx->ticketHint = SESSION_TICKET_HINT_DEFAULT;
#if defined(WOLFSSL_TLS13)
ctx->maxTicketTls13 = 1; /* default to sending a session ticket if compiled
in */
#endif
#endif
#ifdef WOLFSSL_EARLY_DATA
ctx->maxEarlyDataSz = MAX_EARLY_DATA_SZ;
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
#if defined(WOLFSSL_TLS13) && !defined(HAVE_SUPPORTED_CURVES)
ctx->noPskDheKe = 1;
#endif
#endif
#if defined(WOLFSSL_QT) && !defined(NO_PSK)
/* Qt retrieves supported cipher list at initialization
* from get_cipher_compat().
* Qt doesn't allow to use a cipher if it is not in the supported list.
* Therefore, we need to enable PSK cipher at the beginning.
*/
ctx->havePSK = 1;
#endif
ctx->heap = heap; /* wolfSSL_CTX_load_static_memory sets */
#ifdef HAVE_WOLF_EVENT
ret = wolfEventQueue_Init(&ctx->event_queue);
#endif /* HAVE_WOLF_EVENT */
#ifdef WOLFSSL_MAXQ10XX_TLS
/* Let maxq10xx know what TLS version we are using. */
ctx->devId = MAXQ_DEVICE_ID;
maxq10xx_SetupPkCallbacks(ctx, &method->version);
#endif /* WOLFSSL_MAXQ10XX_TLS */
#if defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS)
/* Should only be set when wolfSSL_CTX_load_system_CA_certs() is called */
ctx->doAppleNativeCertValidationFlag = 0;
#endif /* defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS) */
return ret;
}
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
void wolfSSL_CRYPTO_cleanup_ex_data(WOLFSSL_CRYPTO_EX_DATA* ex_data)
{
int n_ex_data = (int)(sizeof ex_data->ex_data / sizeof ex_data->ex_data[0]);
for (--n_ex_data; n_ex_data >= 0; --n_ex_data) {
if (ex_data->ex_data[n_ex_data] != NULL)
(void)wolfSSL_CRYPTO_set_ex_data_with_cleanup(ex_data, n_ex_data,
NULL, NULL);
}
}
#endif /* HAVE_EX_DATA_CLEANUP_HOOKS */
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
/* free all ech configs in the list */
static void FreeEchConfigs(WOLFSSL_EchConfig* configs, void* heap)
{
WOLFSSL_EchConfig* working_config = configs;
WOLFSSL_EchConfig* next_config;
while (working_config != NULL) {
next_config = working_config->next;
XFREE(working_config->cipherSuites, heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(working_config->publicName, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (working_config->raw != NULL)
XFREE(working_config->raw, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (working_config->receiverPrivkey != NULL) {
wc_HpkeFreeKey(NULL, working_config->kemId,
working_config->receiverPrivkey, heap);
}
XFREE(working_config, heap, DYNAMIC_TYPE_TMP_BUFFER);
working_config = next_config;
}
(void)heap;
}
#endif
/* In case contexts are held in array and don't want to free actual ctx. */
/* The allocations done in InitSSL_Ctx must be free'd with ctx->onHeapHint
* logic. A WOLFSSL_CTX can be assigned a static memory heap hint using
* wolfSSL_CTX_load_static_memory after CTX creation, which means variables
* allocated in InitSSL_Ctx were allocated from heap and should be free'd with
* a NULL heap hint. */
void SSL_CtxResourceFree(WOLFSSL_CTX* ctx)
{
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) && \
defined(HAVE_TLS_EXTENSIONS) && !defined(NO_WOLFSSL_SERVER)
int i;
#endif
void* heapAtCTXInit = ctx->heap;
#ifdef WOLFSSL_STATIC_MEMORY
if (ctx->onHeapHint == 0) {
heapAtCTXInit = NULL;
}
#endif
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
wolfSSL_CRYPTO_cleanup_ex_data(&ctx->ex_data);
#endif
#ifdef HAVE_WOLF_EVENT
wolfEventQueue_Free(&ctx->event_queue);
#endif /* HAVE_WOLF_EVENT */
XFREE(ctx->method, heapAtCTXInit, DYNAMIC_TYPE_METHOD);
ctx->method = NULL;
if (ctx->suites) {
XFREE(ctx->suites, ctx->heap, DYNAMIC_TYPE_SUITES);
ctx->suites = NULL;
}
#ifndef NO_DH
XFREE(ctx->serverDH_G.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ctx->serverDH_G.buffer = NULL;
XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ctx->serverDH_P.buffer = NULL;
#endif /* !NO_DH */
#ifdef SINGLE_THREADED
if (ctx->rng) {
wc_FreeRng(ctx->rng);
XFREE(ctx->rng, ctx->heap, DYNAMIC_TYPE_RNG);
ctx->rng = NULL;
}
#endif /* SINGLE_THREADED */
#ifndef NO_CERTS
if (ctx->privateKey != NULL && ctx->privateKey->buffer != NULL) {
ForceZero(ctx->privateKey->buffer, ctx->privateKey->length);
}
FreeDer(&ctx->privateKey);
#ifdef OPENSSL_ALL
wolfSSL_EVP_PKEY_free(ctx->privateKeyPKey);
#endif
FreeDer(&ctx->certificate);
#ifdef KEEP_OUR_CERT
if (ctx->ourCert && ctx->ownOurCert) {
wolfSSL_X509_free(ctx->ourCert);
ctx->ourCert = NULL;
}
#endif /* KEEP_OUR_CERT */
FreeDer(&ctx->certChain);
wolfSSL_CertManagerFree(ctx->cm);
ctx->cm = NULL;
#ifdef OPENSSL_ALL
if (ctx->x509_store.objs != NULL) {
wolfSSL_sk_X509_OBJECT_pop_free(ctx->x509_store.objs, NULL);
ctx->x509_store.objs = NULL;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || \
defined(WOLFSSL_WPAS_SMALL)
wolfSSL_X509_STORE_free(ctx->x509_store_pt);
#endif
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || defined(HAVE_LIGHTY)
wolfSSL_sk_X509_NAME_pop_free(ctx->client_ca_names, NULL);
ctx->client_ca_names = NULL;
#endif
#ifdef OPENSSL_EXTRA
if (ctx->x509Chain) {
wolfSSL_sk_X509_pop_free(ctx->x509Chain, NULL);
ctx->x509Chain = NULL;
}
#endif
#endif /* !NO_CERTS */
#ifdef HAVE_TLS_EXTENSIONS
#if !defined(NO_TLS)
TLSX_FreeAll(ctx->extensions, ctx->heap);
#endif /* !NO_TLS */
#ifndef NO_WOLFSSL_SERVER
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
if (ctx->certOcspRequest) {
FreeOcspRequest(ctx->certOcspRequest);
XFREE(ctx->certOcspRequest, ctx->heap, DYNAMIC_TYPE_OCSP_REQUEST);
}
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
for (i = 0; i < MAX_CHAIN_DEPTH; i++) {
if (ctx->chainOcspRequest[i]) {
FreeOcspRequest(ctx->chainOcspRequest[i]);
XFREE(ctx->chainOcspRequest[i], ctx->heap, DYNAMIC_TYPE_OCSP_REQUEST);
ctx->chainOcspRequest[i] = NULL;
}
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
#endif /* !NO_WOLFSSL_SERVER */
#endif /* HAVE_TLS_EXTENSIONS */
#ifdef OPENSSL_EXTRA
if (ctx->alpn_cli_protos) {
XFREE((void*)ctx->alpn_cli_protos, ctx->heap, DYNAMIC_TYPE_OPENSSL);
ctx->alpn_cli_protos = NULL;
}
if (ctx->param) {
XFREE(ctx->param, heapAtCTXInit, DYNAMIC_TYPE_OPENSSL);
ctx->param = NULL;
}
if (ctx->x509_store.lookup.dirs) {
#if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
if (ctx->x509_store.lookup.dirs->dir_entry) {
wolfSSL_sk_BY_DIR_entry_free(ctx->x509_store.lookup.dirs->dir_entry);
}
#endif
wc_FreeMutex(&ctx->x509_store.lookup.dirs->lock);
XFREE(ctx->x509_store.lookup.dirs, heapAtCTXInit, DYNAMIC_TYPE_OPENSSL);
}
#endif
#ifdef WOLFSSL_STATIC_EPHEMERAL
#ifndef NO_DH
FreeDer(&ctx->staticKE.dhKey);
#endif
#ifdef HAVE_ECC
FreeDer(&ctx->staticKE.ecKey);
#endif
#ifdef HAVE_CURVE25519
FreeDer(&ctx->staticKE.x25519Key);
#endif
#ifdef HAVE_CURVE448
FreeDer(&ctx->staticKE.x448Key);
#endif
#ifndef SINGLE_THREADED
if (ctx->staticKELockInit) {
wc_FreeMutex(&ctx->staticKELock);
ctx->staticKELockInit = 0;
}
#endif
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_ECH)
FreeEchConfigs(ctx->echConfigs, ctx->heap);
ctx->echConfigs = NULL;
#endif
(void)heapAtCTXInit;
}
#ifdef WOLFSSL_STATIC_MEMORY
static void SSL_CtxResourceFreeStaticMem(void* heap)
{
if (heap != NULL
#ifdef WOLFSSL_HEAP_TEST
/* avoid dereferencing a test value */
&& heap != (void*)WOLFSSL_HEAP_TEST
#endif
) {
WOLFSSL_HEAP_HINT* hint = (WOLFSSL_HEAP_HINT*)heap;
WOLFSSL_HEAP* mem = hint->memory;
wc_FreeMutex(&mem->memory_mutex);
}
}
#endif /* WOLFSSL_STATIC_MEMORY */
void FreeSSL_Ctx(WOLFSSL_CTX* ctx)
{
int isZero;
int ret;
void* heap = ctx->heap;
#ifdef WOLFSSL_STATIC_MEMORY
if (ctx->onHeapHint == 0) {
heap = NULL;
}
#endif
/* decrement CTX reference count */
wolfSSL_RefDec(&ctx->ref, &isZero, &ret);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
if (ret < 0) {
/* check error state, if mutex error code then mutex init failed but
* CTX was still malloc'd */
if (ctx->err == CTX_INIT_MUTEX_E) {
SSL_CtxResourceFree(ctx);
XFREE(ctx, heap, DYNAMIC_TYPE_CTX);
#ifdef WOLFSSL_STATIC_MEMORY
SSL_CtxResourceFreeStaticMem(heap);
#endif
}
return;
}
#else
(void)ret;
#endif
if (isZero) {
WOLFSSL_MSG("CTX ref count down to 0, doing full free");
SSL_CtxResourceFree(ctx);
#if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER) && \
!defined(WOLFSSL_NO_DEF_TICKET_ENC_CB)
TicketEncCbCtx_Free(&ctx->ticketKeyCtx);
#endif
wolfSSL_RefFree(&ctx->ref);
XFREE(ctx, heap, DYNAMIC_TYPE_CTX);
#ifdef WOLFSSL_STATIC_MEMORY
SSL_CtxResourceFreeStaticMem(heap);
#endif
}
else {
WOLFSSL_MSG("CTX ref count not 0 yet, no free");
}
(void)heap; /* not used in some builds */
}
/* Set cipher pointers to null */
void InitCiphers(WOLFSSL* ssl)
{
#ifdef BUILD_ARC4
ssl->encrypt.arc4 = NULL;
ssl->decrypt.arc4 = NULL;
#endif
#ifdef BUILD_DES3
ssl->encrypt.des3 = NULL;
ssl->decrypt.des3 = NULL;
#endif
#ifdef BUILD_AES
ssl->encrypt.aes = NULL;
ssl->decrypt.aes = NULL;
#endif
#ifdef HAVE_ARIA
ssl->encrypt.aria = NULL;
ssl->decrypt.aria = NULL;
#endif
#ifdef HAVE_CAMELLIA
ssl->encrypt.cam = NULL;
ssl->decrypt.cam = NULL;
#endif
#ifdef HAVE_CHACHA
ssl->encrypt.chacha = NULL;
ssl->decrypt.chacha = NULL;
#endif
#if defined(HAVE_POLY1305) && defined(HAVE_ONE_TIME_AUTH)
ssl->auth.poly1305 = NULL;
#endif
ssl->encrypt.setup = 0;
ssl->decrypt.setup = 0;
#ifdef HAVE_ONE_TIME_AUTH
ssl->auth.setup = 0;
#endif
#ifdef WOLFSSL_DTLS13
XMEMSET(&ssl->dtlsRecordNumberEncrypt, 0,
sizeof(ssl->dtlsRecordNumberEncrypt));
XMEMSET(&ssl->dtlsRecordNumberDecrypt, 0,
sizeof(ssl->dtlsRecordNumberEncrypt));
#endif /* WOLFSSL_DTLS13 */
}
/* Free ciphers */
void FreeCiphers(WOLFSSL* ssl)
{
(void)ssl;
#ifdef BUILD_ARC4
wc_Arc4Free(ssl->encrypt.arc4);
wc_Arc4Free(ssl->decrypt.arc4);
XFREE(ssl->encrypt.arc4, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.arc4, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#ifdef BUILD_DES3
wc_Des3Free(ssl->encrypt.des3);
wc_Des3Free(ssl->decrypt.des3);
XFREE(ssl->encrypt.des3, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.des3, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#if defined(BUILD_AES) || defined(BUILD_AESGCM) || defined(HAVE_ARIA)
/* See: InitKeys() in keys.c on addition of BUILD_AESGCM check (enc->aes, dec->aes) */
wc_AesFree(ssl->encrypt.aes);
wc_AesFree(ssl->decrypt.aes);
XFREE(ssl->encrypt.aes, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.aes, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
wc_Sm4Free(ssl->encrypt.sm4);
wc_Sm4Free(ssl->decrypt.sm4);
XFREE(ssl->encrypt.sm4, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.sm4, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#if (defined(BUILD_AESGCM) || defined(BUILD_AESCCM) || defined(HAVE_ARIA)) && \
!defined(WOLFSSL_NO_TLS12)
XFREE(ssl->decrypt.additional, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->encrypt.additional, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#ifdef CIPHER_NONCE
XFREE(ssl->decrypt.nonce, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->encrypt.nonce, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#ifdef HAVE_ARIA
wc_AriaFreeCrypt(ssl->encrypt.aria);
wc_AriaFreeCrypt(ssl->decrypt.aria);
XFREE(ssl->encrypt.aria, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.aria, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#ifdef HAVE_CAMELLIA
XFREE(ssl->encrypt.cam, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.cam, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#ifdef HAVE_CHACHA
if (ssl->encrypt.chacha)
ForceZero(ssl->encrypt.chacha, sizeof(ChaCha));
if (ssl->decrypt.chacha)
ForceZero(ssl->decrypt.chacha, sizeof(ChaCha));
XFREE(ssl->encrypt.chacha, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.chacha, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#if defined(HAVE_POLY1305) && defined(HAVE_ONE_TIME_AUTH)
if (ssl->auth.poly1305)
ForceZero(ssl->auth.poly1305, sizeof(Poly1305));
XFREE(ssl->auth.poly1305, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_NULL_CIPHER)
wc_HmacFree(ssl->encrypt.hmac);
wc_HmacFree(ssl->decrypt.hmac);
XFREE(ssl->encrypt.hmac, ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->decrypt.hmac, ssl->heap, DYNAMIC_TYPE_CIPHER);
#endif
#ifdef WOLFSSL_DTLS13
#ifdef BUILD_AES
if (ssl->dtlsRecordNumberEncrypt.aes != NULL) {
wc_AesFree(ssl->dtlsRecordNumberEncrypt.aes);
XFREE(ssl->dtlsRecordNumberEncrypt.aes, ssl->heap, DYNAMIC_TYPE_CIPHER);
ssl->dtlsRecordNumberEncrypt.aes = NULL;
}
if (ssl->dtlsRecordNumberDecrypt.aes != NULL) {
wc_AesFree(ssl->dtlsRecordNumberDecrypt.aes);
XFREE(ssl->dtlsRecordNumberDecrypt.aes, ssl->heap, DYNAMIC_TYPE_CIPHER);
ssl->dtlsRecordNumberDecrypt.aes = NULL;
}
#endif /* BUILD_AES */
#ifdef HAVE_CHACHA
XFREE(ssl->dtlsRecordNumberEncrypt.chacha,
ssl->heap, DYNAMIC_TYPE_CIPHER);
XFREE(ssl->dtlsRecordNumberDecrypt.chacha,
ssl->heap, DYNAMIC_TYPE_CIPHER);
ssl->dtlsRecordNumberEncrypt.chacha = NULL;
ssl->dtlsRecordNumberDecrypt.chacha = NULL;
#endif /* HAVE_CHACHA */
#endif /* WOLFSSL_DTLS13 */
}
void InitCipherSpecs(CipherSpecs* cs)
{
XMEMSET(cs, 0, sizeof(CipherSpecs));
cs->bulk_cipher_algorithm = INVALID_BYTE;
cs->cipher_type = INVALID_BYTE;
cs->mac_algorithm = INVALID_BYTE;
cs->kea = INVALID_BYTE;
cs->sig_algo = INVALID_BYTE;
}
#if defined(USE_ECDSA_KEYSZ_HASH_ALGO) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_ECC))
static int GetMacDigestSize(byte macAlgo)
{
switch (macAlgo) {
#ifndef NO_SHA
case sha_mac:
return WC_SHA_DIGEST_SIZE;
#endif
#ifndef NO_SHA256
case sha256_mac:
return WC_SHA256_DIGEST_SIZE;
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
return WC_SHA384_DIGEST_SIZE;
#endif
#ifdef WOLFSSL_SHA512
case sha512_mac:
return WC_SHA512_DIGEST_SIZE;
#endif
#ifdef WOLFSSL_SM3
case sm3_mac:
return WC_SM3_DIGEST_SIZE;
#endif
default:
break;
}
return NOT_COMPILED_IN;
}
#endif /* USE_ECDSA_KEYSZ_HASH_ALGO || (WOLFSSL_TLS13 && HAVE_ECC) */
#define ADD_HASH_SIG_ALGO(out, inOutIdx, major, minor) \
do { \
if ((out) != NULL) { \
(out)[*(inOutIdx) ] = (major); \
(out)[*(inOutIdx) + 1] = (minor); \
} \
*(inOutIdx) += 2; \
} while (0)
static WC_INLINE void AddSuiteHashSigAlgo(byte* hashSigAlgo, byte macAlgo,
byte sigAlgo, int keySz, word16* inOutIdx)
{
int addSigAlgo = 1;
#ifdef USE_ECDSA_KEYSZ_HASH_ALGO
if (sigAlgo == ecc_dsa_sa_algo) {
int digestSz = GetMacDigestSize(macAlgo);
/* do not add sig/algos with digest size larger than key size */
if (digestSz <= 0 || (keySz > 0 && digestSz > keySz)) {
addSigAlgo = 0;
}
}
#else
(void)keySz;
#endif /* USE_ECDSA_KEYSZ_HASH_ALGO */
if (addSigAlgo) {
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (sigAlgo == sm2_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
SM2_SA_MAJOR, SM2_SA_MINOR);
}
else
#endif
#ifdef HAVE_ED25519
if (sigAlgo == ed25519_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
ED25519_SA_MAJOR, ED25519_SA_MINOR);
}
else
#endif
#ifdef HAVE_ED448
if (sigAlgo == ed448_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
ED448_SA_MAJOR, ED448_SA_MINOR);
}
else
#endif
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
if (sigAlgo == falcon_level1_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
FALCON_LEVEL1_SA_MAJOR, FALCON_LEVEL1_SA_MINOR);
}
else
if (sigAlgo == falcon_level5_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
FALCON_LEVEL5_SA_MAJOR, FALCON_LEVEL5_SA_MINOR);
}
else
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
if (sigAlgo == dilithium_level2_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
DILITHIUM_LEVEL2_SA_MAJOR, DILITHIUM_LEVEL2_SA_MINOR);
}
else
if (sigAlgo == dilithium_level3_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
DILITHIUM_LEVEL3_SA_MAJOR, DILITHIUM_LEVEL3_SA_MINOR);
}
else
if (sigAlgo == dilithium_level5_sa_algo) {
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx,
DILITHIUM_LEVEL5_SA_MAJOR, DILITHIUM_LEVEL5_SA_MINOR);
}
else
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#ifdef WC_RSA_PSS
if (sigAlgo == rsa_pss_sa_algo) {
/* RSA PSS is sig then mac */
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx, sigAlgo, macAlgo);
#ifdef WOLFSSL_TLS13
/* Add the certificate algorithm as well */
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx, sigAlgo,
PSS_RSAE_TO_PSS_PSS(macAlgo));
#endif
}
else
#endif
{
ADD_HASH_SIG_ALGO(hashSigAlgo, inOutIdx, macAlgo, sigAlgo);
}
}
}
void InitSuitesHashSigAlgo_ex2(byte* hashSigAlgo, int haveSig, int tls1_2,
int keySz, word16* len)
{
word16 idx = 0;
(void)tls1_2;
(void)keySz;
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
if (haveSig & SIG_ECDSA) {
#ifdef HAVE_ECC
#ifdef WOLFSSL_SHA512
AddSuiteHashSigAlgo(hashSigAlgo, sha512_mac, ecc_dsa_sa_algo, keySz,
&idx);
#endif
#ifdef WOLFSSL_SHA384
AddSuiteHashSigAlgo(hashSigAlgo, sha384_mac, ecc_dsa_sa_algo, keySz,
&idx);
#endif
#ifndef NO_SHA256
AddSuiteHashSigAlgo(hashSigAlgo, sha256_mac, ecc_dsa_sa_algo, keySz,
&idx);
#endif
#if !defined(NO_SHA) && (!defined(NO_OLD_TLS) || \
defined(WOLFSSL_ALLOW_TLS_SHA1))
AddSuiteHashSigAlgo(hashSigAlgo, sha_mac, ecc_dsa_sa_algo, keySz, &idx);
#endif
#endif
#ifdef HAVE_ED25519
AddSuiteHashSigAlgo(hashSigAlgo, no_mac, ed25519_sa_algo, keySz, &idx);
#endif
#ifdef HAVE_ED448
AddSuiteHashSigAlgo(hashSigAlgo, no_mac, ed448_sa_algo, keySz, &idx);
#endif
}
#endif /* HAVE_ECC || HAVE_ED25519 || HAVE_ED448 */
#if defined(HAVE_ECC) && defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (haveSig & SIG_SM2) {
AddSuiteHashSigAlgo(hashSigAlgo, sm3_mac, sm2_sa_algo, keySz,
&idx);
}
#endif
#if defined(HAVE_PQC)
#ifdef HAVE_FALCON
if (haveSig & SIG_FALCON) {
AddSuiteHashSigAlgo(hashSigAlgo, no_mac, falcon_level1_sa_algo, keySz,
&idx);
AddSuiteHashSigAlgo(hashSigAlgo, no_mac, falcon_level5_sa_algo, keySz,
&idx);
}
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
if (haveSig & SIG_DILITHIUM) {
AddSuiteHashSigAlgo(hashSigAlgo, no_mac, dilithium_level2_sa_algo,
keySz, &idx);
AddSuiteHashSigAlgo(hashSigAlgo, no_mac, dilithium_level3_sa_algo,
keySz, &idx);
AddSuiteHashSigAlgo(hashSigAlgo, no_mac, dilithium_level5_sa_algo,
keySz, &idx);
}
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
if (haveSig & SIG_RSA) {
#ifdef WC_RSA_PSS
if (tls1_2) {
#ifdef WOLFSSL_SHA512
AddSuiteHashSigAlgo(hashSigAlgo, sha512_mac, rsa_pss_sa_algo, keySz,
&idx);
#endif
#ifdef WOLFSSL_SHA384
AddSuiteHashSigAlgo(hashSigAlgo, sha384_mac, rsa_pss_sa_algo, keySz,
&idx);
#endif
#ifndef NO_SHA256
AddSuiteHashSigAlgo(hashSigAlgo, sha256_mac, rsa_pss_sa_algo, keySz,
&idx);
#endif
}
#endif
#ifdef WOLFSSL_SHA512
AddSuiteHashSigAlgo(hashSigAlgo, sha512_mac, rsa_sa_algo, keySz, &idx);
#endif
#ifdef WOLFSSL_SHA384
AddSuiteHashSigAlgo(hashSigAlgo, sha384_mac, rsa_sa_algo, keySz, &idx);
#endif
#ifndef NO_SHA256
AddSuiteHashSigAlgo(hashSigAlgo, sha256_mac, rsa_sa_algo, keySz, &idx);
#endif
#ifdef WOLFSSL_SHA224
AddSuiteHashSigAlgo(hashSigAlgo, sha224_mac, rsa_sa_algo, keySz, &idx);
#endif
#if !defined(NO_SHA) && (!defined(NO_OLD_TLS) || \
defined(WOLFSSL_ALLOW_TLS_SHA1))
AddSuiteHashSigAlgo(hashSigAlgo, sha_mac, rsa_sa_algo, keySz, &idx);
#endif
}
#ifdef HAVE_ANON
if (haveSig & SIG_ANON) {
AddSuiteHashSigAlgo(hashSigAlgo, sha_mac, anonymous_sa_algo, keySz,
&idx);
}
#endif
*len = idx;
}
void InitSuitesHashSigAlgo(Suites* suites, int haveECDSAsig, int haveRSAsig,
int haveFalconSig, int haveDilithiumSig, int haveAnon, int tls1_2,
int keySz)
{
InitSuitesHashSigAlgo_ex(suites->hashSigAlgo, haveECDSAsig, haveRSAsig,
haveFalconSig, haveDilithiumSig, haveAnon, tls1_2, keySz,
&suites->hashSigAlgoSz);
}
void InitSuitesHashSigAlgo_ex(byte* hashSigAlgo, int haveECDSAsig,
int haveRSAsig, int haveFalconSig, int haveDilithiumSig, int haveAnon,
int tls1_2, int keySz, word16* len)
{
int have = 0;
if (haveECDSAsig) have |= SIG_ECDSA;
if (haveRSAsig) have |= SIG_RSA;
if (haveFalconSig) have |= SIG_FALCON;
if (haveDilithiumSig) have |= SIG_DILITHIUM;
if (haveAnon) have |= SIG_ANON;
InitSuitesHashSigAlgo_ex2(hashSigAlgo, have, tls1_2, keySz, len);
}
int AllocateCtxSuites(WOLFSSL_CTX* ctx)
{
if (ctx->suites == NULL) {
ctx->suites = (Suites*)XMALLOC(sizeof(Suites), ctx->heap,
DYNAMIC_TYPE_SUITES);
if (ctx->suites == NULL) {
WOLFSSL_MSG("Memory alloc for Suites failed");
return MEMORY_ERROR;
}
XMEMSET(ctx->suites, 0, sizeof(Suites));
}
return 0;
}
/* Call this when the ssl object needs to have its own ssl->suites object */
int AllocateSuites(WOLFSSL* ssl)
{
if (ssl->suites == NULL) {
ssl->suites = (Suites*)XMALLOC(sizeof(Suites), ssl->heap,
DYNAMIC_TYPE_SUITES);
if (ssl->suites == NULL) {
WOLFSSL_MSG("Suites Memory error");
return MEMORY_ERROR;
}
if (ssl->ctx != NULL && ssl->ctx->suites != NULL)
XMEMCPY(ssl->suites, ssl->ctx->suites, sizeof(Suites));
else
XMEMSET(ssl->suites, 0, sizeof(Suites));
}
return 0;
}
void InitSuites(Suites* suites, ProtocolVersion pv, int keySz, word16 haveRSA,
word16 havePSK, word16 haveDH, word16 haveECDSAsig,
word16 haveECC, word16 haveStaticRSA, word16 haveStaticECC,
word16 haveFalconSig, word16 haveDilithiumSig, word16 haveAnon,
word16 haveNull, int side)
{
word16 idx = 0;
int tls = pv.major == SSLv3_MAJOR && pv.minor >= TLSv1_MINOR;
int tls1_2 = pv.major == SSLv3_MAJOR && pv.minor >= TLSv1_2_MINOR;
#ifdef WOLFSSL_TLS13
int tls1_3 = IsAtLeastTLSv1_3(pv);
#endif
int dtls = 0;
int haveRSAsig = 1;
#ifdef WOLFSSL_DTLS
/* If DTLS v1.2 or later than set tls1_2 flag */
if (pv.major == DTLS_MAJOR && pv.minor <= DTLSv1_2_MINOR) {
tls1_2 = 1;
}
#endif
(void)tls; /* shut up compiler */
(void)tls1_2;
(void)dtls;
(void)haveDH;
(void)havePSK;
(void)haveStaticRSA;
(void)haveStaticECC;
(void)haveECC;
(void)side;
(void)haveRSA; /* some builds won't read */
(void)haveRSAsig; /* non ecc builds won't read */
(void)haveAnon; /* anon ciphers optional */
(void)haveNull;
(void)haveFalconSig;
(void)haveDilithiumSig;
if (suites == NULL) {
WOLFSSL_MSG("InitSuites pointer error");
return;
}
if (suites->setSuites)
return; /* trust user settings, don't override */
#ifdef WOLFSSL_TLS13
#ifdef BUILD_TLS_AES_128_GCM_SHA256
if (tls1_3) {
suites->suites[idx++] = TLS13_BYTE;
suites->suites[idx++] = TLS_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_AES_256_GCM_SHA384
if (tls1_3) {
suites->suites[idx++] = TLS13_BYTE;
suites->suites[idx++] = TLS_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_CHACHA20_POLY1305_SHA256
if (tls1_3) {
suites->suites[idx++] = TLS13_BYTE;
suites->suites[idx++] = TLS_CHACHA20_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_AES_128_CCM_SHA256
if (tls1_3) {
suites->suites[idx++] = TLS13_BYTE;
suites->suites[idx++] = TLS_AES_128_CCM_SHA256;
}
#endif
#ifdef BUILD_TLS_AES_128_CCM_8_SHA256
if (tls1_3) {
suites->suites[idx++] = TLS13_BYTE;
suites->suites[idx++] = TLS_AES_128_CCM_8_SHA256;
}
#endif
#ifdef BUILD_TLS_SM4_GCM_SM3
if (tls1_3) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_SM4_GCM_SM3;
}
#endif
#ifdef BUILD_TLS_SM4_CCM_SM3
if (tls1_3) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_SM4_CCM_SM3;
}
#endif
#ifdef HAVE_NULL_CIPHER
#ifdef BUILD_TLS_SHA256_SHA256
if (tls1_3 && haveNull) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_SHA256_SHA256;
}
#endif
#ifdef BUILD_TLS_SHA384_SHA384
if (tls1_3 && haveNull) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_SHA384_SHA384;
}
#endif
#endif
#endif /* WOLFSSL_TLS13 */
#ifndef WOLFSSL_NO_TLS12
#if !defined(NO_WOLFSSL_SERVER) && !defined(NO_RSA)
if (side == WOLFSSL_SERVER_END && haveStaticECC) {
haveRSA = 0; /* can't do RSA with ECDSA key */
}
if (side == WOLFSSL_SERVER_END && haveECDSAsig) {
haveRSAsig = 0; /* can't have RSA sig if signed by ECDSA */
}
#endif /* !NO_WOLFSSL_SERVER */
#ifdef NO_RSA
haveRSAsig = 0; /* can't have RSA sig if don't have RSA */
#endif
#ifdef WOLFSSL_DTLS
if (pv.major == DTLS_MAJOR) {
dtls = 1;
tls = 1;
/* May be dead assignments dependent upon configuration */
(void) dtls;
(void) tls;
tls1_2 = pv.minor <= DTLSv1_2_MINOR;
}
#endif
#ifdef HAVE_RENEGOTIATION_INDICATION
if (side == WOLFSSL_CLIENT_END) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_EMPTY_RENEGOTIATION_INFO_SCSV;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
/* OpenSSL enables ECDHE when using ECDHE aliases without RSA */
#ifdef OPENSSL_EXTRA
if ((tls1_2 && haveRSA) || (tls1_2 && haveECDSAsig)) {
#else
if (tls1_2 && haveRSA) {
#endif
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
#ifdef OPENSSL_EXTRA
if ((tls1_2 && haveRSA) || (tls1_2 && haveECDSAsig)) {
#else
if (tls1_2 && haveRSA) {
#endif
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
if (tls1_2 && haveDH && haveRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
if (tls1_2 && haveDH && haveRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_GCM_SHA384
if (tls1_2 && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_GCM_SHA256
if (tls1_2 && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
if (tls1_2 && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
if (tls1_2 && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
if (tls1_2 && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
if (tls1_2 && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
if (tls1_2 && haveDH && havePSK) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_DH_anon_WITH_AES_128_CBC_SHA
if (tls1_2 && haveDH && haveAnon) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DH_anon_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_DH_anon_WITH_AES_256_GCM_SHA384
if (tls1_2 && haveDH && haveAnon) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DH_anon_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256
if (tls1_2 && haveDH && havePSK) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_GCM_SHA384
if (tls1_2 && havePSK) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_256_GCM_SHA384;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_GCM_SHA256
if (tls1_2 && havePSK) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
if (tls1_2 && haveECC) {
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
#ifdef OPENSSL_EXTRA
if ((tls1_2 && haveRSA) || (tls1_2 && haveECDSAsig)) {
#else
if (tls1_2 && haveRSA) {
#endif
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
if (tls1_2 && haveRSA) {
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256;
}
#endif
/* Place as higher priority for MYSQL */
#if defined(WOLFSSL_MYSQL_COMPATIBLE)
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_256_CBC_SHA
if (tls && haveDH && haveRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_AES_256_CBC_SHA;
}
#endif
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
#ifdef OPENSSL_EXTRA
if ((tls1_2 && haveRSA) || (tls1_2 && haveECDSAsig)) {
#else
if (tls1_2 && haveRSA) {
#endif
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
if (tls1_2 && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
if (tls1_2 && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
#ifdef OPENSSL_EXTRA
if ((tls1_2 && haveRSA) || (tls1_2 && haveECDSAsig)) {
#else
if (tls1_2 && haveRSA) {
#endif
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
if (tls1_2 && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
if (tls1_2 && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
if (tls && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
if (tls && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
if (tls && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
if (tls && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
if (!dtls && tls && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_RC4_128_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_RC4_128_SHA
if (!dtls && tls && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_RC4_128_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
if (tls && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
if (tls && haveECC && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
#ifdef OPENSSL_EXTRA
if ((tls && haveRSA) || (tls && haveECDSAsig)) {
#else
if (tls && haveRSA) {
#endif
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
if (tls && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_AES_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
#ifdef OPENSSL_EXTRA
if ((tls && haveRSA) || (tls && haveECDSAsig)) {
#else
if (tls && haveRSA) {
#endif
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
if (tls && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_RC4_128_SHA
if (!dtls && tls && haveRSA) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_RC4_128_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_RC4_128_SHA
if (!dtls && tls && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_RC4_128_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
#ifdef OPENSSL_EXTRA
if ((tls && haveRSA) || (tls && haveECDSAsig)) {
#else
if (tls && haveRSA) {
#endif
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
if (tls && haveRSAsig && haveStaticECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CCM
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_128_CCM;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8
if (tls1_2 && haveECC) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_CCM_8
if (tls1_2 && haveRSA && haveStaticRSA) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_128_CCM_8;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_CCM_8
if (tls1_2 && haveRSA && haveStaticRSA) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_256_CCM_8;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && haveRSA)
#else
if (tls && haveDH && haveRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_AES_256_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && haveRSA)
#else
if (tls && haveDH && haveRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_AES_128_CBC_SHA256;
}
#endif
/* Place as higher priority for MYSQL testing */
#if !defined(WOLFSSL_MYSQL_COMPATIBLE)
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_256_CBC_SHA
if (tls && haveDH && haveRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_AES_256_CBC_SHA;
}
#endif
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_128_CBC_SHA
if (tls && haveDH && haveRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
if (tls && haveDH && haveRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveRSA && haveStaticRSA)
#else
if (tls && haveRSA && haveStaticRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_256_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveRSA && haveStaticRSA)
#else
if (tls && haveRSA && haveStaticRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_CBC_SHA
if (tls && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_CBC_SHA
if (tls && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_CHACHA20_OLD_POLY1305_SHA256
if (tls1_2 && haveECC) {
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] =
TLS_ECDHE_ECDSA_WITH_CHACHA20_OLD_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256
#ifdef OPENSSL_EXTRA
if ((tls1_2 && haveRSA) || (tls1_2 && haveECDSAsig)) {
#else
if (tls1_2 && haveRSA) {
#endif
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256
#ifdef OPENSSL_EXTRA
if ((tls1_2 && haveRSA) || (tls1_2 && haveECDSAsig)) {
#else
if (tls1_2 && haveRSA) {
#endif
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_NULL_SHA
if (tls && haveECC && haveNull) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_NULL_SHA;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_NULL_MD5
if (tls && haveRSA && haveNull && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_NULL_MD5;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_NULL_SHA
if (tls && haveRSA && haveNull && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_NULL_SHA;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_NULL_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveRSA && haveNull && haveStaticRSA)
#else
if (tls && haveRSA && haveNull && haveStaticRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_NULL_SHA256;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CBC_SHA
if (tls && havePSK) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && havePSK)
#else
if (tls && haveDH && havePSK)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_AES_256_CBC_SHA384;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CBC_SHA384
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK)
#else
if (tls && havePSK)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_256_CBC_SHA384;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && havePSK)
#else
if (tls && haveDH && havePSK)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK)
#else
if (tls1 && havePSK)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CBC_SHA
if (tls && havePSK) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_128_CCM
if (tls && haveDH && havePSK) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_AES_128_CCM;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_256_CCM
if (tls && haveDH && havePSK) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_AES_256_CCM;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_CHACHA20_POLY1305_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK)
#else
if (tls && havePSK)
#endif
{
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_CHACHA20_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK)
#else
if (tls && havePSK)
#endif
{
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK)
#else
if (tls && havePSK)
#endif
{
suites->suites[idx++] = CHACHA_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK)
#else
if (tls && havePSK)
#endif
{
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK)
#else
if (tls && havePSK)
#endif
{
suites->suites[idx++] = ECDHE_PSK_BYTE;
suites->suites[idx++] = TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CCM
if (tls && havePSK) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_128_CCM;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CCM
if (tls && havePSK) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_256_CCM;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CCM_8
if (tls && havePSK) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_128_CCM_8;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CCM_8
if (tls && havePSK) {
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_AES_256_CCM_8;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_NULL_SHA384
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && havePSK)
#else
if (tls && haveDH && havePSK && haveNull)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_NULL_SHA384;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_NULL_SHA384
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK && haveNull)
#else
if (tls && havePSK && haveNull)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_NULL_SHA384;
}
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_NULL_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK && haveNull)
#else
if (tls && havePSK && haveNull)
#endif
{
suites->suites[idx++] = ECC_BYTE;
suites->suites[idx++] = TLS_ECDHE_PSK_WITH_NULL_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_NULL_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && havePSK && haveNull)
#else
if (tls && haveDH && havePSK && haveNull)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_PSK_WITH_NULL_SHA256;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_NULL_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && havePSK && haveNull)
#else
if (tls && havePSK && haveNull)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_NULL_SHA256;
}
#endif
#ifdef BUILD_TLS_PSK_WITH_NULL_SHA
if (tls && havePSK && haveNull) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_PSK_WITH_NULL_SHA;
}
#endif
#ifdef BUILD_SSL_RSA_WITH_RC4_128_SHA
if (!dtls && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = SSL_RSA_WITH_RC4_128_SHA;
}
#endif
#ifdef BUILD_SSL_RSA_WITH_RC4_128_MD5
if (!dtls && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = SSL_RSA_WITH_RC4_128_MD5;
}
#endif
#ifdef BUILD_SSL_RSA_WITH_3DES_EDE_CBC_SHA
if (haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = SSL_RSA_WITH_3DES_EDE_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
if (tls && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_CAMELLIA_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
if (tls && haveDH && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
if (tls && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_CAMELLIA_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
if (tls && haveDH && haveRSA && haveStaticRSA) {
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveRSA && haveStaticRSA)
#else
if (tls && haveRSA && haveStaticRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && haveRSA && haveStaticRSA)
#else
if (tls && haveDH && haveRSA && haveStaticRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveRSA && haveStaticRSA)
#else
if (tls && haveRSA && haveStaticRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
#ifndef WOLFSSL_OLDTLS_SHA2_CIPHERSUITES
if (tls1_2 && haveDH && haveRSA && haveStaticRSA)
#else
if (tls && haveDH && haveRSA && haveStaticRSA)
#endif
{
suites->suites[idx++] = CIPHER_BYTE;
suites->suites[idx++] = TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
if (tls && haveECC) {
suites->suites[idx++] = SM_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3
if (tls && haveECC) {
suites->suites[idx++] = SM_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3;
}
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3
if (tls && haveECC) {
suites->suites[idx++] = SM_BYTE;
suites->suites[idx++] = TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3;
}
#endif
#endif /* !WOLFSSL_NO_TLS12 */
suites->suiteSz = idx;
if (suites->hashSigAlgoSz == 0) {
int haveSig = 0;
haveSig |= (haveRSAsig | haveRSA) ? SIG_RSA : 0;
haveSig |= (haveECDSAsig | haveECC) ? SIG_ECDSA : 0;
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
haveSig |= (haveECDSAsig | haveECC) ? SIG_SM2 : 0;
#endif
haveSig |= haveFalconSig ? SIG_FALCON : 0;
haveSig |= haveDilithiumSig ? SIG_DILITHIUM : 0;
haveSig &= ~SIG_ANON;
InitSuitesHashSigAlgo_ex2(suites->hashSigAlgo, haveSig, tls1_2, keySz,
&suites->hashSigAlgoSz);
}
}
#if !defined(NO_WOLFSSL_SERVER) || !defined(NO_CERTS) || \
(!defined(NO_WOLFSSL_CLIENT) && (!defined(NO_DH) || defined(HAVE_ECC)))
/* Decode the signature algorithm.
*
* input The encoded signature algorithm.
* hashalgo The hash algorithm.
* hsType The signature type.
*/
void DecodeSigAlg(const byte* input, byte* hashAlgo, byte* hsType)
{
*hsType = invalid_sa_algo;
switch (input[0]) {
case NEW_SA_MAJOR:
#ifdef HAVE_ED25519
/* ED25519: 0x0807 */
if (input[1] == ED25519_SA_MINOR) {
*hsType = ed25519_sa_algo;
/* Hash performed as part of sign/verify operation. */
*hashAlgo = sha512_mac;
}
else
#endif
#ifdef HAVE_ED448
/* ED448: 0x0808 */
if (input[1] == ED448_SA_MINOR) {
*hsType = ed448_sa_algo;
/* Hash performed as part of sign/verify operation. */
*hashAlgo = sha512_mac;
}
else
#endif
#ifdef WC_RSA_PSS
/* PSS PSS signatures: 0x080[9-b] */
if (input[1] >= pss_sha256 && input[1] <= pss_sha512) {
*hsType = rsa_pss_pss_algo;
*hashAlgo = PSS_PSS_HASH_TO_MAC(input[1]);
}
else
#endif
{
*hsType = input[0];
*hashAlgo = input[1];
}
break;
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case SM2_SA_MAJOR:
/* SM2: 0x0708 */
if (input[1] == SM2_SA_MINOR) {
*hsType = sm2_sa_algo;
/* Hash performed as part of sign/verify operation. */
*hashAlgo = sm3_mac;
}
break;
#endif
#ifdef HAVE_PQC
case PQC_SA_MAJOR:
/* Hash performed as part of sign/verify operation. */
#ifdef HAVE_FALCON
if (input[1] == FALCON_LEVEL1_SA_MINOR) {
*hsType = falcon_level1_sa_algo;
*hashAlgo = sha512_mac;
}
else if (input[1] == FALCON_LEVEL5_SA_MINOR) {
*hsType = falcon_level5_sa_algo;
*hashAlgo = sha512_mac;
}
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
if (input[1] == DILITHIUM_LEVEL2_SA_MINOR) {
*hsType = dilithium_level2_sa_algo;
*hashAlgo = sha512_mac;
}
else if (input[1] == DILITHIUM_LEVEL3_SA_MINOR) {
*hsType = dilithium_level3_sa_algo;
*hashAlgo = sha512_mac;
}
else if (input[1] == DILITHIUM_LEVEL5_SA_MINOR) {
*hsType = dilithium_level5_sa_algo;
*hashAlgo = sha512_mac;
}
#endif /* HAVE_DILITHIUM */
break;
#endif
default:
*hashAlgo = input[0];
*hsType = input[1];
break;
}
}
#endif /* !NO_WOLFSSL_SERVER || !NO_CERTS */
#ifndef WOLFSSL_NO_TLS12
#if !defined(NO_WOLFSSL_SERVER) || !defined(NO_WOLFSSL_CLIENT)
#if !defined(NO_DH) || defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448) || (!defined(NO_RSA) && defined(WC_RSA_PSS))
enum wc_HashType HashAlgoToType(int hashAlgo)
{
switch (hashAlgo) {
#ifdef WOLFSSL_SHA512
case sha512_mac:
return WC_HASH_TYPE_SHA512;
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
return WC_HASH_TYPE_SHA384;
#endif
#ifdef WOLFSSL_SM3
case sm3_mac:
return WC_HASH_TYPE_SM3;
#endif
#ifndef NO_SHA256
case sha256_mac:
return WC_HASH_TYPE_SHA256;
#endif
#ifdef WOLFSSL_SHA224
case sha224_mac:
return WC_HASH_TYPE_SHA224;
#endif
#if !defined(NO_SHA) && (!defined(NO_OLD_TLS) || \
defined(WOLFSSL_ALLOW_TLS_SHA1))
case sha_mac:
return WC_HASH_TYPE_SHA;
#endif
default:
WOLFSSL_MSG("Bad hash sig algo");
break;
}
return WC_HASH_TYPE_NONE;
}
#endif /* !NO_DH || HAVE_ECC || (!NO_RSA && WC_RSA_PSS) */
#endif /* !NO_WOLFSSL_SERVER || !NO_WOLFSSL_CLIENT */
#endif /* !WOLFSSL_NO_TLS12 */
#ifndef NO_CERTS
void InitX509Name(WOLFSSL_X509_NAME* name, int dynamicFlag, void* heap)
{
(void)dynamicFlag;
if (name != NULL) {
XMEMSET(name, 0, sizeof(WOLFSSL_X509_NAME));
name->name = name->staticName;
name->heap = heap;
name->dynamicName = 0;
}
}
void FreeX509Name(WOLFSSL_X509_NAME* name)
{
if (name != NULL) {
if (name->dynamicName) {
XFREE(name->name, name->heap, DYNAMIC_TYPE_SUBJECT_CN);
name->name = NULL;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
{
int i;
for (i = 0; i < MAX_NAME_ENTRIES; i++) {
if (name->entry[i].object != NULL)
wolfSSL_ASN1_OBJECT_free(name->entry[i].object);
if (name->entry[i].value != NULL)
wolfSSL_ASN1_STRING_free(name->entry[i].value);
XMEMSET(&name->entry[i], 0, sizeof(WOLFSSL_X509_NAME_ENTRY));
}
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_ALL
if (name->entries) {
wolfSSL_sk_X509_NAME_ENTRY_free(name->entries);
name->entries = NULL;
}
#endif
}
}
/* Initialize wolfSSL X509 type */
void InitX509(WOLFSSL_X509* x509, int dynamicFlag, void* heap)
{
if (x509 == NULL) {
WOLFSSL_MSG("Null parameter passed in!");
return;
}
XMEMSET(x509, 0, sizeof(WOLFSSL_X509));
x509->heap = heap;
InitX509Name(&x509->issuer, 0, heap);
InitX509Name(&x509->subject, 0, heap);
x509->dynamicMemory = (byte)dynamicFlag;
#if defined(OPENSSL_EXTRA_X509_SMALL) || defined(OPENSSL_EXTRA)
{
int ret;
wolfSSL_RefInit(&x509->ref, &ret);
(void)ret;
}
#endif
}
/* Free wolfSSL X509 type */
void FreeX509(WOLFSSL_X509* x509)
{
#if defined(WOLFSSL_CERT_REQ) && defined(OPENSSL_ALL) \
&& defined( WOLFSSL_CUSTOM_OID)
int idx;
#endif /* WOLFSSL_CERT_REQ && OPENSSL_ALL && WOLFSSL_CUSTOM_OID */
if (x509 == NULL)
return;
FreeX509Name(&x509->issuer);
FreeX509Name(&x509->subject);
if (x509->pubKey.buffer) {
XFREE(x509->pubKey.buffer, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY);
x509->pubKey.buffer = NULL;
}
FreeDer(&x509->derCert);
XFREE(x509->sig.buffer, x509->heap, DYNAMIC_TYPE_SIGNATURE);
x509->sig.buffer = NULL;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (x509->authKeyIdSrc != NULL) {
XFREE(x509->authKeyIdSrc, x509->heap, DYNAMIC_TYPE_X509_EXT);
}
else {
XFREE(x509->authKeyId, x509->heap, DYNAMIC_TYPE_X509_EXT);
}
x509->authKeyIdSrc = NULL;
x509->authKeyId = NULL;
XFREE(x509->subjKeyId, x509->heap, DYNAMIC_TYPE_X509_EXT);
x509->subjKeyId = NULL;
if (x509->authInfo != NULL) {
XFREE(x509->authInfo, x509->heap, DYNAMIC_TYPE_X509_EXT);
x509->authInfo = NULL;
}
if (x509->rawCRLInfo != NULL) {
XFREE(x509->rawCRLInfo, x509->heap, DYNAMIC_TYPE_X509_EXT);
x509->rawCRLInfo = NULL;
}
if (x509->CRLInfo != NULL) {
XFREE(x509->CRLInfo, x509->heap, DYNAMIC_TYPE_X509_EXT);
x509->CRLInfo = NULL;
}
#if defined(OPENSSL_ALL) || defined(OPENSSL_EXTRA) || \
defined(WOLFSSL_QT)
if (x509->authInfoCaIssuer != NULL) {
XFREE(x509->authInfoCaIssuer, x509->heap, DYNAMIC_TYPE_X509_EXT);
}
if (x509->ext_sk != NULL) {
wolfSSL_sk_X509_EXTENSION_pop_free(x509->ext_sk, NULL);
}
if (x509->ext_sk_full != NULL) {
wolfSSL_sk_X509_EXTENSION_pop_free(x509->ext_sk_full, NULL);
}
#endif /* OPENSSL_ALL || WOLFSSL_QT */
#ifdef OPENSSL_EXTRA
/* Free serialNumber that was set by wolfSSL_X509_get_serialNumber */
if (x509->serialNumber != NULL) {
wolfSSL_ASN1_INTEGER_free(x509->serialNumber);
}
#endif
if (x509->extKeyUsageSrc != NULL) {
XFREE(x509->extKeyUsageSrc, x509->heap, DYNAMIC_TYPE_X509_EXT);
x509->extKeyUsageSrc= NULL;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_ALL)
if (x509->algor.algorithm) {
wolfSSL_ASN1_OBJECT_free(x509->algor.algorithm);
x509->algor.algorithm = NULL;
}
if (x509->key.algor) {
wolfSSL_X509_ALGOR_free(x509->key.algor);
x509->key.algor = NULL;
}
if (x509->key.pkey) {
wolfSSL_EVP_PKEY_free(x509->key.pkey);
x509->key.pkey = NULL;
}
if (x509->subjAltNameSrc != NULL) {
XFREE(x509->subjAltNameSrc, x509->heap, DYNAMIC_TYPE_X509_EXT);
x509->subjAltNameSrc= NULL;
}
#endif /* OPENSSL_ALL */
#if defined(WOLFSSL_CERT_REQ) && defined(OPENSSL_ALL)
if (x509->reqAttributes) {
wolfSSL_sk_pop_free(x509->reqAttributes, NULL);
}
#ifdef WOLFSSL_CUSTOM_OID
for (idx = 0; idx < x509->customExtCount; idx++) {
XFREE(x509->custom_exts[idx].oid, x509->heap,
DYNAMIC_TYPE_X509_EXT);
XFREE(x509->custom_exts[idx].val, x509->heap,
DYNAMIC_TYPE_X509_EXT);
}
#endif /* WOLFSSL_CUSTOM_OID */
#endif /* WOLFSSL_CERT_REQ && OPENSSL_ALL */
if (x509->altNames) {
FreeAltNames(x509->altNames, x509->heap);
x509->altNames = NULL;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
wolfSSL_RefFree(&x509->ref);
#endif
}
#if !defined(NO_WOLFSSL_SERVER) || !defined(NO_WOLFSSL_CLIENT)
#if !defined(WOLFSSL_NO_TLS12)
/* Encode the signature algorithm into buffer.
*
* hashalgo The hash algorithm.
* hsType The signature type.
* output The buffer to encode into.
*/
static WC_INLINE void EncodeSigAlg(byte hashAlgo, byte hsType, byte* output)
{
switch (hsType) {
#ifdef HAVE_ECC
case ecc_dsa_sa_algo:
output[0] = hashAlgo;
output[1] = ecc_dsa_sa_algo;
break;
#endif
#ifdef HAVE_ED25519
case ed25519_sa_algo:
output[0] = ED25519_SA_MAJOR;
output[1] = ED25519_SA_MINOR;
(void)hashAlgo;
break;
#endif
#ifdef HAVE_ED448
case ed448_sa_algo:
output[0] = ED448_SA_MAJOR;
output[1] = ED448_SA_MINOR;
(void)hashAlgo;
break;
#endif
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
output[0] = SM2_SA_MAJOR;
output[1] = SM2_SA_MINOR;
(void)hashAlgo;
break;
#endif
#ifndef NO_RSA
case rsa_sa_algo:
output[0] = hashAlgo;
output[1] = rsa_sa_algo;
break;
#ifdef WC_RSA_PSS
/* PSS signatures: 0x080[4-6] */
case rsa_pss_sa_algo:
output[0] = rsa_pss_sa_algo;
output[1] = hashAlgo;
break;
#endif
#endif
default:
break;
}
(void)hashAlgo;
(void)output;
}
#endif
#if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_NO_CLIENT_AUTH)
static void SetDigest(WOLFSSL* ssl, int hashAlgo)
{
switch (hashAlgo) {
#ifndef NO_SHA
case sha_mac:
ssl->options.dontFreeDigest = 1;
ssl->buffers.digest.buffer = ssl->hsHashes->certHashes.sha;
ssl->buffers.digest.length = WC_SHA_DIGEST_SIZE;
break;
#endif /* !NO_SHA */
#ifndef NO_SHA256
case sha256_mac:
ssl->options.dontFreeDigest = 1;
ssl->buffers.digest.buffer = ssl->hsHashes->certHashes.sha256;
ssl->buffers.digest.length = WC_SHA256_DIGEST_SIZE;
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SM3
case sm3_mac:
ssl->options.dontFreeDigest = 1;
ssl->buffers.digest.buffer = ssl->hsHashes->certHashes.sm3;
ssl->buffers.digest.length = WC_SM3_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SM2 */
#ifdef WOLFSSL_SHA384
case sha384_mac:
ssl->options.dontFreeDigest = 1;
ssl->buffers.digest.buffer = ssl->hsHashes->certHashes.sha384;
ssl->buffers.digest.length = WC_SHA384_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case sha512_mac:
ssl->options.dontFreeDigest = 1;
ssl->buffers.digest.buffer = ssl->hsHashes->certHashes.sha512;
ssl->buffers.digest.length = WC_SHA512_DIGEST_SIZE;
break;
#endif /* WOLFSSL_SHA512 */
default:
break;
} /* switch */
}
#endif /* !WOLFSSL_NO_TLS12 && !WOLFSSL_NO_CLIENT_AUTH */
#endif /* !NO_WOLFSSL_SERVER || !NO_WOLFSSL_CLIENT */
#endif /* !NO_CERTS */
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
static word32 MacSize(const WOLFSSL* ssl)
{
#ifdef HAVE_TRUNCATED_HMAC
word32 digestSz = ssl->truncated_hmac ? (byte)TRUNCATED_HMAC_SZ
: ssl->specs.hash_size;
#else
word32 digestSz = ssl->specs.hash_size;
#endif
return digestSz;
}
#endif /* HAVE_ENCRYPT_THEN_MAC && !WOLFSSL_AEAD_ONLY */
#ifndef NO_RSA
#if !defined(WOLFSSL_NO_TLS12) || \
(defined(WC_RSA_PSS) && defined(HAVE_PK_CALLBACKS))
#if !defined(NO_WOLFSSL_SERVER) || !defined(NO_WOLFSSL_CLIENT)
static int TypeHash(int hashAlgo)
{
switch (hashAlgo) {
#ifdef WOLFSSL_SHA512
case sha512_mac:
return SHA512h;
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
return SHA384h;
#endif
#ifndef NO_SHA256
case sha256_mac:
return SHA256h;
#endif
#ifdef WOLFSSL_SHA224
case sha224_mac:
return SHA224h;
#endif
#ifndef NO_SHA
case sha_mac:
return SHAh;
#endif
default:
break;
}
return 0;
}
#endif /* !NO_WOLFSSL_SERVER && !NO_WOLFSSL_CLIENT */
#endif /* !WOLFSSL_NO_TLS12 */
#if defined(WC_RSA_PSS)
int ConvertHashPss(int hashAlgo, enum wc_HashType* hashType, int* mgf)
{
switch (hashAlgo) {
#ifdef WOLFSSL_SHA512
case sha512_mac:
*hashType = WC_HASH_TYPE_SHA512;
if (mgf != NULL)
*mgf = WC_MGF1SHA512;
break;
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
*hashType = WC_HASH_TYPE_SHA384;
if (mgf != NULL)
*mgf = WC_MGF1SHA384;
break;
#endif
#ifndef NO_SHA256
case sha256_mac:
*hashType = WC_HASH_TYPE_SHA256;
if (mgf != NULL)
*mgf = WC_MGF1SHA256;
break;
#endif
default:
return BAD_FUNC_ARG;
}
return 0;
}
#endif
#if !defined(NO_WOLFSSL_SERVER) || !defined(WOLFSSL_NO_CLIENT_AUTH)
int RsaSign(WOLFSSL* ssl, const byte* in, word32 inSz, byte* out,
word32* outSz, int sigAlgo, int hashAlgo, RsaKey* key,
DerBuffer* keyBufInfo)
{
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
(void)sigAlgo;
(void)hashAlgo;
WOLFSSL_ENTER("RsaSign");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
if (key) {
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
}
#endif
#if defined(WC_RSA_PSS)
if (sigAlgo == rsa_pss_sa_algo) {
enum wc_HashType hashType = WC_HASH_TYPE_NONE;
int mgf = 0;
ret = ConvertHashPss(hashAlgo, &hashType, &mgf);
if (ret != 0)
return ret;
#if defined(HAVE_PK_CALLBACKS)
if (ssl->ctx->RsaPssSignCb) {
void* ctx = wolfSSL_GetRsaPssSignCtx(ssl);
ret = ssl->ctx->RsaPssSignCb(ssl, in, inSz, out, outSz,
TypeHash(hashAlgo), mgf,
keyBuf, keySz, ctx);
}
else
#endif
{
ret = wc_RsaPSS_Sign(in, inSz, out, *outSz, hashType, mgf, key,
ssl->rng);
}
}
else
#endif
#if defined(HAVE_PK_CALLBACKS)
if (ssl->ctx->RsaSignCb) {
void* ctx = wolfSSL_GetRsaSignCtx(ssl);
ret = ssl->ctx->RsaSignCb(ssl, in, inSz, out, outSz, keyBuf, keySz,
ctx);
}
else
#endif /*HAVE_PK_CALLBACKS */
ret = wc_RsaSSL_Sign(in, inSz, out, *outSz, key, ssl->rng);
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (key && ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/* For positive response return in outSz */
if (ret > 0) {
*outSz = ret;
ret = 0;
}
WOLFSSL_LEAVE("RsaSign", ret);
return ret;
}
#endif
int RsaVerify(WOLFSSL* ssl, byte* in, word32 inSz, byte** out, int sigAlgo,
int hashAlgo, RsaKey* key, buffer* keyBufInfo)
{
int ret = SIG_VERIFY_E;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
(void)sigAlgo;
(void)hashAlgo;
WOLFSSL_ENTER("RsaVerify");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#if defined(WC_RSA_PSS)
if (sigAlgo == rsa_pss_sa_algo) {
enum wc_HashType hashType = WC_HASH_TYPE_NONE;
int mgf = 0;
ret = ConvertHashPss(hashAlgo, &hashType, &mgf);
if (ret != 0)
return ret;
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->RsaPssVerifyCb) {
void* ctx = wolfSSL_GetRsaPssVerifyCtx(ssl);
ret = ssl->ctx->RsaPssVerifyCb(ssl, in, inSz, out,
TypeHash(hashAlgo), mgf,
keyBuf, keySz, ctx);
}
else
#endif /*HAVE_PK_CALLBACKS */
ret = wc_RsaPSS_VerifyInline(in, inSz, out, hashType, mgf, key);
}
else
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->RsaVerifyCb) {
void* ctx = wolfSSL_GetRsaVerifyCtx(ssl);
ret = ssl->ctx->RsaVerifyCb(ssl, in, inSz, out, keyBuf, keySz, ctx);
}
#if !defined(WOLFSSL_RENESAS_FSPSM_TLS) && \
!defined(WOLFSSL_RENESAS_TSIP_TLS)
else
#else
if (!ssl->ctx->RsaVerifyCb || ret == CRYPTOCB_UNAVAILABLE)
#endif
#endif /*HAVE_PK_CALLBACKS */
{
ret = wc_RsaSSL_VerifyInline(in, inSz, out, key);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("RsaVerify", ret);
return ret;
}
/* Verify RSA signature, 0 on success */
/* This function is used to check the sign result */
int VerifyRsaSign(WOLFSSL* ssl, byte* verifySig, word32 sigSz,
const byte* plain, word32 plainSz, int sigAlgo, int hashAlgo, RsaKey* key,
DerBuffer* keyBufInfo)
{
byte* out = NULL; /* inline result */
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
(void)sigAlgo;
(void)hashAlgo;
WOLFSSL_ENTER("VerifyRsaSign");
if (verifySig == NULL || plain == NULL) {
return BAD_FUNC_ARG;
}
if (sigSz > ENCRYPT_LEN) {
WOLFSSL_MSG("Signature buffer too big");
return BUFFER_E;
}
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
if (key) {
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
}
#endif
#if defined(WC_RSA_PSS)
if (sigAlgo == rsa_pss_sa_algo) {
enum wc_HashType hashType = WC_HASH_TYPE_NONE;
int mgf = 0;
ret = ConvertHashPss(hashAlgo, &hashType, &mgf);
if (ret != 0)
return ret;
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->RsaPssSignCheckCb) {
/* The key buffer includes private/public portion,
but only public is used */
/* If HSM hardware is checking the signature result you can
optionally skip the sign check and return 0 */
/* The ctx here is the RsaSignCtx set using wolfSSL_SetRsaSignCtx */
void* ctx = wolfSSL_GetRsaPssSignCtx(ssl);
ret = ssl->ctx->RsaPssSignCheckCb(ssl, verifySig, sigSz, &out,
TypeHash(hashAlgo), mgf,
keyBuf, keySz, ctx);
if (ret > 0) {
ret = wc_RsaPSS_CheckPadding(plain, plainSz, out, ret,
hashType);
if (ret != 0) {
ret = VERIFY_CERT_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
}
else
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_RsaPSS_VerifyInline(verifySig, sigSz, &out, hashType, mgf,
key);
if (ret > 0) {
#ifdef HAVE_SELFTEST
ret = wc_RsaPSS_CheckPadding(plain, plainSz, out, ret,
hashType);
#else
ret = wc_RsaPSS_CheckPadding_ex(plain, plainSz, out, ret,
hashType, -1,
mp_count_bits(&key->n));
#endif
if (ret != 0) {
ret = VERIFY_CERT_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
}
}
else
#endif /* WC_RSA_PSS */
{
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->RsaSignCheckCb) {
/* The key buffer includes private/public portion,
but only public is used */
/* If HSM hardware is checking the signature result you can
optionally skip the sign check and return 0 */
/* The ctx here is the RsaSignCtx set using wolfSSL_SetRsaSignCtx */
void* ctx = wolfSSL_GetRsaSignCtx(ssl);
ret = ssl->ctx->RsaSignCheckCb(ssl, verifySig, sigSz, &out,
keyBuf, keySz, ctx);
}
else
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_RsaSSL_VerifyInline(verifySig, sigSz, &out, key);
}
if (ret > 0) {
if (ret != (int)plainSz || !out ||
XMEMCMP(plain, out, plainSz) != 0) {
WOLFSSL_MSG("RSA Signature verification failed");
ret = RSA_SIGN_FAULT;
WOLFSSL_ERROR_VERBOSE(ret);
}
else {
ret = 0; /* RSA reset */
}
}
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (key && ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("VerifyRsaSign", ret);
return ret;
}
#ifndef WOLFSSL_NO_TLS12
#if !defined(NO_WOLFSSL_SERVER) || !defined(WOLFSSL_NO_CLIENT_AUTH)
int RsaDec(WOLFSSL* ssl, byte* in, word32 inSz, byte** out, word32* outSz,
RsaKey* key, DerBuffer* keyBufInfo)
{
byte *outTmp;
byte mask;
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("RsaDec");
outTmp = *out;
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->RsaDecCb) {
void* ctx = wolfSSL_GetRsaDecCtx(ssl);
ret = ssl->ctx->RsaDecCb(ssl, in, inSz, &outTmp, keyBuf, keySz, ctx);
}
else
#endif /* HAVE_PK_CALLBACKS */
{
#ifdef WC_RSA_BLINDING
ret = wc_RsaSetRNG(key, ssl->rng);
if (ret != 0)
return ret;
#endif
ret = wc_RsaPrivateDecryptInline(in, inSz, &outTmp, key);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
mask = ctMaskGT(ret, 0);
*outSz = (word32)(ret & (int)(sword8)mask);
ret &= (int)(sword8)(~mask);
/* Copy pointer */
ctMaskCopy(mask, (byte*)out, (byte*)&outTmp, sizeof(*out));
WOLFSSL_LEAVE("RsaDec", ret);
return ret;
}
#endif /* !NO_WOLFSSL_SERVER) || !WOLFSSL_NO_CLIENT_AUTH */
int RsaEnc(WOLFSSL* ssl, const byte* in, word32 inSz, byte* out, word32* outSz,
RsaKey* key, buffer* keyBufInfo)
{
int ret = BAD_FUNC_ARG;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("RsaEnc");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->RsaEncCb) {
void* ctx = wolfSSL_GetRsaEncCtx(ssl);
ret = ssl->ctx->RsaEncCb(ssl, in, inSz, out, outSz, keyBuf, keySz, ctx);
}
#if !defined(WOLFSSL_RENESAS_FSPSM_TLS) && \
!defined(WOLFSSL_RENESAS_TSIP_TLS)
else
#else
if (!ssl->ctx->RsaEncCb || ret == CRYPTOCB_UNAVAILABLE)
#endif
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_RsaPublicEncrypt(in, inSz, out, *outSz, key, ssl->rng);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/* For positive response return in outSz */
if (ret > 0) {
*outSz = ret;
ret = 0;
}
WOLFSSL_LEAVE("RsaEnc", ret);
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 */
#endif /* NO_RSA */
#ifdef HAVE_ECC
int EccSign(WOLFSSL* ssl, const byte* in, word32 inSz, byte* out,
word32* outSz, ecc_key* key, DerBuffer* keyBufInfo)
{
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("EccSign");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
if (key) {
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
}
#endif
#if defined(HAVE_PK_CALLBACKS)
if (ssl->ctx->EccSignCb) {
void* ctx = wolfSSL_GetEccSignCtx(ssl);
if (ctx == NULL) {
/* Try to get the WOLFSSL_CTX EccSignCtx*/
ctx = wolfSSL_CTX_GetEccSignCtx(ssl->ctx);
}
ret = ssl->ctx->EccSignCb(ssl, in, inSz, out, outSz, keyBuf,
keySz, ctx);
#if defined(WOLFSSL_RENESAS_TSIP_TLS)
if (ret == CRYPTOCB_UNAVAILABLE) {
ret = wc_ecc_sign_hash(in, inSz, out, outSz, ssl->rng, key);
}
#endif /* WOLFSSL_RENESAS_TSIP_TLS */
}
else
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_ecc_sign_hash(in, inSz, out, outSz, ssl->rng, key);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (key && ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("EccSign", ret);
return ret;
}
int EccVerify(WOLFSSL* ssl, const byte* in, word32 inSz, const byte* out,
word32 outSz, ecc_key* key, buffer* keyBufInfo)
{
int ret = SIG_VERIFY_E;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("EccVerify");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->EccVerifyCb) {
void* ctx = wolfSSL_GetEccVerifyCtx(ssl);
ret = ssl->ctx->EccVerifyCb(ssl, in, inSz, out, outSz, keyBuf, keySz,
&ssl->eccVerifyRes, ctx);
}
#if !defined(WOLFSSL_RENESAS_FSPSM_TLS) && \
!defined(WOLFSSL_RENESAS_TSIP_TLS) && \
!defined(WOLFSSL_MAXQ108X)
else
#else
if (!ssl->ctx->EccVerifyCb || ret == CRYPTOCB_UNAVAILABLE)
#endif
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_ecc_verify_hash(in, inSz, out, outSz, &ssl->eccVerifyRes, key);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
else
#endif /* WOLFSSL_ASYNC_CRYPT */
{
if (ret != 0 || ssl->eccVerifyRes == 0) {
if (ret == 0) {
ret = VERIFY_SIGN_ERROR;
}
WOLFSSL_ERROR_VERBOSE(ret);
}
else {
ret = 0;
}
}
WOLFSSL_LEAVE("EccVerify", ret);
return ret;
}
int EccSharedSecret(WOLFSSL* ssl, ecc_key* priv_key, ecc_key* pub_key,
byte* pubKeyDer, word32* pubKeySz, byte* out, word32* outlen,
int side)
{
int ret;
#ifdef WOLFSSL_ASYNC_CRYPT
WC_ASYNC_DEV* asyncDev = NULL;
#endif
(void)ssl;
(void)pubKeyDer;
(void)pubKeySz;
(void)side;
WOLFSSL_ENTER("EccSharedSecret");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
if (priv_key != NULL) {
asyncDev = &priv_key->asyncDev;
ret = wolfSSL_AsyncInit(ssl, asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
}
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->EccSharedSecretCb) {
void* ctx = wolfSSL_GetEccSharedSecretCtx(ssl);
ecc_key* otherKey = (side == WOLFSSL_CLIENT_END) ? pub_key : priv_key;
ret = ssl->ctx->EccSharedSecretCb(ssl, otherKey, pubKeyDer,
pubKeySz, out, outlen, side, ctx);
}
else
#endif
{
#if defined(ECC_TIMING_RESISTANT) && (!defined(HAVE_FIPS) || \
!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION != 2)) && \
!defined(HAVE_SELFTEST)
ret = wc_ecc_set_rng(priv_key, ssl->rng);
if (ret == 0)
#endif
{
PRIVATE_KEY_UNLOCK();
ret = wc_ecc_shared_secret(priv_key, pub_key, out, outlen);
PRIVATE_KEY_LOCK();
}
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("EccSharedSecret", ret);
return ret;
}
int EccMakeKey(WOLFSSL* ssl, ecc_key* key, ecc_key* peer)
{
int ret = 0;
int keySz = 0;
int ecc_curve = ECC_CURVE_DEF;
WOLFSSL_ENTER("EccMakeKey");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_NONE);
if (ret != 0)
return ret;
#endif
/* get key size */
if (peer == NULL || peer->dp == NULL) {
keySz = ssl->eccTempKeySz;
/* get curve type */
if (ssl->ecdhCurveOID > 0) {
ecc_curve = wc_ecc_get_oid(ssl->ecdhCurveOID, NULL, NULL);
}
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3) && \
(defined(WOLFSSL_SM4_CBC) || defined(WOLFSSL_SM4_GCM) || \
defined(WOLFSSL_SM4_CCM))
if ((ssl->options.cipherSuite0 == SM_BYTE) && (0
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
|| (ssl->options.cipherSuite == TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3)
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3
|| (ssl->options.cipherSuite == TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3)
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3
|| (ssl->options.cipherSuite == TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3)
#endif
)) {
keySz = 32;
ecc_curve = ECC_SM2P256V1;
}
#endif
}
else {
keySz = peer->dp->size;
ecc_curve = peer->dp->id;
}
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->EccKeyGenCb) {
void* ctx = wolfSSL_GetEccKeyGenCtx(ssl);
ret = ssl->ctx->EccKeyGenCb(ssl, key, keySz, ecc_curve, ctx);
}
else
#endif
{
ret = wc_ecc_make_key_ex(ssl->rng, keySz, key, ecc_curve);
}
/* make sure the curve is set for TLS */
if (ret == 0 && key->dp) {
ssl->ecdhCurveOID = key->dp->oidSum;
#if defined(WOLFSSL_TLS13) || defined(HAVE_FFDHE)
ssl->namedGroup = 0;
#endif
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("EccMakeKey", ret);
return ret;
}
#endif /* HAVE_ECC */
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
int Sm2wSm3Sign(WOLFSSL* ssl, const byte* id, word32 idSz, const byte* in,
word32 inSz, byte* out, word32* outSz, ecc_key* key, DerBuffer* keyBufInfo)
{
int ret;
byte hash[WC_SM3_DIGEST_SIZE];
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("Sm2wSm3Sign");
ret = wc_ecc_sm2_create_digest(id, idSz, in, inSz, WC_HASH_TYPE_SM3, hash,
sizeof(hash), key);
if (ret == 0) {
ret = wc_ecc_sm2_sign_hash(hash, sizeof(hash), out, outSz, ssl->rng,
key);
}
WOLFSSL_LEAVE("Sm2wSm3Sign", ret);
return ret;
}
int Sm2wSm3Verify(WOLFSSL* ssl, const byte* id, word32 idSz, const byte* sig,
word32 sigSz, const byte* msg, word32 msgSz, ecc_key* key,
buffer* keyBufInfo)
{
int ret = SIG_VERIFY_E;
byte hash[WC_SM3_DIGEST_SIZE];
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("Sm2wSm3Verify");
ret = wc_ecc_sm2_create_digest(id, idSz, msg, msgSz, WC_HASH_TYPE_SM3, hash,
sizeof(hash), key);
if (ret == 0) {
ret = wc_ecc_sm2_verify_hash(sig, sigSz, hash, sizeof(hash),
&ssl->eccVerifyRes, key);
if (ret == 0 && ssl->eccVerifyRes == 0) {
ret = VERIFY_SIGN_ERROR;
}
}
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
WOLFSSL_LEAVE("Sm2wSm3Verify", ret);
return ret;
}
#endif /* WOLFSSL_SM2 */
#ifdef HAVE_ED25519
/* Check whether the key contains a public key.
* If not then pull it out of the leaf certificate.
*
* ssl SSL/TLS object.
* returns MEMORY_E when unable to allocate memory, a parsing error, otherwise
* 0 on success.
*/
int Ed25519CheckPubKey(WOLFSSL* ssl)
{
#ifndef HAVE_ED25519_KEY_IMPORT
(void)ssl;
return NOT_COMPILED_IN;
#else /* HAVE_ED25519_KEY_IMPORT */
ed25519_key* key = (ed25519_key*)ssl->hsKey;
int ret = 0;
/* Public key required for signing. */
if (key != NULL && !key->pubKeySet) {
const unsigned char* pubKey;
word32 pubKeySz;
ret = wc_CertGetPubKey(ssl->buffers.certificate->buffer,
ssl->buffers.certificate->length, &pubKey, &pubKeySz);
if (ret == 0) {
ret = wc_ed25519_import_public(pubKey, pubKeySz, key);
}
}
return ret;
#endif /* HAVE_ED25519_KEY_IMPORT */
}
/* Sign the data using EdDSA and key using Ed25519.
*
* ssl SSL object.
* in Data or message to sign.
* inSz Length of the data.
* out Buffer to hold signature.
* outSz On entry, size of the buffer. On exit, the size of the signature.
* key The private Ed25519 key data.
* keySz The length of the private key data in bytes.
* ctx The callback context.
* returns 0 on success, otherwise the value is an error.
*/
int Ed25519Sign(WOLFSSL* ssl, const byte* in, word32 inSz, byte* out,
word32* outSz, ed25519_key* key, DerBuffer* keyBufInfo)
{
#ifndef HAVE_ED25519_SIGN
(void)ssl;
(void)in;
(void)inSz;
(void)out;
(void)outSz;
(void)key;
(void)keyBufInfo;
return NOT_COMPILED_IN;
#else /* HAVE_ED25519_SIGN */
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("Ed25519Sign");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#if defined(HAVE_PK_CALLBACKS)
if (ssl->ctx->Ed25519SignCb) {
void* ctx = wolfSSL_GetEd25519SignCtx(ssl);
ret = ssl->ctx->Ed25519SignCb(ssl, in, inSz, out, outSz, keyBuf,
keySz, ctx);
}
else
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_ed25519_sign_msg(in, inSz, out, outSz, key);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("Ed25519Sign", ret);
return ret;
#endif /* HAVE_ED25519_SIGN */
}
/* Verify the data using EdDSA and key using Ed25519.
*
* ssl SSL object.
* in Signature data.
* inSz Length of the signature data in bytes.
* msg Message to verify.
* outSz Length of message in bytes.
* key The public Ed25519 key data.
* keySz The length of the private key data in bytes.
* ctx The callback context.
* returns 0 on success, otherwise the value is an error.
*/
int Ed25519Verify(WOLFSSL* ssl, const byte* in, word32 inSz, const byte* msg,
word32 msgSz, ed25519_key* key, buffer* keyBufInfo)
{
#ifndef HAVE_ED25519_VERIFY
(void)ssl;
(void)in;
(void)inSz;
(void)msg;
(void)msgSz;
(void)key;
(void)keyBufInfo;
return NOT_COMPILED_IN;
#else /* HAVE_ED25519_VERIFY */
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("Ed25519Verify");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->Ed25519VerifyCb) {
void* ctx = wolfSSL_GetEd25519VerifyCtx(ssl);
ret = ssl->ctx->Ed25519VerifyCb(ssl, in, inSz, msg, msgSz, keyBuf,
keySz, &ssl->eccVerifyRes, ctx);
}
else
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_ed25519_verify_msg(in, inSz, msg, msgSz,
&ssl->eccVerifyRes, key);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
else
#endif /* WOLFSSL_ASYNC_CRYPT */
{
ret = (ret != 0 || ssl->eccVerifyRes == 0) ? VERIFY_SIGN_ERROR : 0;
}
WOLFSSL_LEAVE("Ed25519Verify", ret);
return ret;
#endif /* HAVE_ED25519_VERIFY */
}
#endif /* HAVE_ED25519 */
#ifndef WOLFSSL_NO_TLS12
#ifdef HAVE_CURVE25519
#ifdef HAVE_PK_CALLBACKS
/* Gets X25519 key for shared secret callback testing
* Client side: returns peer key
* Server side: returns private key
*/
static int X25519GetKey(WOLFSSL* ssl, curve25519_key** otherKey)
{
int ret = NO_PEER_KEY;
struct curve25519_key* tmpKey = NULL;
if (ssl == NULL || otherKey == NULL) {
return BAD_FUNC_ARG;
}
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if (!ssl->peerX25519Key || !ssl->peerX25519KeyPresent ||
!ssl->peerX25519Key->dp) {
return NO_PEER_KEY;
}
tmpKey = (struct curve25519_key*)ssl->peerX25519Key;
}
else if (ssl->options.side == WOLFSSL_SERVER_END) {
if (!ssl->eccTempKeyPresent) {
return NO_PRIVATE_KEY;
}
tmpKey = (struct curve25519_key*)ssl->eccTempKey;
}
if (tmpKey) {
*otherKey = (curve25519_key *)tmpKey;
ret = 0;
}
return ret;
}
#endif /* HAVE_PK_CALLBACKS */
static int X25519SharedSecret(WOLFSSL* ssl, curve25519_key* priv_key,
curve25519_key* pub_key, byte* pubKeyDer, word32* pubKeySz,
byte* out, word32* outlen, int side)
{
int ret;
(void)ssl;
(void)pubKeyDer;
(void)pubKeySz;
(void)side;
WOLFSSL_ENTER("X25519SharedSecret");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &priv_key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->X25519SharedSecretCb) {
curve25519_key* otherKey = NULL;
ret = X25519GetKey(ssl, &otherKey);
if (ret == 0) {
void* ctx = wolfSSL_GetX25519SharedSecretCtx(ssl);
ret = ssl->ctx->X25519SharedSecretCb(ssl, otherKey, pubKeyDer,
pubKeySz, out, outlen, side, ctx);
}
}
else
#endif
{
ret = wc_curve25519_shared_secret_ex(priv_key, pub_key, out, outlen,
EC25519_LITTLE_ENDIAN);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &priv_key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("X25519SharedSecret", ret);
return ret;
}
static int X25519MakeKey(WOLFSSL* ssl, curve25519_key* key,
curve25519_key* peer)
{
int ret = 0;
(void)peer;
WOLFSSL_ENTER("X25519MakeKey");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_NONE);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->X25519KeyGenCb) {
void* ctx = wolfSSL_GetX25519KeyGenCtx(ssl);
ret = ssl->ctx->X25519KeyGenCb(ssl, key, CURVE25519_KEYSIZE, ctx);
}
else
#endif
{
ret = wc_curve25519_make_key(ssl->rng, CURVE25519_KEYSIZE, key);
}
if (ret == 0) {
ssl->ecdhCurveOID = ECC_X25519_OID;
#if defined(WOLFSSL_TLS13) || defined(HAVE_FFDHE)
ssl->namedGroup = 0;
#endif
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("X25519MakeKey", ret);
return ret;
}
#endif /* HAVE_CURVE25519 */
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef HAVE_ED448
/* Check whether the key contains a public key.
* If not then pull it out of the leaf certificate.
*
* ssl SSL/TLS object.
* returns MEMORY_E when unable to allocate memory, a parsing error, otherwise
* 0 on success.
*/
int Ed448CheckPubKey(WOLFSSL* ssl)
{
#ifndef HAVE_ED448_KEY_IMPORT
(void)ssl;
return NOT_COMPILED_IN;
#else /* HAVE_ED448_KEY_IMPORT */
ed448_key* key = (ed448_key*)ssl->hsKey;
int ret = 0;
/* Public key required for signing. */
if (key != NULL && !key->pubKeySet) {
const unsigned char* pubKey;
word32 pubKeySz;
ret = wc_CertGetPubKey(ssl->buffers.certificate->buffer,
ssl->buffers.certificate->length, &pubKey, &pubKeySz);
if (ret == 0) {
ret = wc_ed448_import_public(pubKey, pubKeySz, key);
}
}
return ret;
#endif /* HAVE_ED448_KEY_IMPORT */
}
/* Sign the data using EdDSA and key using Ed448.
*
* ssl SSL object.
* in Data or message to sign.
* inSz Length of the data.
* out Buffer to hold signature.
* outSz On entry, size of the buffer. On exit, the size of the signature.
* key The private Ed448 key data.
* keySz The length of the private key data in bytes.
* ctx The callback context.
* returns 0 on success, otherwise the value is an error.
*/
int Ed448Sign(WOLFSSL* ssl, const byte* in, word32 inSz, byte* out,
word32* outSz, ed448_key* key, DerBuffer* keyBufInfo)
{
#ifndef HAVE_ED448_SIGN
(void)ssl;
(void)in;
(void)inSz;
(void)out;
(void)outSz;
(void)key;
(void)keyBufInfo;
return NOT_COMPILED_IN;
#else /* HAVE_ED448_SIGN */
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("Ed448Sign");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#if defined(HAVE_PK_CALLBACKS)
if (ssl->ctx->Ed448SignCb) {
void* ctx = wolfSSL_GetEd448SignCtx(ssl);
ret = ssl->ctx->Ed448SignCb(ssl, in, inSz, out, outSz, keyBuf, keySz,
ctx);
}
else
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_ed448_sign_msg(in, inSz, out, outSz, key, NULL, 0);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("Ed448Sign", ret);
return ret;
#endif /* HAVE_ED448_SIGN */
}
/* Verify the data using EdDSA and key using Ed448.
*
* ssl SSL object.
* in Signature data.
* inSz Length of the signature data in bytes.
* msg Message to verify.
* outSz Length of message in bytes.
* key The public Ed448 key data.
* keySz The length of the private key data in bytes.
* ctx The callback context.
* returns 0 on success, otherwise the value is an error.
*/
int Ed448Verify(WOLFSSL* ssl, const byte* in, word32 inSz, const byte* msg,
word32 msgSz, ed448_key* key, buffer* keyBufInfo)
{
#ifndef HAVE_ED448_VERIFY
(void)ssl;
(void)in;
(void)inSz;
(void)msg;
(void)msgSz;
(void)key;
(void)keyBufInfo;
return NOT_COMPILED_IN;
#else /* HAVE_ED448_VERIFY */
int ret;
#ifdef HAVE_PK_CALLBACKS
const byte* keyBuf = NULL;
word32 keySz = 0;
if (keyBufInfo) {
keyBuf = keyBufInfo->buffer;
keySz = keyBufInfo->length;
}
#endif
(void)ssl;
(void)keyBufInfo;
WOLFSSL_ENTER("Ed448Verify");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->Ed448VerifyCb) {
void* ctx = wolfSSL_GetEd448VerifyCtx(ssl);
ret = ssl->ctx->Ed448VerifyCb(ssl, in, inSz, msg, msgSz, keyBuf, keySz,
&ssl->eccVerifyRes, ctx);
}
else
#endif /* HAVE_PK_CALLBACKS */
{
ret = wc_ed448_verify_msg(in, inSz, msg, msgSz, &ssl->eccVerifyRes, key,
NULL, 0);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
else
#endif /* WOLFSSL_ASYNC_CRYPT */
{
ret = (ret != 0 || ssl->eccVerifyRes == 0) ? VERIFY_SIGN_ERROR : 0;
}
WOLFSSL_LEAVE("Ed448Verify", ret);
return ret;
#endif /* HAVE_ED448_VERIFY */
}
#endif /* HAVE_ED448 */
#ifndef WOLFSSL_NO_TLS12
#ifdef HAVE_CURVE448
#ifdef HAVE_PK_CALLBACKS
/* Gets X448 key for shared secret callback testing
* Client side: returns peer key
* Server side: returns private key
*/
static int X448GetKey(WOLFSSL* ssl, curve448_key** otherKey)
{
int ret = NO_PEER_KEY;
struct curve448_key* tmpKey = NULL;
if (ssl == NULL || otherKey == NULL) {
return BAD_FUNC_ARG;
}
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if (!ssl->peerX448Key || !ssl->peerX448KeyPresent) {
return NO_PEER_KEY;
}
tmpKey = (struct curve448_key*)ssl->peerX448Key;
}
else if (ssl->options.side == WOLFSSL_SERVER_END) {
if (!ssl->eccTempKeyPresent) {
return NO_PRIVATE_KEY;
}
tmpKey = (struct curve448_key*)ssl->eccTempKey;
}
if (tmpKey) {
*otherKey = (curve448_key *)tmpKey;
ret = 0;
}
return ret;
}
#endif /* HAVE_PK_CALLBACKS */
static int X448SharedSecret(WOLFSSL* ssl, curve448_key* priv_key,
curve448_key* pub_key, byte* pubKeyDer,
word32* pubKeySz, byte* out, word32* outlen,
int side)
{
int ret;
(void)ssl;
(void)pubKeyDer;
(void)pubKeySz;
(void)side;
WOLFSSL_ENTER("X448SharedSecret");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &priv_key->asyncDev, WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->X448SharedSecretCb) {
curve448_key* otherKey = NULL;
ret = X448GetKey(ssl, &otherKey);
if (ret == 0) {
void* ctx = wolfSSL_GetX448SharedSecretCtx(ssl);
ret = ssl->ctx->X448SharedSecretCb(ssl, otherKey, pubKeyDer,
pubKeySz, out, outlen, side, ctx);
}
}
else
#endif
{
ret = wc_curve448_shared_secret_ex(priv_key, pub_key, out, outlen,
EC448_LITTLE_ENDIAN);
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &priv_key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("X448SharedSecret", ret);
return ret;
}
static int X448MakeKey(WOLFSSL* ssl, curve448_key* key, curve448_key* peer)
{
int ret = 0;
(void)peer;
WOLFSSL_ENTER("X448MakeKey");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &key->asyncDev, WC_ASYNC_FLAG_NONE);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->X448KeyGenCb) {
void* ctx = wolfSSL_GetX448KeyGenCtx(ssl);
ret = ssl->ctx->X448KeyGenCb(ssl, key, CURVE448_KEY_SIZE, ctx);
}
else
#endif
{
ret = wc_curve448_make_key(ssl->rng, CURVE448_KEY_SIZE, key);
}
if (ret == 0) {
ssl->ecdhCurveOID = ECC_X448_OID;
#if defined(WOLFSSL_TLS13) || defined(HAVE_FFDHE)
ssl->namedGroup = 0;
#endif
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &key->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("X448MakeKey", ret);
return ret;
}
#endif /* HAVE_CURVE448 */
#endif /* !WOLFSSL_NO_TLS12 */
#if !defined(NO_CERTS) || !defined(NO_PSK)
#if !defined(NO_DH)
int DhGenKeyPair(WOLFSSL* ssl, DhKey* dhKey,
byte* priv, word32* privSz,
byte* pub, word32* pubSz)
{
int ret;
WOLFSSL_ENTER("DhGenKeyPair");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &dhKey->asyncDev, WC_ASYNC_FLAG_NONE);
if (ret != 0)
return ret;
#endif
#if defined(HAVE_PK_CALLBACKS)
ret = NOT_COMPILED_IN;
if (ssl && ssl->ctx && ssl->ctx->DhGenerateKeyPairCb) {
ret = ssl->ctx->DhGenerateKeyPairCb(dhKey, ssl->rng, priv, privSz,
pub, pubSz);
}
if (ret == NOT_COMPILED_IN)
#endif
{
PRIVATE_KEY_UNLOCK();
ret = wc_DhGenerateKeyPair(dhKey, ssl->rng, priv, privSz, pub, pubSz);
PRIVATE_KEY_LOCK();
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &dhKey->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("DhGenKeyPair", ret);
return ret;
}
int DhAgree(WOLFSSL* ssl, DhKey* dhKey,
const byte* priv, word32 privSz,
const byte* otherPub, word32 otherPubSz,
byte* agree, word32* agreeSz,
const byte* prime, word32 primeSz)
{
int ret;
(void)ssl;
WOLFSSL_ENTER("DhAgree");
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &dhKey->asyncDev, WC_ASYNC_FLAG_NONE);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->DhAgreeCb) {
void* ctx = wolfSSL_GetDhAgreeCtx(ssl);
WOLFSSL_MSG("Calling DhAgree Callback Function");
ret = ssl->ctx->DhAgreeCb(ssl, dhKey, priv, privSz,
otherPub, otherPubSz, agree, agreeSz, ctx);
}
else
#endif
{
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)
/* check the public key has valid number */
if (dhKey != NULL && (prime == NULL || primeSz == 0)) {
/* wc_DhCheckPubKey does not do exponentiation */
ret = wc_DhCheckPubKey(dhKey, otherPub, otherPubSz);
}
else {
ret = wc_DhCheckPubValue(prime, primeSz, otherPub, otherPubSz);
}
if (ret != 0) {
/* translate to valid error (wc_DhCheckPubValue returns MP_VAL -1) */
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
#ifdef OPENSSL_EXTRA
SendAlert(ssl, alert_fatal, illegal_parameter);
#endif
}
else
#endif
{
PRIVATE_KEY_UNLOCK();
ret = wc_DhAgree(dhKey, agree, agreeSz, priv, privSz, otherPub,
otherPubSz);
PRIVATE_KEY_LOCK();
}
}
/* Handle async pending response */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &dhKey->asyncDev);
}
#endif /* WOLFSSL_ASYNC_CRYPT */
WOLFSSL_LEAVE("DhAgree", ret);
(void)prime;
(void)primeSz;
return ret;
}
#endif /* !NO_DH */
#endif /* !NO_CERTS || !NO_PSK */
#ifdef HAVE_PK_CALLBACKS
int wolfSSL_IsPrivatePkSet(WOLFSSL* ssl)
{
int pkcbset = 0;
(void)ssl;
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448) || \
!defined(NO_RSA)
if (0
#ifdef HAVE_ECC
|| (ssl->ctx->EccSignCb != NULL &&
ssl->buffers.keyType == ecc_dsa_sa_algo)
#endif
#ifdef HAVE_ED25519
|| (ssl->ctx->Ed25519SignCb != NULL &&
ssl->buffers.keyType == ed25519_sa_algo)
#endif
#ifdef HAVE_ED448
|| (ssl->ctx->Ed448SignCb != NULL &&
ssl->buffers.keyType == ed448_sa_algo)
#endif
#ifndef NO_RSA
|| (ssl->ctx->RsaSignCb != NULL && ssl->buffers.keyType == rsa_sa_algo)
|| (ssl->ctx->RsaDecCb != NULL && ssl->buffers.keyType == rsa_kea)
#ifdef WC_RSA_PSS
|| (ssl->ctx->RsaPssSignCb != NULL &&
ssl->buffers.keyType == rsa_pss_sa_algo)
#endif
#endif
) {
pkcbset = 1;
}
#endif
return pkcbset;
}
int wolfSSL_CTX_IsPrivatePkSet(WOLFSSL_CTX* ctx)
{
int pkcbset = 0;
(void)ctx;
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448) || \
!defined(NO_RSA)
if (0
#ifdef HAVE_ECC
|| ctx->EccSignCb != NULL
#endif
#ifdef HAVE_ED25519
|| ctx->Ed25519SignCb != NULL
#endif
#ifdef HAVE_ED448
|| ctx->Ed448SignCb != NULL
#endif
#ifndef NO_RSA
|| ctx->RsaSignCb != NULL
|| ctx->RsaDecCb != NULL
#ifdef WC_RSA_PSS
|| ctx->RsaPssSignCb != NULL
#endif
#endif
) {
pkcbset = 1;
}
#endif
return pkcbset;
}
#endif /* HAVE_PK_CALLBACKS */
static void InitSuites_EitherSide(Suites* suites, ProtocolVersion pv, int keySz,
word16 haveRSA, word16 havePSK, word16 haveDH, word16 haveECDSAsig,
word16 haveECC, word16 haveStaticECC,
word16 haveFalconSig, word16 haveDilithiumSig, word16 haveAnon,
int side)
{
/* make sure server has DH params, and add PSK if there */
if (side == WOLFSSL_SERVER_END) {
InitSuites(suites, pv, keySz, haveRSA, havePSK, haveDH, haveECDSAsig,
haveECC, TRUE, haveStaticECC, haveFalconSig,
haveDilithiumSig, haveAnon, TRUE, side);
}
else {
InitSuites(suites, pv, keySz, haveRSA, havePSK, TRUE, haveECDSAsig,
haveECC, TRUE, haveStaticECC, haveFalconSig,
haveDilithiumSig, haveAnon, TRUE, side);
}
}
void InitSSL_CTX_Suites(WOLFSSL_CTX* ctx)
{
int keySz = 0;
byte havePSK = 0;
byte haveAnon = 0;
byte haveRSA = 0;
#ifndef NO_RSA
haveRSA = 1;
#endif
#ifndef NO_PSK
havePSK = ctx->havePSK;
#endif /* NO_PSK */
#ifdef HAVE_ANON
haveAnon = ctx->haveAnon;
#endif /* HAVE_ANON*/
#ifndef NO_CERTS
keySz = ctx->privateKeySz;
#endif
InitSuites_EitherSide(ctx->suites, ctx->method->version, keySz,
haveRSA, havePSK, ctx->haveDH, ctx->haveECDSAsig, ctx->haveECC,
ctx->haveStaticECC, ctx->haveFalconSig, ctx->haveDilithiumSig,
haveAnon, ctx->method->side);
}
int InitSSL_Suites(WOLFSSL* ssl)
{
int keySz = 0;
byte havePSK = 0;
byte haveAnon = 0;
byte haveRSA = 0;
byte haveMcast = 0;
(void)haveAnon; /* Squash unused var warnings */
(void)haveMcast;
if (!ssl)
return BAD_FUNC_ARG;
#ifndef NO_RSA
haveRSA = 1;
#endif
#ifndef NO_PSK
havePSK = (byte)ssl->options.havePSK;
#endif /* NO_PSK */
#if !defined(NO_CERTS) && !defined(WOLFSSL_SESSION_EXPORT)
#ifdef HAVE_ANON
haveAnon = (byte)ssl->options.haveAnon;
#endif /* HAVE_ANON*/
#ifdef WOLFSSL_MULTICAST
haveMcast = (byte)ssl->options.haveMcast;
#endif /* WOLFSSL_MULTICAST */
#endif /* !NO_CERTS && !WOLFSSL_SESSION_EXPORT */
#ifdef WOLFSSL_EARLY_DATA
if (ssl->options.side == WOLFSSL_SERVER_END)
ssl->options.maxEarlyDataSz = ssl->ctx->maxEarlyDataSz;
#endif
#if !defined(WOLFSSL_NO_CLIENT_AUTH) && \
((defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)) || \
(defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)) || \
(defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)))
ssl->options.cacheMessages = ssl->options.side == WOLFSSL_SERVER_END ||
ssl->buffers.keyType == ed25519_sa_algo ||
ssl->buffers.keyType == ed448_sa_algo ||
ssl->buffers.keyType == sm2_sa_algo;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
if (ssl->suites != NULL) {
InitSuites_EitherSide(ssl->suites, ssl->version, keySz, haveRSA,
havePSK, ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, ssl->options.haveStaticECC,
ssl->options.haveFalconSig, ssl->options.haveDilithiumSig,
ssl->options.haveAnon, ssl->options.side);
}
#if !defined(NO_CERTS) && !defined(WOLFSSL_SESSION_EXPORT)
/* make sure server has cert and key unless using PSK, Anon, or
* Multicast. This should be true even if just switching ssl ctx */
if (ssl->options.side == WOLFSSL_SERVER_END &&
!havePSK && !haveAnon && !haveMcast) {
/* server certificate must be loaded */
if (!ssl->buffers.certificate || !ssl->buffers.certificate->buffer) {
WOLFSSL_MSG("Server missing certificate");
WOLFSSL_ERROR_VERBOSE(NO_PRIVATE_KEY);
return NO_PRIVATE_KEY;
}
if (!ssl->buffers.key || !ssl->buffers.key->buffer) {
/* allow no private key if using existing key */
#ifdef WOLF_PRIVATE_KEY_ID
if (ssl->devId != INVALID_DEVID
#ifdef HAVE_PK_CALLBACKS
|| wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)
#endif
) {
WOLFSSL_MSG("Allowing no server private key (external)");
}
else
#endif
{
WOLFSSL_MSG("Server missing private key");
WOLFSSL_ERROR_VERBOSE(NO_PRIVATE_KEY);
return NO_PRIVATE_KEY;
}
}
}
#endif
return WOLFSSL_SUCCESS;
}
/* This function inherits a WOLFSSL_CTX's fields into an SSL object.
It is used during initialization and to switch an ssl's CTX with
wolfSSL_Set_SSL_CTX. Requires ssl->suites alloc and ssl-arrays with PSK
unless writeDup is on.
ssl object to initialize
ctx parent factory
writeDup flag indicating this is a write dup only
WOLFSSL_SUCCESS return value on success */
int SetSSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx, int writeDup)
{
int ret = WOLFSSL_SUCCESS; /* set default ret */
byte newSSL;
WOLFSSL_ENTER("SetSSL_CTX");
if (!ssl || !ctx)
return BAD_FUNC_ARG;
newSSL = ssl->ctx == NULL; /* Assign after null check */
#ifndef NO_PSK
if (ctx->server_hint[0] && ssl->arrays == NULL && !writeDup) {
return BAD_FUNC_ARG; /* needed for copy below */
}
#endif
/* decrement previous CTX reference count if exists.
* This should only happen if switching ctxs!*/
if (!newSSL) {
WOLFSSL_MSG("freeing old ctx to decrement reference count. Switching ctx.");
wolfSSL_CTX_free(ssl->ctx);
}
/* increment CTX reference count */
ret = wolfSSL_CTX_up_ref(ctx);
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
if (ret != WOLFSSL_SUCCESS) {
return ret;
}
#else
(void)ret;
#endif
ssl->ctx = ctx; /* only for passing to calls, options could change */
/* Don't change version on a SSL object that has already started a
* handshake */
#if defined(WOLFSSL_HAPROXY)
if (ssl->initial_ctx == NULL) {
ret = wolfSSL_CTX_up_ref(ctx);
if (ret == WOLFSSL_SUCCESS) {
ssl->initial_ctx = ctx; /* Save access to session key materials */
}
else {
#ifdef WOLFSSL_REFCNT_ERROR_RETURN
return ret;
#else
(void)ret;
#endif
}
}
#endif
if (!ssl->msgsReceived.got_client_hello &&
!ssl->msgsReceived.got_server_hello)
ssl->version = ctx->method->version;
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
ssl->options.mask = ctx->mask;
ssl->options.minProto = ctx->minProto;
ssl->options.maxProto = ctx->maxProto;
#endif
#ifdef OPENSSL_EXTRA
#ifdef WOLFSSL_TLS13
if (ssl->version.minor == TLSv1_3_MINOR &&
(ssl->options.mask & SSL_OP_NO_TLSv1_3) == SSL_OP_NO_TLSv1_3) {
if (!ctx->method->downgrade) {
WOLFSSL_MSG("\tInconsistent protocol options. TLS 1.3 set but not "
"allowed and downgrading disabled.");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
WOLFSSL_MSG("\tOption set to not allow TLSv1.3, Downgrading");
ssl->version.minor = TLSv1_2_MINOR;
}
#endif
if (ssl->version.minor == TLSv1_2_MINOR &&
(ssl->options.mask & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2) {
if (!ctx->method->downgrade) {
WOLFSSL_MSG("\tInconsistent protocol options. TLS 1.2 set but not "
"allowed and downgrading disabled.");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
WOLFSSL_MSG("\tOption set to not allow TLSv1.2, Downgrading");
ssl->version.minor = TLSv1_1_MINOR;
}
if (ssl->version.minor == TLSv1_1_MINOR &&
(ssl->options.mask & SSL_OP_NO_TLSv1_1) == SSL_OP_NO_TLSv1_1) {
if (!ctx->method->downgrade) {
WOLFSSL_MSG("\tInconsistent protocol options. TLS 1.1 set but not "
"allowed and downgrading disabled.");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
WOLFSSL_MSG("\tOption set to not allow TLSv1.1, Downgrading");
ssl->options.tls1_1 = 0;
ssl->version.minor = TLSv1_MINOR;
}
if (ssl->version.minor == TLSv1_MINOR &&
(ssl->options.mask & SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1) {
if (!ctx->method->downgrade) {
WOLFSSL_MSG("\tInconsistent protocol options. TLS 1 set but not "
"allowed and downgrading disabled.");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
WOLFSSL_MSG("\tOption set to not allow TLSv1, Downgrading");
ssl->options.tls = 0;
ssl->options.tls1_1 = 0;
ssl->version.minor = SSLv3_MINOR;
}
if (ssl->version.minor == SSLv3_MINOR &&
(ssl->options.mask & SSL_OP_NO_SSLv3) == SSL_OP_NO_SSLv3) {
WOLFSSL_MSG("\tError, option set to not allow SSLv3");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
if (ssl->version.minor < ssl->options.minDowngrade) {
WOLFSSL_MSG("\tversion below minimum allowed, fatal error");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
#endif
#ifdef HAVE_ECC
ssl->eccTempKeySz = ctx->eccTempKeySz;
ssl->ecdhCurveOID = ctx->ecdhCurveOID;
#endif
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
ssl->pkCurveOID = ctx->pkCurveOID;
#endif
#ifdef OPENSSL_EXTRA
ssl->CBIS = ctx->CBIS;
#endif
ssl->timeout = ctx->timeout;
ssl->verifyCallback = ctx->verifyCallback;
/* If we are setting the ctx on an already initialized SSL object
* then we possibly already have a side defined. Don't overwrite unless
* the context has a well defined role. */
if (newSSL || ctx->method->side != WOLFSSL_NEITHER_END)
ssl->options.side = ctx->method->side;
ssl->options.downgrade = ctx->method->downgrade;
ssl->options.minDowngrade = ctx->minDowngrade;
ssl->options.haveRSA = ctx->haveRSA;
ssl->options.haveDH = ctx->haveDH;
ssl->options.haveECDSAsig = ctx->haveECDSAsig;
ssl->options.haveECC = ctx->haveECC;
ssl->options.haveStaticECC = ctx->haveStaticECC;
ssl->options.haveFalconSig = ctx->haveFalconSig;
ssl->options.haveDilithiumSig = ctx->haveDilithiumSig;
#ifndef NO_PSK
ssl->options.havePSK = ctx->havePSK;
ssl->options.client_psk_cb = ctx->client_psk_cb;
ssl->options.server_psk_cb = ctx->server_psk_cb;
ssl->options.psk_ctx = ctx->psk_ctx;
#ifdef WOLFSSL_TLS13
ssl->options.client_psk_cs_cb = ctx->client_psk_cs_cb;
ssl->options.client_psk_tls13_cb = ctx->client_psk_tls13_cb;
ssl->options.server_psk_tls13_cb = ctx->server_psk_tls13_cb;
#endif
#endif /* NO_PSK */
#ifdef WOLFSSL_EARLY_DATA
if (ssl->options.side == WOLFSSL_SERVER_END)
ssl->options.maxEarlyDataSz = ctx->maxEarlyDataSz;
#endif
#ifdef HAVE_ANON
ssl->options.haveAnon = ctx->haveAnon;
#endif
#ifndef NO_DH
ssl->options.minDhKeySz = ctx->minDhKeySz;
ssl->options.maxDhKeySz = ctx->maxDhKeySz;
#endif
#ifndef NO_RSA
ssl->options.minRsaKeySz = ctx->minRsaKeySz;
#endif
#ifdef HAVE_ECC
ssl->options.minEccKeySz = ctx->minEccKeySz;
#endif
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
ssl->options.minFalconKeySz = ctx->minFalconKeySz;
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
ssl->options.minDilithiumKeySz = ctx->minDilithiumKeySz;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
ssl->options.verifyDepth = ctx->verifyDepth;
#endif
ssl->options.sessionCacheOff = ctx->sessionCacheOff;
ssl->options.sessionCacheFlushOff = ctx->sessionCacheFlushOff;
#ifdef HAVE_EXT_CACHE
ssl->options.internalCacheOff = ctx->internalCacheOff;
ssl->options.internalCacheLookupOff = ctx->internalCacheLookupOff;
#endif
ssl->options.verifyPeer = ctx->verifyPeer;
ssl->options.verifyNone = ctx->verifyNone;
ssl->options.failNoCert = ctx->failNoCert;
ssl->options.failNoCertxPSK = ctx->failNoCertxPSK;
ssl->options.sendVerify = ctx->sendVerify;
ssl->options.partialWrite = ctx->partialWrite;
ssl->options.quietShutdown = ctx->quietShutdown;
ssl->options.groupMessages = ctx->groupMessages;
#ifndef NO_DH
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
ssl->options.dhKeyTested = ctx->dhKeyTested;
#endif
ssl->buffers.serverDH_P = ctx->serverDH_P;
ssl->buffers.serverDH_G = ctx->serverDH_G;
#endif
#if defined(HAVE_RPK)
ssl->options.rpkConfig = ctx->rpkConfig;
ssl->options.rpkState = ctx->rpkState;
#endif /* HAVE_RPK */
#ifndef NO_CERTS
/* ctx still owns certificate, certChain, key, dh, and cm */
ssl->buffers.certificate = ctx->certificate;
ssl->buffers.certChain = ctx->certChain;
#ifdef WOLFSSL_TLS13
ssl->buffers.certChainCnt = ctx->certChainCnt;
#endif
ssl->buffers.key = ctx->privateKey;
ssl->buffers.keyType = ctx->privateKeyType;
ssl->buffers.keyId = ctx->privateKeyId;
ssl->buffers.keyLabel = ctx->privateKeyLabel;
ssl->buffers.keySz = ctx->privateKeySz;
ssl->buffers.keyDevId = ctx->privateKeyDevId;
#endif
#if !defined(WOLFSSL_NO_CLIENT_AUTH) && \
((defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)) || \
(defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)) || \
(defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)))
ssl->options.cacheMessages = ssl->options.side == WOLFSSL_SERVER_END ||
ssl->buffers.keyType == ed25519_sa_algo ||
ssl->buffers.keyType == ed448_sa_algo ||
ssl->buffers.keyType == sm2_sa_algo;
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
ssl->devId = ctx->devId;
#endif
if (writeDup == 0) {
#ifndef NO_PSK
if (ctx->server_hint[0]) { /* set in CTX */
XSTRNCPY(ssl->arrays->server_hint, ctx->server_hint,
sizeof(ssl->arrays->server_hint));
ssl->arrays->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */
}
#endif /* NO_PSK */
if (ssl->suites != NULL) {
if (ctx->suites == NULL)
XMEMSET(ssl->suites, 0, sizeof(Suites));
else
XMEMCPY(ssl->suites, ctx->suites, sizeof(Suites));
}
if (ssl->options.side != WOLFSSL_NEITHER_END) {
/* Defer initializing suites until accept or connect */
ret = InitSSL_Suites(ssl);
}
} /* writeDup check */
if (ctx->mask != 0 && wolfSSL_set_options(ssl, ctx->mask) == 0) {
WOLFSSL_MSG("wolfSSL_set_options error");
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SESSION_EXPORT
#ifdef WOLFSSL_DTLS
ssl->dtls_export = ctx->dtls_export; /* export function for session */
#endif
#endif
#ifdef WOLFSSL_WOLFSENTRY_HOOKS
ssl->AcceptFilter = ctx->AcceptFilter;
ssl->AcceptFilter_arg = ctx->AcceptFilter_arg;
ssl->ConnectFilter = ctx->ConnectFilter;
ssl->ConnectFilter_arg = ctx->ConnectFilter_arg;
#endif
#ifdef OPENSSL_EXTRA
ssl->readAhead = ctx->readAhead;
#endif
#if defined(OPENSSL_EXTRA) && !defined(NO_BIO)
/* Don't change recv callback if currently using BIO's */
if (ssl->CBIORecv != BioReceive)
#endif
ssl->CBIORecv = ctx->CBIORecv;
#if defined(OPENSSL_EXTRA) && !defined(NO_BIO)
/* Don't change send callback if currently using BIO's */
if (ssl->CBIOSend != BioSend)
#endif
ssl->CBIOSend = ctx->CBIOSend;
ssl->verifyDepth = ctx->verifyDepth;
return ret;
}
int InitHandshakeHashes(WOLFSSL* ssl)
{
int ret;
/* make sure existing handshake hashes are free'd */
if (ssl->hsHashes != NULL) {
FreeHandshakeHashes(ssl);
}
/* allocate handshake hashes */
ssl->hsHashes = (HS_Hashes*)XMALLOC(sizeof(HS_Hashes), ssl->heap,
DYNAMIC_TYPE_HASHES);
if (ssl->hsHashes == NULL) {
WOLFSSL_MSG("HS_Hashes Memory error");
return MEMORY_E;
}
XMEMSET(ssl->hsHashes, 0, sizeof(HS_Hashes));
#ifndef NO_OLD_TLS
#ifndef NO_MD5
ret = wc_InitMd5_ex(&ssl->hsHashes->hashMd5, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
#ifdef WOLFSSL_HASH_FLAGS
wc_Md5SetFlags(&ssl->hsHashes->hashMd5, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#ifndef NO_SHA
ret = wc_InitSha_ex(&ssl->hsHashes->hashSha, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
#ifdef WOLFSSL_HASH_FLAGS
wc_ShaSetFlags(&ssl->hsHashes->hashSha, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#endif /* !NO_OLD_TLS */
#ifndef NO_SHA256
ret = wc_InitSha256_ex(&ssl->hsHashes->hashSha256, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
#ifdef WOLFSSL_HASH_FLAGS
wc_Sha256SetFlags(&ssl->hsHashes->hashSha256, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#ifdef WOLFSSL_SHA384
ret = wc_InitSha384_ex(&ssl->hsHashes->hashSha384, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
#ifdef WOLFSSL_HASH_FLAGS
wc_Sha384SetFlags(&ssl->hsHashes->hashSha384, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#ifdef WOLFSSL_SHA512
ret = wc_InitSha512_ex(&ssl->hsHashes->hashSha512, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
#ifdef WOLFSSL_HASH_FLAGS
wc_Sha512SetFlags(&ssl->hsHashes->hashSha512, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#ifdef WOLFSSL_SM3
ret = wc_InitSm3(&ssl->hsHashes->hashSm3, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
#ifdef WOLFSSL_HASH_FLAGS
wc_Sm3SetFlags(&ssl->hsHashes->hashSm3, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
return ret;
}
void FreeHandshakeHashes(WOLFSSL* ssl)
{
if (ssl->hsHashes) {
#ifndef NO_OLD_TLS
#ifndef NO_MD5
wc_Md5Free(&ssl->hsHashes->hashMd5);
#endif
#ifndef NO_SHA
wc_ShaFree(&ssl->hsHashes->hashSha);
#endif
#endif /* !NO_OLD_TLS */
#ifndef NO_SHA256
wc_Sha256Free(&ssl->hsHashes->hashSha256);
#endif
#ifdef WOLFSSL_SHA384
wc_Sha384Free(&ssl->hsHashes->hashSha384);
#endif
#ifdef WOLFSSL_SHA512
wc_Sha512Free(&ssl->hsHashes->hashSha512);
#endif
#ifdef WOLFSSL_SM3
wc_Sm3Free(&ssl->hsHashes->hashSm3);
#endif
#if (defined(HAVE_ED25519) || defined(HAVE_ED448) || \
(defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3))) && \
!defined(WOLFSSL_NO_CLIENT_AUTH)
if (ssl->hsHashes->messages != NULL) {
ForceZero(ssl->hsHashes->messages, ssl->hsHashes->length);
XFREE(ssl->hsHashes->messages, ssl->heap, DYNAMIC_TYPE_HASHES);
ssl->hsHashes->messages = NULL;
}
#endif
XFREE(ssl->hsHashes, ssl->heap, DYNAMIC_TYPE_HASHES);
ssl->hsHashes = NULL;
}
}
/* copy the hashes from source to a newly made destination return status */
int InitHandshakeHashesAndCopy(WOLFSSL* ssl, HS_Hashes* source,
HS_Hashes** destination)
{
int ret = 0;
HS_Hashes* tmpHashes;
if (source == NULL)
return BAD_FUNC_ARG;
/* save the original so we can put it back afterward */
tmpHashes = ssl->hsHashes;
ssl->hsHashes = NULL;
InitHandshakeHashes(ssl);
*destination = ssl->hsHashes;
ssl->hsHashes = tmpHashes;
/* now copy the source contents to the destination */
#ifndef NO_OLD_TLS
#ifndef NO_SHA
ret = wc_ShaCopy(&source->hashSha, &(*destination)->hashSha);
#endif
#ifndef NO_MD5
if (ret == 0)
ret = wc_Md5Copy(&source->hashMd5, &(*destination)->hashMd5);
#endif
#endif /* !NO_OLD_TLS */
#ifndef NO_SHA256
if (ret == 0)
ret = wc_Sha256Copy(&source->hashSha256,
&(*destination)->hashSha256);
#endif
#ifdef WOLFSSL_SHA384
if (ret == 0)
ret = wc_Sha384Copy(&source->hashSha384,
&(*destination)->hashSha384);
#endif
#ifdef WOLFSSL_SHA512
if (ret == 0)
ret = wc_Sha512Copy(&source->hashSha512,
&(*destination)->hashSha512);
#endif
#ifdef WOLFSSL_SM3
if (ret == 0)
ret = wc_Sm3Copy(&source->hashSm3,
&(*destination)->hashSm3);
#endif
#if (defined(HAVE_ED25519) || defined(HAVE_ED448) || \
(defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3))) && \
!defined(WOLFSSL_NO_CLIENT_AUTH)
if (ret == 0 && source->messages != NULL) {
(*destination)->messages = (byte*)XMALLOC(source->length, ssl->heap,
DYNAMIC_TYPE_HASHES);
(*destination)->length = source->length;
(*destination)->prevLen = source->prevLen;
if ((*destination)->messages == NULL) {
ret = MEMORY_E;
}
else {
XMEMCPY((*destination)->messages, source->messages,
source->length);
}
}
#endif
return ret;
}
/* called if user attempts to reuse WOLFSSL object for a new session.
* For example wolfSSL_clear() is called then wolfSSL_connect or accept */
int ReinitSSL(WOLFSSL* ssl, WOLFSSL_CTX* ctx, int writeDup)
{
int ret = 0;
WOLFSSL_ENTER("ReinitSSL");
/* arrays */
if (!writeDup && ssl->arrays == NULL) {
ssl->arrays = (Arrays*)XMALLOC(sizeof(Arrays), ssl->heap,
DYNAMIC_TYPE_ARRAYS);
if (ssl->arrays == NULL) {
WOLFSSL_MSG("Arrays Memory error");
return MEMORY_E;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("SSL Arrays", ssl->arrays, sizeof(*ssl->arrays));
#endif
XMEMSET(ssl->arrays, 0, sizeof(Arrays));
#if defined(WOLFSSL_TLS13) || defined(WOLFSSL_SNIFFER)
ssl->arrays->preMasterSz = ENCRYPT_LEN;
ssl->arrays->preMasterSecret = (byte*)XMALLOC(ENCRYPT_LEN, ssl->heap,
DYNAMIC_TYPE_SECRET);
if (ssl->arrays->preMasterSecret == NULL) {
return MEMORY_E;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("SSL Arrays", ssl->arrays->preMasterSecret, ENCRYPT_LEN);
#endif
XMEMSET(ssl->arrays->preMasterSecret, 0, ENCRYPT_LEN);
#endif
}
/* RNG */
#ifdef SINGLE_THREADED
if (ssl->rng == NULL) {
ssl->rng = ctx->rng; /* CTX may have one, if so use it */
}
#endif
if (ssl->rng == NULL) {
ssl->rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), ssl->heap,DYNAMIC_TYPE_RNG);
if (ssl->rng == NULL) {
WOLFSSL_MSG("RNG Memory error");
return MEMORY_E;
}
XMEMSET(ssl->rng, 0, sizeof(WC_RNG));
ssl->options.weOwnRng = 1;
/* FIPS RNG API does not accept a heap hint */
#ifndef HAVE_FIPS
if ( (ret = wc_InitRng_ex(ssl->rng, ssl->heap, ssl->devId)) != 0) {
WOLFSSL_MSG("RNG Init error");
return ret;
}
#else
if ( (ret = wc_InitRng(ssl->rng)) != 0) {
WOLFSSL_MSG("RNG Init error");
return ret;
}
#endif
}
(void)ctx;
ssl->options.shutdownDone = 0;
if (ssl->session != NULL)
ssl->session->side = (byte)ssl->options.side;
return ret;
}
/* init everything to 0, NULL, default values before calling anything that may
fail so that destructor has a "good" state to cleanup
ssl object to initialize
ctx parent factory
writeDup flag indicating this is a write dup only
0 on success */
int InitSSL(WOLFSSL* ssl, WOLFSSL_CTX* ctx, int writeDup)
{
int ret;
XMEMSET(ssl, 0, sizeof(WOLFSSL));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("SSL Keys", &ssl->keys, sizeof(ssl->keys));
#ifdef WOLFSSL_TLS13
wc_MemZero_Add("SSL client secret", &ssl->clientSecret,
sizeof(ssl->clientSecret));
wc_MemZero_Add("SSL client secret", &ssl->serverSecret,
sizeof(ssl->serverSecret));
#endif
#ifdef WOLFSSL_HAVE_TLS_UNIQUE
wc_MemZero_Add("ClientFinished hash", &ssl->clientFinished,
TLS_FINISHED_SZ_MAX);
wc_MemZero_Add("ServerFinished hash", &ssl->serverFinished,
TLS_FINISHED_SZ_MAX);
#endif
#endif
#if defined(WOLFSSL_STATIC_MEMORY)
if (ctx->heap != NULL) {
WOLFSSL_HEAP_HINT* ssl_hint;
WOLFSSL_HEAP_HINT* ctx_hint;
/* avoid dereferencing a test value */
#ifdef WOLFSSL_HEAP_TEST
if (ctx->heap == (void*)WOLFSSL_HEAP_TEST) {
ssl->heap = ctx->heap;
}
else {
#endif
ssl->heap = (WOLFSSL_HEAP_HINT*)XMALLOC(sizeof(WOLFSSL_HEAP_HINT),
ctx->heap, DYNAMIC_TYPE_SSL);
if (ssl->heap == NULL) {
return MEMORY_E;
}
XMEMSET(ssl->heap, 0, sizeof(WOLFSSL_HEAP_HINT));
ssl_hint = ((WOLFSSL_HEAP_HINT*)(ssl->heap));
ctx_hint = ((WOLFSSL_HEAP_HINT*)(ctx->heap));
/* lock and check IO count / handshake count */
if (wc_LockMutex(&(ctx_hint->memory->memory_mutex)) != 0) {
WOLFSSL_MSG("Bad memory_mutex lock");
XFREE(ssl->heap, ctx->heap, DYNAMIC_TYPE_SSL);
ssl->heap = NULL; /* free and set to NULL for IO counter */
WOLFSSL_ERROR_VERBOSE(BAD_MUTEX_E);
return BAD_MUTEX_E;
}
if (ctx_hint->memory->maxHa > 0 &&
ctx_hint->memory->maxHa <= ctx_hint->memory->curHa) {
WOLFSSL_MSG("At max number of handshakes for static memory");
wc_UnLockMutex(&(ctx_hint->memory->memory_mutex));
XFREE(ssl->heap, ctx->heap, DYNAMIC_TYPE_SSL);
ssl->heap = NULL; /* free and set to NULL for IO counter */
return MEMORY_E;
}
if (ctx_hint->memory->maxIO > 0 &&
ctx_hint->memory->maxIO <= ctx_hint->memory->curIO) {
WOLFSSL_MSG("At max number of IO allowed for static memory");
wc_UnLockMutex(&(ctx_hint->memory->memory_mutex));
XFREE(ssl->heap, ctx->heap, DYNAMIC_TYPE_SSL);
ssl->heap = NULL; /* free and set to NULL for IO counter */
return MEMORY_E;
}
ctx_hint->memory->curIO++;
ctx_hint->memory->curHa++;
ssl_hint->memory = ctx_hint->memory;
ssl_hint->haFlag = 1;
wc_UnLockMutex(&(ctx_hint->memory->memory_mutex));
/* check if tracking stats */
if (ctx_hint->memory->flag & WOLFMEM_TRACK_STATS) {
ssl_hint->stats = (WOLFSSL_MEM_CONN_STATS*)XMALLOC(
sizeof(WOLFSSL_MEM_CONN_STATS), ctx->heap, DYNAMIC_TYPE_SSL);
if (ssl_hint->stats == NULL) {
return MEMORY_E;
}
XMEMSET(ssl_hint->stats, 0, sizeof(WOLFSSL_MEM_CONN_STATS));
}
/* check if using fixed IO buffers */
if (ctx_hint->memory->flag & WOLFMEM_IO_POOL_FIXED) {
if (wc_LockMutex(&(ctx_hint->memory->memory_mutex)) != 0) {
WOLFSSL_MSG("Bad memory_mutex lock");
WOLFSSL_ERROR_VERBOSE(BAD_MUTEX_E);
return BAD_MUTEX_E;
}
if (SetFixedIO(ctx_hint->memory, &(ssl_hint->inBuf)) != 1) {
wc_UnLockMutex(&(ctx_hint->memory->memory_mutex));
return MEMORY_E;
}
if (SetFixedIO(ctx_hint->memory, &(ssl_hint->outBuf)) != 1) {
wc_UnLockMutex(&(ctx_hint->memory->memory_mutex));
return MEMORY_E;
}
if (ssl_hint->outBuf == NULL || ssl_hint->inBuf == NULL) {
WOLFSSL_MSG("Not enough memory to create fixed IO buffers");
wc_UnLockMutex(&(ctx_hint->memory->memory_mutex));
return MEMORY_E;
}
wc_UnLockMutex(&(ctx_hint->memory->memory_mutex));
}
#ifdef WOLFSSL_HEAP_TEST
}
#endif
}
else {
ssl->heap = ctx->heap;
}
#else
ssl->heap = ctx->heap; /* carry over user heap without static memory */
#endif /* WOLFSSL_STATIC_MEMORY */
ssl->buffers.inputBuffer.buffer = ssl->buffers.inputBuffer.staticBuffer;
ssl->buffers.inputBuffer.bufferSize = STATIC_BUFFER_LEN;
ssl->buffers.outputBuffer.buffer = ssl->buffers.outputBuffer.staticBuffer;
ssl->buffers.outputBuffer.bufferSize = STATIC_BUFFER_LEN;
#ifdef KEEP_PEER_CERT
InitX509(&ssl->peerCert, 0, ssl->heap);
#endif
ssl->rfd = -1; /* set to invalid descriptor */
ssl->wfd = -1;
ssl->devId = ctx->devId; /* device for async HW (from wolfAsync_DevOpen) */
/* initialize states */
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_BEGIN;
ssl->options.handShakeState = NULL_STATE;
ssl->options.processReply = doProcessInit;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
ssl->options.buildMsgState = BUILD_MSG_BEGIN;
ssl->encrypt.state = CIPHER_STATE_BEGIN;
ssl->decrypt.state = CIPHER_STATE_BEGIN;
#ifndef NO_DH
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
ssl->options.dhDoKeyTest = 1;
#endif
#endif
#ifdef WOLFSSL_DTLS
#ifdef WOLFSSL_SCTP
ssl->options.dtlsSctp = ctx->dtlsSctp;
#endif
#ifdef WOLFSSL_SRTP
ssl->dtlsSrtpProfiles = ctx->dtlsSrtpProfiles;
#endif
#if defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU)
ssl->dtlsMtuSz = ctx->dtlsMtuSz;
#endif
ssl->dtls_timeout_init = DTLS_TIMEOUT_INIT;
ssl->dtls_timeout_max = DTLS_TIMEOUT_MAX;
ssl->dtls_timeout = ssl->dtls_timeout_init;
ssl->buffers.dtlsCtx.rfd = -1;
ssl->buffers.dtlsCtx.wfd = -1;
ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx; /* prevent invalid pointer access if not */
ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx; /* correctly set */
#else
#ifdef HAVE_NETX
ssl->IOCB_ReadCtx = &ssl->nxCtx; /* default NetX IO ctx, same for read */
ssl->IOCB_WriteCtx = &ssl->nxCtx; /* and write */
#elif defined(WOLFSSL_APACHE_MYNEWT) && !defined(WOLFSSL_LWIP)
ssl->mnCtx = mynewt_ctx_new();
if(!ssl->mnCtx) {
return MEMORY_E;
}
ssl->IOCB_ReadCtx = ssl->mnCtx; /* default Mynewt IO ctx, same for read */
ssl->IOCB_WriteCtx = ssl->mnCtx; /* and write */
#elif defined (WOLFSSL_GNRC)
ssl->IOCB_ReadCtx = ssl->gnrcCtx;
ssl->IOCB_WriteCtx = ssl->gnrcCtx;
#else
ssl->IOCB_ReadCtx = &ssl->rfd; /* prevent invalid pointer access if not */
ssl->IOCB_WriteCtx = &ssl->wfd; /* correctly set */
#endif
#endif
#ifndef WOLFSSL_AEAD_ONLY
#ifndef NO_OLD_TLS
ssl->hmac = SSL_hmac; /* default to SSLv3 */
#elif !defined(WOLFSSL_NO_TLS12) && !defined(NO_TLS)
#if !defined(WOLFSSL_RENESAS_FSPSM_TLS) && \
!defined(WOLFSSL_RENESAS_TSIP_TLS)
ssl->hmac = TLS_hmac;
#else
ssl->hmac = Renesas_cmn_TLS_hmac;
#endif
#endif
#endif
#if defined(WOLFSSL_OPENVPN) && defined(HAVE_KEYING_MATERIAL)
/* Save arrays by default for OpenVPN */
ssl->options.saveArrays = 1;
#endif
ssl->cipher.ssl = ssl;
#ifdef HAVE_EXTENDED_MASTER
ssl->options.haveEMS = ctx->haveEMS;
#endif
ssl->options.useClientOrder = ctx->useClientOrder;
ssl->options.mutualAuth = ctx->mutualAuth;
#ifdef WOLFSSL_TLS13
#if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER)
ssl->options.maxTicketTls13 = ctx->maxTicketTls13;
#endif
#ifdef HAVE_SESSION_TICKET
ssl->options.noTicketTls13 = ctx->noTicketTls13;
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
ssl->options.noPskDheKe = ctx->noPskDheKe;
#ifdef HAVE_SUPPORTED_CURVES
ssl->options.onlyPskDheKe = ctx->onlyPskDheKe;
#endif /* HAVE_SUPPORTED_CURVES */
#endif /* HAVE_SESSION_TICKET || !NO_PSK */
#if defined(WOLFSSL_POST_HANDSHAKE_AUTH)
ssl->options.postHandshakeAuth = ctx->postHandshakeAuth;
ssl->options.verifyPostHandshake = ctx->verifyPostHandshake;
#endif
if (ctx->numGroups > 0) {
XMEMCPY(ssl->group, ctx->group, sizeof(*ctx->group) * ctx->numGroups);
ssl->numGroups = ctx->numGroups;
}
#ifdef WOLFSSL_TLS13_MIDDLEBOX_COMPAT
ssl->options.tls13MiddleBoxCompat = 1;
#endif
#endif
#ifdef HAVE_TLS_EXTENSIONS
#ifdef HAVE_MAX_FRAGMENT
ssl->max_fragment = MAX_RECORD_SIZE;
#endif
#ifdef HAVE_ALPN
ssl->alpn_peer_requested = NULL;
ssl->alpn_peer_requested_length = 0;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
ssl->alpnSelect = ctx->alpnSelect;
ssl->alpnSelectArg = ctx->alpnSelectArg;
#endif
#if !defined(NO_BIO) && defined(OPENSSL_EXTRA)
if (ctx->alpn_cli_protos != NULL && ctx->alpn_cli_protos_len > 0) {
ret = wolfSSL_set_alpn_protos(ssl, ctx->alpn_cli_protos,
ctx->alpn_cli_protos_len);
#if defined(WOLFSSL_ERROR_CODE_OPENSSL)
if (ret) {
#else
if (!ret) {
#endif
WOLFSSL_MSG("failed to set alpn protos to ssl object");
return ret;
}
}
#endif
#endif
#ifdef HAVE_SUPPORTED_CURVES
ssl->options.userCurves = ctx->userCurves;
#endif
#endif /* HAVE_TLS_EXTENSIONS */
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
ssl->options.disallowEncThenMac = ctx->disallowEncThenMac;
#endif
/* default alert state (none) */
ssl->alert_history.last_rx.code = -1;
ssl->alert_history.last_rx.level = -1;
ssl->alert_history.last_tx.code = -1;
ssl->alert_history.last_tx.level = -1;
#ifdef WOLFSSL_SESSION_ID_CTX
/* copy over application session context ID */
ssl->sessionCtxSz = ctx->sessionCtxSz;
XMEMCPY(ssl->sessionCtx, ctx->sessionCtx, ctx->sessionCtxSz);
#endif
#ifdef OPENSSL_EXTRA
ssl->cbioFlag = ctx->cbioFlag;
ssl->protoMsgCb = ctx->protoMsgCb;
ssl->protoMsgCtx = ctx->protoMsgCtx;
/* follow default behavior of setting toInfoOn similar to
* wolfSSL_set_msg_callback when the callback is set */
if (ctx->protoMsgCb != NULL) {
ssl->toInfoOn = 1;
}
ssl->disabledCurves = ctx->disabledCurves;
#endif
InitCiphers(ssl);
InitCipherSpecs(&ssl->specs);
/* all done with init, now can return errors, call other stuff */
if ((ret = ReinitSSL(ssl, ctx, writeDup)) != 0) {
return ret;
}
if (!writeDup) {
#ifdef OPENSSL_EXTRA
if ((ssl->param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC(
sizeof(WOLFSSL_X509_VERIFY_PARAM),
ssl->heap, DYNAMIC_TYPE_OPENSSL)) == NULL) {
WOLFSSL_MSG("ssl->param memory error");
return MEMORY_E;
}
XMEMSET(ssl->param, 0, sizeof(WOLFSSL_X509_VERIFY_PARAM));
#endif
if (ctx->suites == NULL) {
/* suites */
ret = AllocateCtxSuites(ctx);
if (ret != 0)
return ret;
InitSSL_CTX_Suites(ctx);
}
#ifdef OPENSSL_ALL
ssl->suitesStack = NULL;
#endif
} /* !writeDup */
/* Initialize SSL with the appropriate fields from it's ctx */
/* requires valid arrays and suites unless writeDup ing */
if ((ret = SetSSL_CTX(ssl, ctx, writeDup)) != WOLFSSL_SUCCESS
#ifdef WOLFSSL_NO_INIT_CTX_KEY
&& ret != NO_PRIVATE_KEY
#endif
) {
return ret;
}
ssl->options.dtls = ssl->version.major == DTLS_MAJOR;
#ifdef HAVE_WRITE_DUP
if (writeDup) {
/* all done */
return 0;
}
#endif
/* hsHashes */
ret = InitHandshakeHashes(ssl);
if (ret != 0)
return ret;
#if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER)
if (ssl->options.dtls && ssl->options.side == WOLFSSL_SERVER_END) {
if (!IsAtLeastTLSv1_3(ssl->version)) {
ret = wolfSSL_DTLS_SetCookieSecret(ssl, NULL, 0);
if (ret != 0) {
WOLFSSL_MSG("DTLS Cookie Secret error");
return ret;
}
}
#if defined(WOLFSSL_DTLS13) && defined(WOLFSSL_SEND_HRR_COOKIE)
else {
ret = wolfSSL_send_hrr_cookie(ssl, NULL, 0);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("DTLS1.3 Cookie secret error");
return ret;
}
}
#endif /* WOLFSSL_DTLS13 && WOLFSSL_SEND_HRR_COOKIE */
}
#endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */
#ifdef HAVE_SECRET_CALLBACK
ssl->sessionSecretCb = NULL;
ssl->sessionSecretCtx = NULL;
#ifdef WOLFSSL_TLS13
ssl->tls13SecretCb = NULL;
ssl->tls13SecretCtx = NULL;
#endif
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_SECRET_CALLBACK)
if (ctx->keyLogCb != NULL) {
ssl->keyLogCb = SessionSecret_callback;
#if defined(WOLFSSL_TLS13)
ssl->tls13KeyLogCb = SessionSecret_callback_Tls13;
#endif /*WOLFSSL_TLS13*/
}
#endif /*OPENSSL_EXTRA && HAVE_SECRET_CALLBACK */
ssl->session = wolfSSL_NewSession(ssl->heap);
if (ssl->session == NULL) {
WOLFSSL_MSG("SSL Session Memory error");
return MEMORY_E;
}
#ifdef HAVE_SESSION_TICKET
ssl->options.noTicketTls12 = ctx->noTicketTls12;
#endif
#ifdef WOLFSSL_MULTICAST
if (ctx->haveMcast) {
int i;
ssl->options.haveMcast = 1;
ssl->options.mcastID = ctx->mcastID;
/* Force the state to look like handshake has completed. */
/* Keying material is supplied externally. */
ssl->options.serverState = SERVER_FINISHED_COMPLETE;
ssl->options.clientState = CLIENT_FINISHED_COMPLETE;
ssl->options.connectState = SECOND_REPLY_DONE;
ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE;
ssl->options.handShakeState = HANDSHAKE_DONE;
ssl->options.handShakeDone = 1;
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++)
ssl->keys.peerSeq[i].peerId = INVALID_PEER_ID;
}
#endif
#if defined(HAVE_SECURE_RENEGOTIATION) || \
defined(HAVE_SERVER_RENEGOTIATION_INFO)
if (ssl->options.side == WOLFSSL_CLIENT_END) {
int useSecureReneg = ssl->ctx->useSecureReneg;
/* use secure renegotiation by default (not recommend) */
#if defined(WOLFSSL_SECURE_RENEGOTIATION_ON_BY_DEFAULT) || \
(defined(WOLFSSL_HARDEN_TLS) && !defined(WOLFSSL_NO_TLS12) && \
!defined(WOLFSSL_HARDEN_TLS_NO_SCR_CHECK))
useSecureReneg = 1;
#endif
if (useSecureReneg) {
ret = wolfSSL_UseSecureRenegotiation(ssl);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
}
#endif /* HAVE_SECURE_RENEGOTIATION */
#ifdef WOLFSSL_DTLS13
/* setup 0 (un-protected) epoch */
ssl->dtls13Epochs[0].isValid = 1;
ssl->dtls13Epochs[0].side = ENCRYPT_AND_DECRYPT_SIDE;
ssl->dtls13EncryptEpoch = &ssl->dtls13Epochs[0];
ssl->dtls13DecryptEpoch = &ssl->dtls13Epochs[0];
ssl->options.dtls13SendMoreAcks = WOLFSSL_DTLS13_SEND_MOREACK_DEFAULT;
ssl->dtls13Rtx.rtxRecordTailPtr = &ssl->dtls13Rtx.rtxRecords;
#endif /* WOLFSSL_DTLS13 */
#ifdef WOLFSSL_QUIC
if (ctx->quic.method) {
ret = wolfSSL_set_quic_method(ssl, ctx->quic.method);
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif
#if defined(WOLFSSL_MAXQ10XX_TLS)
ret = wolfSSL_maxq10xx_load_certificate(ssl);
if (ret != WOLFSSL_SUCCESS)
return ret;
#endif
#if defined(HAVE_SECRET_CALLBACK) && defined(SHOW_SECRETS) && \
defined(WOLFSSL_SSLKEYLOGFILE) && defined(WOLFSSL_TLS13)
(void)wolfSSL_set_tls13_secret_cb(ssl, tls13ShowSecrets, NULL);
#endif
return 0;
}
/* free use of temporary arrays */
void FreeArrays(WOLFSSL* ssl, int keep)
{
if (ssl->arrays) {
if (keep && !IsAtLeastTLSv1_3(ssl->version)) {
/* keeps session id for user retrieval */
XMEMCPY(ssl->session->sessionID, ssl->arrays->sessionID, ID_LEN);
ssl->session->sessionIDSz = ssl->arrays->sessionIDSz;
}
if (ssl->arrays->preMasterSecret) {
ForceZero(ssl->arrays->preMasterSecret, ENCRYPT_LEN);
XFREE(ssl->arrays->preMasterSecret, ssl->heap, DYNAMIC_TYPE_SECRET);
ssl->arrays->preMasterSecret = NULL;
}
XFREE(ssl->arrays->pendingMsg, ssl->heap, DYNAMIC_TYPE_ARRAYS);
ssl->arrays->pendingMsg = NULL;
ForceZero(ssl->arrays, sizeof(Arrays)); /* clear arrays struct */
}
XFREE(ssl->arrays, ssl->heap, DYNAMIC_TYPE_ARRAYS);
ssl->arrays = NULL;
}
void FreeKey(WOLFSSL* ssl, int type, void** pKey)
{
if (ssl && pKey && *pKey) {
switch (type) {
#ifndef NO_RSA
case DYNAMIC_TYPE_RSA:
wc_FreeRsaKey((RsaKey*)*pKey);
break;
#endif /* ! NO_RSA */
#ifdef HAVE_ECC
case DYNAMIC_TYPE_ECC:
#if defined(WC_ECC_NONBLOCK) && defined(WOLFSSL_ASYNC_CRYPT_SW) && \
defined(WC_ASYNC_ENABLE_ECC)
if (((ecc_key*)*pKey)->nb_ctx != NULL) {
XFREE(((ecc_key*)*pKey)->nb_ctx, ((ecc_key*)*pKey)->heap,
DYNAMIC_TYPE_TMP_BUFFER);
}
#endif /* WC_ECC_NONBLOCK && WOLFSSL_ASYNC_CRYPT_SW &&
WC_ASYNC_ENABLE_ECC */
wc_ecc_free((ecc_key*)*pKey);
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case DYNAMIC_TYPE_ED25519:
wc_ed25519_free((ed25519_key*)*pKey);
break;
#endif /* HAVE_ED25519 */
#ifdef HAVE_CURVE25519
case DYNAMIC_TYPE_CURVE25519:
wc_curve25519_free((curve25519_key*)*pKey);
break;
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED448
case DYNAMIC_TYPE_ED448:
wc_ed448_free((ed448_key*)*pKey);
break;
#endif /* HAVE_ED448 */
#ifdef HAVE_CURVE448
case DYNAMIC_TYPE_CURVE448:
wc_curve448_free((curve448_key*)*pKey);
break;
#endif /* HAVE_CURVE448 */
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
case DYNAMIC_TYPE_FALCON:
wc_falcon_free((falcon_key*)*pKey);
break;
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
case DYNAMIC_TYPE_DILITHIUM:
wc_dilithium_free((dilithium_key*)*pKey);
break;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#ifndef NO_DH
case DYNAMIC_TYPE_DH:
wc_FreeDhKey((DhKey*)*pKey);
break;
#endif /* !NO_DH */
default:
break;
}
XFREE(*pKey, ssl->heap, type);
/* Reset pointer */
*pKey = NULL;
}
}
int AllocKey(WOLFSSL* ssl, int type, void** pKey)
{
int ret = BAD_FUNC_ARG;
int sz = 0;
#ifdef HAVE_ECC
ecc_key* eccKey;
#endif /* HAVE_ECC */
#if defined(WC_ECC_NONBLOCK) && defined(WOLFSSL_ASYNC_CRYPT_SW) && \
defined(WC_ASYNC_ENABLE_ECC)
ecc_nb_ctx_t* nbCtx;
#endif /* WC_ECC_NONBLOCK && WOLFSSL_ASYNC_CRYPT_SW && WC_ASYNC_ENABLE_ECC*/
if (ssl == NULL || pKey == NULL) {
return BAD_FUNC_ARG;
}
/* Sanity check key destination */
if (*pKey != NULL) {
WOLFSSL_MSG("Key already present!");
#ifdef WOLFSSL_ASYNC_CRYPT
/* allow calling this again for async reentry */
if (ssl->error == WC_PENDING_E) {
return 0;
}
#endif
return BAD_STATE_E;
}
/* Determine size */
switch (type) {
#ifndef NO_RSA
case DYNAMIC_TYPE_RSA:
sz = sizeof(RsaKey);
break;
#endif /* ! NO_RSA */
#ifdef HAVE_ECC
case DYNAMIC_TYPE_ECC:
sz = sizeof(ecc_key);
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case DYNAMIC_TYPE_ED25519:
sz = sizeof(ed25519_key);
break;
#endif /* HAVE_ED25519 */
#ifdef HAVE_CURVE25519
case DYNAMIC_TYPE_CURVE25519:
sz = sizeof(curve25519_key);
break;
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED448
case DYNAMIC_TYPE_ED448:
sz = sizeof(ed448_key);
break;
#endif /* HAVE_ED448 */
#ifdef HAVE_CURVE448
case DYNAMIC_TYPE_CURVE448:
sz = sizeof(curve448_key);
break;
#endif /* HAVE_CURVE448 */
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
case DYNAMIC_TYPE_FALCON:
sz = sizeof(falcon_key);
break;
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
case DYNAMIC_TYPE_DILITHIUM:
sz = sizeof(dilithium_key);
break;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#ifndef NO_DH
case DYNAMIC_TYPE_DH:
sz = sizeof(DhKey);
break;
#endif /* !NO_DH */
default:
return BAD_FUNC_ARG;
}
/* Allocate memory for key */
*pKey = (void *)XMALLOC(sz, ssl->heap, type);
if (*pKey == NULL) {
return MEMORY_E;
}
/* Initialize key */
switch (type) {
#ifndef NO_RSA
case DYNAMIC_TYPE_RSA:
ret = wc_InitRsaKey_ex((RsaKey*)*pKey, ssl->heap, ssl->devId);
break;
#endif /* ! NO_RSA */
#ifdef HAVE_ECC
case DYNAMIC_TYPE_ECC:
eccKey = (ecc_key*)*pKey;
ret = wc_ecc_init_ex(eccKey, ssl->heap, ssl->devId);
if (ret == 0) {
#if defined(WC_ECC_NONBLOCK) && defined(WOLFSSL_ASYNC_CRYPT_SW) && \
defined(WC_ASYNC_ENABLE_ECC)
nbCtx = (ecc_nb_ctx_t*)XMALLOC(sizeof(ecc_nb_ctx_t),
eccKey->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (nbCtx == NULL) {
ret = MEMORY_E;
}
else {
ret = wc_ecc_set_nonblock(eccKey, nbCtx);
if (ret != 0) {
XFREE(nbCtx, eccKey->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
}
#endif /* WC_ECC_NONBLOCK && WOLFSSL_ASYNC_CRYPT_SW &&
WC_ASYNC_ENABLE_ECC */
}
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case DYNAMIC_TYPE_ED25519:
wc_ed25519_init_ex((ed25519_key*)*pKey, ssl->heap, ssl->devId);
ret = 0;
break;
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_CURVE25519
case DYNAMIC_TYPE_CURVE25519:
wc_curve25519_init_ex((curve25519_key*)*pKey, ssl->heap, ssl->devId);
ret = 0;
break;
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED448
case DYNAMIC_TYPE_ED448:
wc_ed448_init_ex((ed448_key*)*pKey, ssl->heap, ssl->devId);
ret = 0;
break;
#endif /* HAVE_CURVE448 */
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
case DYNAMIC_TYPE_FALCON:
wc_falcon_init((falcon_key*)*pKey);
ret = 0;
break;
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
case DYNAMIC_TYPE_DILITHIUM:
wc_dilithium_init((dilithium_key*)*pKey);
ret = 0;
break;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#ifdef HAVE_CURVE448
case DYNAMIC_TYPE_CURVE448:
wc_curve448_init((curve448_key*)*pKey);
ret = 0;
break;
#endif /* HAVE_CURVE448 */
#ifndef NO_DH
case DYNAMIC_TYPE_DH:
ret = wc_InitDhKey_ex((DhKey*)*pKey, ssl->heap, ssl->devId);
break;
#endif /* !NO_DH */
default:
return BAD_FUNC_ARG;
}
/* On error free handshake key */
if (ret != 0) {
FreeKey(ssl, type, pKey);
}
return ret;
}
#if !defined(NO_RSA) || defined(HAVE_ECC) || defined(HAVE_ED25519) || \
defined(HAVE_CURVE25519) || defined(HAVE_ED448) || \
defined(HAVE_CURVE448) || (defined(HAVE_PQC) && defined(HAVE_FALCON)) || \
(defined(HAVE_PQC) && defined(HAVE_DILITHIUM))
static int ReuseKey(WOLFSSL* ssl, int type, void* pKey)
{
int ret = 0;
(void)ssl;
switch (type) {
#ifndef NO_RSA
case DYNAMIC_TYPE_RSA:
wc_FreeRsaKey((RsaKey*)pKey);
ret = wc_InitRsaKey_ex((RsaKey*)pKey, ssl->heap, ssl->devId);
break;
#endif /* ! NO_RSA */
#ifdef HAVE_ECC
case DYNAMIC_TYPE_ECC:
wc_ecc_free((ecc_key*)pKey);
ret = wc_ecc_init_ex((ecc_key*)pKey, ssl->heap, ssl->devId);
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case DYNAMIC_TYPE_ED25519:
wc_ed25519_free((ed25519_key*)pKey);
ret = wc_ed25519_init_ex((ed25519_key*)pKey, ssl->heap,
ssl->devId);
break;
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_CURVE25519
case DYNAMIC_TYPE_CURVE25519:
wc_curve25519_free((curve25519_key*)pKey);
ret = wc_curve25519_init_ex((curve25519_key*)pKey, ssl->heap,
ssl->devId);
break;
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED448
case DYNAMIC_TYPE_ED448:
wc_ed448_free((ed448_key*)pKey);
ret = wc_ed448_init_ex((ed448_key*)pKey, ssl->heap, ssl->devId);
break;
#endif /* HAVE_CURVE448 */
#ifdef HAVE_CURVE448
case DYNAMIC_TYPE_CURVE448:
wc_curve448_free((curve448_key*)pKey);
ret = wc_curve448_init((curve448_key*)pKey);
break;
#endif /* HAVE_CURVE448 */
#if defined(HAVE_PQC) && defined(HAVE_FALCON)
case DYNAMIC_TYPE_FALCON:
wc_falcon_free((falcon_key*)pKey);
ret = wc_falcon_init((falcon_key*)pKey);
break;
#endif /* HAVE_PQC && HAVE_FALCON */
#ifndef NO_DH
case DYNAMIC_TYPE_DH:
wc_FreeDhKey((DhKey*)pKey);
ret = wc_InitDhKey_ex((DhKey*)pKey, ssl->heap, ssl->devId);
break;
#endif /* !NO_DH */
default:
return BAD_FUNC_ARG;
}
return ret;
}
#endif
#ifdef WOLFSSL_ASYNC_IO
void FreeAsyncCtx(WOLFSSL* ssl, byte freeAsync)
{
if (ssl->async != NULL) {
if (ssl->async->freeArgs != NULL) {
ssl->async->freeArgs(ssl, ssl->async->args);
ssl->async->freeArgs = NULL;
}
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WOLFSSL_NO_TLS12)
if (ssl->options.buildArgsSet) {
FreeBuildMsgArgs(ssl, &ssl->async->buildArgs);
ssl->options.buildArgsSet = 0;
}
#endif
if (freeAsync) {
XFREE(ssl->async, ssl->heap, DYNAMIC_TYPE_ASYNC);
ssl->async = NULL;
}
}
}
#endif
void FreeKeyExchange(WOLFSSL* ssl)
{
/* Cleanup signature buffer */
if (ssl->buffers.sig.buffer) {
XFREE(ssl->buffers.sig.buffer, ssl->heap, DYNAMIC_TYPE_SIGNATURE);
ssl->buffers.sig.buffer = NULL;
ssl->buffers.sig.length = 0;
}
/* Cleanup digest buffer */
if (ssl->buffers.digest.buffer) {
/* Only free if digest buffer was not set using SetDigest */
if (!ssl->options.dontFreeDigest) {
XFREE(ssl->buffers.digest.buffer, ssl->heap, DYNAMIC_TYPE_DIGEST);
}
ssl->buffers.digest.buffer = NULL;
ssl->buffers.digest.length = 0;
ssl->options.dontFreeDigest = 0;
}
/* Free handshake key */
FreeKey(ssl, ssl->hsType, &ssl->hsKey);
#ifndef NO_DH
/* Free temp DH key */
FreeKey(ssl, DYNAMIC_TYPE_DH, (void**)&ssl->buffers.serverDH_Key);
#endif
}
/* Free up all memory used by Suites structure from WOLFSSL */
void FreeSuites(WOLFSSL* ssl)
{
#ifdef OPENSSL_ALL
if (ssl->suitesStack != NULL) {
/* Enough to free stack structure since WOLFSSL_CIPHER
* isn't allocated separately. */
wolfSSL_sk_SSL_CIPHER_free(ssl->suitesStack);
ssl->suitesStack = NULL;
}
#endif
XFREE(ssl->suites, ssl->heap, DYNAMIC_TYPE_SUITES);
ssl->suites = NULL;
}
/* In case holding SSL object in array and don't want to free actual ssl */
void SSL_ResourceFree(WOLFSSL* ssl)
{
/* Note: any resources used during the handshake should be released in the
* function FreeHandshakeResources(). Be careful with the special cases
* like the RNG which may optionally be kept for the whole session. (For
* example with the RNG, it isn't used beyond the handshake except when
* using stream ciphers where it is retained. */
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("Free'ing server ssl");
}
else {
WOLFSSL_MSG("Free'ing client ssl");
}
#ifdef HAVE_EX_DATA_CLEANUP_HOOKS
wolfSSL_CRYPTO_cleanup_ex_data(&ssl->ex_data);
#endif
FreeCiphers(ssl);
FreeArrays(ssl, 0);
FreeKeyExchange(ssl);
#ifdef WOLFSSL_ASYNC_IO
/* Cleanup async */
FreeAsyncCtx(ssl, 1);
#endif
if (ssl->options.weOwnRng) {
wc_FreeRng(ssl->rng);
XFREE(ssl->rng, ssl->heap, DYNAMIC_TYPE_RNG);
ssl->rng = NULL;
ssl->options.weOwnRng = 0;
}
FreeSuites(ssl);
FreeHandshakeHashes(ssl);
XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN);
/* clear keys struct after session */
ForceZero(&ssl->keys, sizeof(Keys));
#ifdef WOLFSSL_TLS13
ForceZero(&ssl->clientSecret, sizeof(ssl->clientSecret));
ForceZero(&ssl->serverSecret, sizeof(ssl->serverSecret));
#if defined(HAVE_ECH)
if (ssl->options.useEch == 1) {
FreeEchConfigs(ssl->echConfigs, ssl->heap);
ssl->echConfigs = NULL;
/* free the ech specific hashes */
ssl->hsHashes = ssl->hsHashesEch;
FreeHandshakeHashes(ssl);
ssl->options.useEch = 0;
}
#endif /* HAVE_ECH */
#endif /* WOLFSSL_TLS13 */
#ifdef WOLFSSL_HAVE_TLS_UNIQUE
ForceZero(&ssl->clientFinished, TLS_FINISHED_SZ_MAX);
ForceZero(&ssl->serverFinished, TLS_FINISHED_SZ_MAX);
ssl->serverFinished_len = 0;
ssl->clientFinished_len = 0;
#endif
#ifndef NO_DH
if (ssl->buffers.serverDH_Priv.buffer != NULL) {
ForceZero(ssl->buffers.serverDH_Priv.buffer,
ssl->buffers.serverDH_Priv.length);
}
XFREE(ssl->buffers.serverDH_Priv.buffer, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
XFREE(ssl->buffers.serverDH_Pub.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
/* parameters (p,g) may be owned by ctx */
if (ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
#endif /* !NO_DH */
#ifndef NO_CERTS
ssl->keepCert = 0; /* make sure certificate is free'd */
wolfSSL_UnloadCertsKeys(ssl);
#endif
#ifndef NO_RSA
FreeKey(ssl, DYNAMIC_TYPE_RSA, (void**)&ssl->peerRsaKey);
ssl->peerRsaKeyPresent = 0;
#endif
#if defined(WOLFSSL_RENESAS_TSIP_TLS) || defined(WOLFSSL_RENESAS_FSPSM_TLS)
XFREE(ssl->peerSceTsipEncRsaKeyIndex, ssl->heap, DYNAMIC_TYPE_RSA);
Renesas_cmn_Cleanup(ssl);
#endif
if (ssl->buffers.inputBuffer.dynamicFlag)
ShrinkInputBuffer(ssl, FORCED_FREE);
if (ssl->buffers.outputBuffer.dynamicFlag)
ShrinkOutputBuffer(ssl);
#if defined(WOLFSSL_SEND_HRR_COOKIE) && !defined(NO_WOLFSSL_SERVER)
if (ssl->buffers.tls13CookieSecret.buffer != NULL) {
ForceZero(ssl->buffers.tls13CookieSecret.buffer,
ssl->buffers.tls13CookieSecret.length);
}
XFREE(ssl->buffers.tls13CookieSecret.buffer, ssl->heap,
DYNAMIC_TYPE_COOKIE_PWD);
#endif
#ifdef WOLFSSL_DTLS
DtlsMsgPoolReset(ssl);
if (ssl->dtls_rx_msg_list != NULL) {
DtlsMsgListDelete(ssl->dtls_rx_msg_list, ssl->heap);
ssl->dtls_rx_msg_list = NULL;
ssl->dtls_rx_msg_list_sz = 0;
}
XFREE(ssl->buffers.dtlsCtx.peer.sa, ssl->heap, DYNAMIC_TYPE_SOCKADDR);
ssl->buffers.dtlsCtx.peer.sa = NULL;
#ifndef NO_WOLFSSL_SERVER
if (ssl->buffers.dtlsCookieSecret.buffer != NULL) {
ForceZero(ssl->buffers.dtlsCookieSecret.buffer,
ssl->buffers.dtlsCookieSecret.length);
}
XFREE(ssl->buffers.dtlsCookieSecret.buffer, ssl->heap,
DYNAMIC_TYPE_COOKIE_PWD);
#endif
#ifdef WOLFSSL_DTLS13
if (ssl->dtls13ClientHello != NULL) {
XFREE(ssl->dtls13ClientHello, ssl->heap, DYNAMIC_TYPE_DTLS_MSG);
ssl->dtls13ClientHello = NULL;
ssl->dtls13ClientHelloSz = 0;
}
#endif /* WOLFSSL_DTLS13 */
#endif /* WOLFSSL_DTLS */
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
/* Don't free if there was/is a previous element in the chain.
* This means that this BIO was part of a chain that will be
* free'd separately. */
if (ssl->biord != ssl->biowr) /* only free write if different */
if (ssl->biowr != NULL && ssl->biowr->prev == NULL)
wolfSSL_BIO_free(ssl->biowr);
if (ssl->biord != NULL && ssl->biord->prev == NULL)
wolfSSL_BIO_free(ssl->biord);
ssl->biowr = NULL;
ssl->biord = NULL;
#endif
#endif
#ifdef HAVE_LIBZ
FreeStreams(ssl);
#endif
#ifdef HAVE_ECC
FreeKey(ssl, DYNAMIC_TYPE_ECC, (void**)&ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
FreeKey(ssl, DYNAMIC_TYPE_ECC, (void**)&ssl->peerEccDsaKey);
ssl->peerEccDsaKeyPresent = 0;
#endif
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) ||defined(HAVE_CURVE448)
{
int dtype = 0;
#ifdef HAVE_ECC
dtype = DYNAMIC_TYPE_ECC;
#endif
#ifdef HAVE_CURVE25519
if (ssl->peerX25519KeyPresent
#ifdef HAVE_ECC
|| ssl->eccTempKeyPresent == DYNAMIC_TYPE_CURVE25519
#endif /* HAVE_ECC */
)
{
dtype = DYNAMIC_TYPE_CURVE25519;
}
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_CURVE448
if (ssl->peerX448KeyPresent
#ifdef HAVE_ECC
|| ssl->eccTempKeyPresent == DYNAMIC_TYPE_CURVE448
#endif /* HAVE_ECC */
)
{
dtype = DYNAMIC_TYPE_CURVE448;
}
#endif /* HAVE_CURVE448 */
FreeKey(ssl, dtype, (void**)&ssl->eccTempKey);
ssl->eccTempKeyPresent = 0;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifdef HAVE_CURVE25519
FreeKey(ssl, DYNAMIC_TYPE_CURVE25519, (void**)&ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
#endif
#ifdef HAVE_ED25519
FreeKey(ssl, DYNAMIC_TYPE_ED25519, (void**)&ssl->peerEd25519Key);
ssl->peerEd25519KeyPresent = 0;
#ifdef HAVE_PK_CALLBACKS
if (ssl->buffers.peerEd25519Key.buffer != NULL) {
XFREE(ssl->buffers.peerEd25519Key.buffer, ssl->heap,
DYNAMIC_TYPE_ED25519);
ssl->buffers.peerEd25519Key.buffer = NULL;
}
#endif
#endif
#ifdef HAVE_CURVE448
FreeKey(ssl, DYNAMIC_TYPE_CURVE448, (void**)&ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
#endif
#ifdef HAVE_ED448
FreeKey(ssl, DYNAMIC_TYPE_ED448, (void**)&ssl->peerEd448Key);
ssl->peerEd448KeyPresent = 0;
#ifdef HAVE_PK_CALLBACKS
if (ssl->buffers.peerEd448Key.buffer != NULL) {
XFREE(ssl->buffers.peerEd448Key.buffer, ssl->heap,
DYNAMIC_TYPE_ED448);
ssl->buffers.peerEd448Key.buffer = NULL;
}
#endif
#endif
#if defined(HAVE_PQC) && defined(HAVE_FALCON)
FreeKey(ssl, DYNAMIC_TYPE_FALCON, (void**)&ssl->peerFalconKey);
ssl->peerFalconKeyPresent = 0;
#endif
#ifdef HAVE_PK_CALLBACKS
#ifdef HAVE_ECC
XFREE(ssl->buffers.peerEccDsaKey.buffer, ssl->heap, DYNAMIC_TYPE_ECC);
#endif /* HAVE_ECC */
#ifndef NO_RSA
XFREE(ssl->buffers.peerRsaKey.buffer, ssl->heap, DYNAMIC_TYPE_RSA);
#endif /* NO_RSA */
#endif /* HAVE_PK_CALLBACKS */
#ifdef HAVE_TLS_EXTENSIONS
#if !defined(NO_TLS)
TLSX_FreeAll(ssl->extensions, ssl->heap);
#endif /* !NO_TLS */
#ifdef HAVE_ALPN
if (ssl->alpn_peer_requested != NULL) {
XFREE(ssl->alpn_peer_requested, ssl->heap, DYNAMIC_TYPE_ALPN);
ssl->alpn_peer_requested = NULL;
ssl->alpn_peer_requested_length = 0;
}
#endif
#endif /* HAVE_TLS_EXTENSIONS */
#if defined(WOLFSSL_APACHE_MYNEWT) && !defined(WOLFSSL_LWIP)
if (ssl->mnCtx) {
mynewt_ctx_clear(ssl->mnCtx);
ssl->mnCtx = NULL;
}
#endif
#ifdef HAVE_NETX
if (ssl->nxCtx.nxPacket)
nx_packet_release(ssl->nxCtx.nxPacket);
#endif
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
if (ssl->x509_store_pt)
wolfSSL_X509_STORE_free(ssl->x509_store_pt);
#endif
#ifdef KEEP_PEER_CERT
FreeX509(&ssl->peerCert);
#endif
if (ssl->session != NULL)
wolfSSL_FreeSession(ssl->ctx, ssl->session);
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite) {
FreeWriteDup(ssl);
}
#endif
#ifdef OPENSSL_EXTRA
if (ssl->param) {
XFREE(ssl->param, ssl->heap, DYNAMIC_TYPE_OPENSSL);
}
#endif
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
while (ssl->certReqCtx != NULL) {
CertReqCtx* curr = ssl->certReqCtx;
ssl->certReqCtx = curr->next;
XFREE(curr, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
#ifdef WOLFSSL_STATIC_EPHEMERAL
#ifndef NO_DH
FreeDer(&ssl->staticKE.dhKey);
#endif
#ifdef HAVE_ECC
FreeDer(&ssl->staticKE.ecKey);
#endif
#ifdef HAVE_CURVE25519
FreeDer(&ssl->staticKE.x25519Key);
#endif
#ifdef HAVE_CURVE448
FreeDer(&ssl->staticKE.x448Key);
#endif
#endif
#ifdef WOLFSSL_STATIC_MEMORY
/* check if using fixed io buffers and free them */
if (ssl->heap != NULL) {
#ifdef WOLFSSL_HEAP_TEST
/* avoid dereferencing a test value */
if (ssl->heap != (void*)WOLFSSL_HEAP_TEST) {
#endif
WOLFSSL_HEAP_HINT* ssl_hint = (WOLFSSL_HEAP_HINT*)ssl->heap;
WOLFSSL_HEAP* ctx_heap;
void* heap = ssl->ctx ? ssl->ctx->heap : ssl->heap;
ctx_heap = ssl_hint->memory;
if (wc_LockMutex(&(ctx_heap->memory_mutex)) != 0) {
WOLFSSL_MSG("Bad memory_mutex lock");
}
ctx_heap->curIO--;
if (FreeFixedIO(ctx_heap, &(ssl_hint->outBuf)) != 1) {
WOLFSSL_MSG("Error freeing fixed output buffer");
}
if (FreeFixedIO(ctx_heap, &(ssl_hint->inBuf)) != 1) {
WOLFSSL_MSG("Error freeing fixed output buffer");
}
if (ssl_hint->haFlag && ctx_heap->curHa > 0) { /* check if handshake count has been decreased*/
ctx_heap->curHa--;
}
wc_UnLockMutex(&(ctx_heap->memory_mutex));
/* check if tracking stats */
if (ctx_heap->flag & WOLFMEM_TRACK_STATS) {
XFREE(ssl_hint->stats, heap, DYNAMIC_TYPE_SSL);
}
XFREE(ssl->heap, heap, DYNAMIC_TYPE_SSL);
#ifdef WOLFSSL_HEAP_TEST
}
#endif
}
#endif /* WOLFSSL_STATIC_MEMORY */
#ifdef OPENSSL_EXTRA
/* Enough to free stack structure since WOLFSSL_CIPHER
* isn't allocated separately. */
wolfSSL_sk_CIPHER_free(ssl->supportedCiphers);
wolfSSL_sk_X509_pop_free(ssl->peerCertChain, NULL);
#ifdef KEEP_OUR_CERT
wolfSSL_sk_X509_pop_free(ssl->ourCertChain, NULL);
#endif
#endif
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || defined(HAVE_LIGHTY)
wolfSSL_sk_X509_NAME_pop_free(ssl->client_ca_names, NULL);
ssl->client_ca_names = NULL;
#endif
#ifdef WOLFSSL_DTLS13
Dtls13FreeFsmResources(ssl);
#endif /* WOLFSSL_DTLS13 */
#ifdef WOLFSSL_QUIC
wolfSSL_quic_free(ssl);
#endif
#if defined(WOLFSSL_HAPROXY)
wolfSSL_CTX_free(ssl->initial_ctx);
ssl->initial_ctx = NULL;
#endif
}
/* Free any handshake resources no longer needed */
void FreeHandshakeResources(WOLFSSL* ssl)
{
WOLFSSL_ENTER("FreeHandshakeResources");
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
/* DTLS_POOL (DTLSv1.3 flushes the queue autonomously) */
if(!IsAtLeastTLSv1_3(ssl->version)) {
DtlsMsgPoolReset(ssl);
DtlsMsgListDelete(ssl->dtls_rx_msg_list, ssl->heap);
ssl->dtls_rx_msg_list = NULL;
ssl->dtls_rx_msg_list_sz = 0;
}
#ifdef WOLFSSL_DTLS13
if (ssl->dtls13ClientHello != NULL) {
XFREE(ssl->dtls13ClientHello, ssl->heap, DYNAMIC_TYPE_DTLS_MSG);
ssl->dtls13ClientHello = NULL;
ssl->dtls13ClientHelloSz = 0;
}
#endif /* WOLFSSL_DTLS13 */
}
#endif
#ifdef HAVE_SECURE_RENEGOTIATION
if (ssl->secure_renegotiation && ssl->secure_renegotiation->enabled) {
WOLFSSL_MSG("Secure Renegotiation needs to retain handshake resources");
return;
}
#endif
/* input buffer */
if (ssl->buffers.inputBuffer.dynamicFlag)
ShrinkInputBuffer(ssl, NO_FORCED_FREE);
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
if (!ssl->options.tls1_3)
#endif
{
#ifndef OPENSSL_EXTRA
/* free suites unless using compatibility layer */
FreeSuites(ssl);
#endif
/* hsHashes */
FreeHandshakeHashes(ssl);
}
/* RNG */
if (ssl->options.tls1_1 == 0
#ifndef WOLFSSL_AEAD_ONLY
|| ssl->specs.cipher_type == stream
#endif
#if defined(WOLFSSL_TLS13)
/* Post-handshake auth requires random on client side for TLS 1.3.
* Session ticket requires random on server side.
*/
#if !defined(WOLFSSL_POST_HANDSHAKE_AUTH) && !defined(HAVE_SESSION_TICKET)
|| ssl->options.tls1_3
#elif !defined(WOLFSSL_POST_HANDSHAKE_AUTH) && defined(HAVE_SESSION_TICKET)
|| (ssl->options.tls1_3 && ssl->options.side == WOLFSSL_CLIENT_END)
#elif !defined(HAVE_SESSION_TICKET)
|| (ssl->options.tls1_3 && ssl->options.side == WOLFSSL_SERVER_END)
#endif
#endif
) {
if (ssl->options.weOwnRng) {
wc_FreeRng(ssl->rng);
XFREE(ssl->rng, ssl->heap, DYNAMIC_TYPE_RNG);
ssl->rng = NULL;
ssl->options.weOwnRng = 0;
}
}
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) && \
defined(HAVE_SESSION_TICKET)
if (!ssl->options.tls1_3)
#endif
/* arrays */
if (ssl->options.saveArrays == 0)
FreeArrays(ssl, 1);
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
if (!ssl->options.tls1_3 || ssl->options.side == WOLFSSL_CLIENT_END)
#endif
{
#ifndef NO_RSA
/* peerRsaKey */
FreeKey(ssl, DYNAMIC_TYPE_RSA, (void**)&ssl->peerRsaKey);
ssl->peerRsaKeyPresent = 0;
#endif
#ifdef HAVE_ECC
FreeKey(ssl, DYNAMIC_TYPE_ECC, (void**)&ssl->peerEccDsaKey);
ssl->peerEccDsaKeyPresent = 0;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
FreeKey(ssl, DYNAMIC_TYPE_ED25519, (void**)&ssl->peerEd25519Key);
ssl->peerEd25519KeyPresent = 0;
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
FreeKey(ssl, DYNAMIC_TYPE_ED448, (void**)&ssl->peerEd448Key);
ssl->peerEd448KeyPresent = 0;
#endif /* HAVE_ED448 */
#if defined(HAVE_PQC) && defined(HAVE_FALCON)
FreeKey(ssl, DYNAMIC_TYPE_FALCON, (void**)&ssl->peerFalconKey);
ssl->peerFalconKeyPresent = 0;
#endif /* HAVE_PQC */
}
#ifdef HAVE_ECC
FreeKey(ssl, DYNAMIC_TYPE_ECC, (void**)&ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
#endif
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
{
int dtype;
#ifdef HAVE_ECC
dtype = DYNAMIC_TYPE_ECC;
#elif defined(HAVE_CURVE25519)
dtype = DYNAMIC_TYPE_CURVE25519;
#else
dtype = DYNAMIC_TYPE_CURVE448;
#endif
#if defined(HAVE_ECC) && defined(HAVE_CURVE25519)
if (ssl->peerX25519KeyPresent ||
ssl->eccTempKeyPresent == DYNAMIC_TYPE_CURVE25519)
{
dtype = DYNAMIC_TYPE_CURVE25519;
}
#endif
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519)) && \
defined(HAVE_CURVE448)
if (ssl->peerX448KeyPresent ||
ssl->eccTempKeyPresent == DYNAMIC_TYPE_CURVE448)
{
dtype = DYNAMIC_TYPE_CURVE448;
}
#endif
FreeKey(ssl, dtype, (void**)&ssl->eccTempKey);
ssl->eccTempKeyPresent = 0;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifdef HAVE_CURVE25519
FreeKey(ssl, DYNAMIC_TYPE_CURVE25519, (void**)&ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
#endif
#ifdef HAVE_CURVE448
FreeKey(ssl, DYNAMIC_TYPE_CURVE448, (void**)&ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
#endif
#ifndef NO_DH
if (ssl->buffers.serverDH_Priv.buffer) {
ForceZero(ssl->buffers.serverDH_Priv.buffer,
ssl->buffers.serverDH_Priv.length);
}
XFREE(ssl->buffers.serverDH_Priv.buffer, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
ssl->buffers.serverDH_Priv.buffer = NULL;
XFREE(ssl->buffers.serverDH_Pub.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_Pub.buffer = NULL;
/* parameters (p,g) may be owned by ctx */
if (ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
}
#endif /* !NO_DH */
#ifndef NO_CERTS
wolfSSL_UnloadCertsKeys(ssl);
#endif
#ifdef HAVE_PK_CALLBACKS
#if defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
if (!ssl->options.tls1_3 || ssl->options.side == WOLFSSL_CLIENT_END)
#endif
{
#ifdef HAVE_ECC
XFREE(ssl->buffers.peerEccDsaKey.buffer, ssl->heap, DYNAMIC_TYPE_ECC);
ssl->buffers.peerEccDsaKey.buffer = NULL;
#endif /* HAVE_ECC */
#ifndef NO_RSA
XFREE(ssl->buffers.peerRsaKey.buffer, ssl->heap, DYNAMIC_TYPE_RSA);
ssl->buffers.peerRsaKey.buffer = NULL;
#endif /* NO_RSA */
#ifdef HAVE_ED25519
XFREE(ssl->buffers.peerEd25519Key.buffer, ssl->heap,
DYNAMIC_TYPE_ED25519);
ssl->buffers.peerEd25519Key.buffer = NULL;
#endif
#ifdef HAVE_ED448
XFREE(ssl->buffers.peerEd448Key.buffer, ssl->heap, DYNAMIC_TYPE_ED448);
ssl->buffers.peerEd448Key.buffer = NULL;
#endif
}
#endif /* HAVE_PK_CALLBACKS */
#if defined(HAVE_TLS_EXTENSIONS) && !defined(NO_TLS)
#if !defined(HAVE_SNI) && !defined(HAVE_ALPN) && !defined(WOLFSSL_DTLS_CID) && \
!defined(WOLFSSL_POST_HANDSHAKE_AUTH)
/* Some extensions need to be kept for post-handshake querying. */
TLSX_FreeAll(ssl->extensions, ssl->heap);
ssl->extensions = NULL;
#else
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_SIGALG)
TLSX_Remove(&ssl->extensions, TLSX_SIGNATURE_ALGORITHMS, ssl->heap);
#endif
TLSX_Remove(&ssl->extensions, TLSX_EC_POINT_FORMATS, ssl->heap);
TLSX_Remove(&ssl->extensions, TLSX_SUPPORTED_GROUPS, ssl->heap);
#ifdef WOLFSSL_TLS13
TLSX_Remove(&ssl->extensions, TLSX_SUPPORTED_VERSIONS, ssl->heap);
TLSX_Remove(&ssl->extensions, TLSX_KEY_SHARE, ssl->heap);
#endif
#endif /* !HAVE_SNI && && !HAVE_ALPN && !WOLFSSL_DTLS_CID &&
* !WOLFSSL_POST_HANDSHAKE_AUTH */
#endif /* HAVE_TLS_EXTENSIONS && !NO_TLS */
#ifdef WOLFSSL_STATIC_MEMORY
/* when done with handshake decrement current handshake count */
if (ssl->heap != NULL) {
#ifdef WOLFSSL_HEAP_TEST
/* avoid dereferencing a test value */
if (ssl->heap != (void*)WOLFSSL_HEAP_TEST) {
#endif
WOLFSSL_HEAP_HINT* ssl_hint = (WOLFSSL_HEAP_HINT*)ssl->heap;
WOLFSSL_HEAP* ctx_heap;
ctx_heap = ssl_hint->memory;
if (wc_LockMutex(&(ctx_heap->memory_mutex)) != 0) {
WOLFSSL_MSG("Bad memory_mutex lock");
}
if (ctx_heap->curHa > 0) {
ctx_heap->curHa--;
}
ssl_hint->haFlag = 0; /* set to zero since handshake has been dec */
wc_UnLockMutex(&(ctx_heap->memory_mutex));
#ifdef WOLFSSL_HEAP_TEST
}
#endif
}
#endif /* WOLFSSL_STATIC_MEMORY */
}
/* heap argument is the heap hint used when creating SSL */
void FreeSSL(WOLFSSL* ssl, void* heap)
{
WOLFSSL_CTX* ctx = ssl->ctx;
SSL_ResourceFree(ssl);
XFREE(ssl, heap, DYNAMIC_TYPE_SSL);
if (ctx)
FreeSSL_Ctx(ctx); /* will decrement and free underlying CTX if 0 */
(void)heap;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(ssl, sizeof(*ssl));
#endif
}
#if !defined(NO_OLD_TLS) || defined(WOLFSSL_DTLS) || \
!defined(WOLFSSL_NO_TLS12) || \
((defined(HAVE_CHACHA) || defined(HAVE_AESCCM) || defined(HAVE_AESGCM) || \
defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)) \
&& defined(HAVE_AEAD))
#if defined(WOLFSSL_DTLS) || !defined(WOLFSSL_NO_TLS12)
static WC_INLINE void GetSEQIncrement(WOLFSSL* ssl, int verify, word32 seq[2])
{
if (verify) {
seq[0] = ssl->keys.peer_sequence_number_hi;
seq[1] = ssl->keys.peer_sequence_number_lo++;
if (seq[1] > ssl->keys.peer_sequence_number_lo) {
/* handle rollover */
ssl->keys.peer_sequence_number_hi++;
}
}
else {
seq[0] = ssl->keys.sequence_number_hi;
seq[1] = ssl->keys.sequence_number_lo++;
if (seq[1] > ssl->keys.sequence_number_lo) {
/* handle rollover */
ssl->keys.sequence_number_hi++;
}
}
}
#endif /* WOLFSSL_DTLS || !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_DTLS
static WC_INLINE void DtlsGetSEQ(WOLFSSL* ssl, int order, word32 seq[2])
{
#ifdef HAVE_SECURE_RENEGOTIATION
order = DtlsCheckOrder(ssl, order);
#endif
if (order == PREV_ORDER) {
/* Previous epoch case */
if (ssl->options.haveMcast) {
#ifdef WOLFSSL_MULTICAST
seq[0] = (((word32)ssl->keys.dtls_epoch - 1) << 16) |
(ssl->options.mcastID << 8) |
(ssl->keys.dtls_prev_sequence_number_hi & 0xFF);
#endif
}
else
seq[0] = (((word32)ssl->keys.dtls_epoch - 1) << 16) |
(ssl->keys.dtls_prev_sequence_number_hi & 0xFFFF);
seq[1] = ssl->keys.dtls_prev_sequence_number_lo;
}
else if (order == PEER_ORDER) {
if (ssl->options.haveMcast) {
#ifdef WOLFSSL_MULTICAST
seq[0] = ((word32)ssl->keys.curEpoch << 16) |
(ssl->keys.curPeerId << 8) |
(ssl->keys.curSeq_hi & 0xFF);
#endif
}
else
seq[0] = ((word32)ssl->keys.curEpoch << 16) |
(ssl->keys.curSeq_hi & 0xFFFF);
seq[1] = ssl->keys.curSeq_lo; /* explicit from peer */
}
else {
if (ssl->options.haveMcast) {
#ifdef WOLFSSL_MULTICAST
seq[0] = ((word32)ssl->keys.dtls_epoch << 16) |
(ssl->options.mcastID << 8) |
(ssl->keys.dtls_sequence_number_hi & 0xFF);
#endif
}
else
seq[0] = ((word32)ssl->keys.dtls_epoch << 16) |
(ssl->keys.dtls_sequence_number_hi & 0xFFFF);
seq[1] = ssl->keys.dtls_sequence_number_lo;
}
}
static WC_INLINE void DtlsSEQIncrement(WOLFSSL* ssl, int order)
{
word32 seq;
#ifdef HAVE_SECURE_RENEGOTIATION
order = DtlsCheckOrder(ssl, order);
#endif
if (order == PREV_ORDER) {
seq = ssl->keys.dtls_prev_sequence_number_lo++;
if (seq > ssl->keys.dtls_prev_sequence_number_lo) {
/* handle rollover */
ssl->keys.dtls_prev_sequence_number_hi++;
}
}
else if (order == PEER_ORDER) {
seq = ssl->keys.peer_sequence_number_lo++;
if (seq > ssl->keys.peer_sequence_number_lo) {
/* handle rollover */
ssl->keys.peer_sequence_number_hi++;
}
}
else {
seq = ssl->keys.dtls_sequence_number_lo++;
if (seq > ssl->keys.dtls_sequence_number_lo) {
/* handle rollover */
ssl->keys.dtls_sequence_number_hi++;
}
}
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_DTLS) || !defined(WOLFSSL_NO_TLS12)
void WriteSEQ(WOLFSSL* ssl, int verifyOrder, byte* out)
{
word32 seq[2] = {0, 0};
if (!ssl->options.dtls) {
GetSEQIncrement(ssl, verifyOrder, seq);
}
else {
#ifdef WOLFSSL_DTLS
DtlsGetSEQ(ssl, verifyOrder, seq);
#endif
}
c32toa(seq[0], out);
c32toa(seq[1], out + OPAQUE32_LEN);
}
#endif /* WOLFSSL_DTLS || !WOLFSSL_NO_TLS12 */
#endif /* !NO_OLD_TLS || WOLFSSL_DTLS || !WOLFSSL_NO_TLS12 ||
* ((HAVE_CHACHA || HAVE_AESCCM || HAVE_AESGCM || WOLFSSL_SM4_GCM ||
* WOLFSSL_SM4_CCM) && HAVE_AEAD) */
#ifdef WOLFSSL_DTLS
/* functions for managing DTLS datagram reordering */
/* Need to allocate space for the handshake message header. The hashing
* routines assume the message pointer is still within the buffer that
* has the headers, and will include those headers in the hash. The store
* routines need to take that into account as well. New will allocate
* extra space for the headers. */
DtlsMsg* DtlsMsgNew(word32 sz, byte tx, void* heap)
{
DtlsMsg* msg;
WOLFSSL_ENTER("DtlsMsgNew");
(void)heap;
msg = (DtlsMsg*)XMALLOC(sizeof(DtlsMsg), heap, DYNAMIC_TYPE_DTLS_MSG);
if (msg != NULL) {
XMEMSET(msg, 0, sizeof(DtlsMsg));
msg->sz = sz;
msg->type = no_shake;
if (tx) {
msg->raw = msg->fullMsg =
(byte*)XMALLOC(sz + DTLS_HANDSHAKE_HEADER_SZ, heap,
DYNAMIC_TYPE_DTLS_FRAG);
msg->ready = 1;
if (msg->raw == NULL) {
DtlsMsgDelete(msg, heap);
msg = NULL;
}
}
}
return msg;
}
void DtlsMsgDelete(DtlsMsg* item, void* heap)
{
(void)heap;
WOLFSSL_ENTER("DtlsMsgDelete");
if (item != NULL) {
while (item->fragBucketList != NULL) {
DtlsFragBucket* next = item->fragBucketList->m.m.next;
DtlsMsgDestroyFragBucket(item->fragBucketList, heap);
item->fragBucketList = next;
}
if (item->raw != NULL)
XFREE(item->raw, heap, DYNAMIC_TYPE_DTLS_FRAG);
XFREE(item, heap, DYNAMIC_TYPE_DTLS_MSG);
}
}
void DtlsMsgListDelete(DtlsMsg* head, void* heap)
{
DtlsMsg* next;
WOLFSSL_ENTER("DtlsMsgListDelete");
while (head) {
next = head->next;
DtlsMsgDelete(head, heap);
head = next;
}
}
/**
* Drop messages when they are no longer going to be retransmitted
*/
void DtlsTxMsgListClean(WOLFSSL* ssl)
{
DtlsMsg* head = ssl->dtls_tx_msg_list;
DtlsMsg* next;
WOLFSSL_ENTER("DtlsTxMsgListClean");
while (head) {
next = head->next;
if (VerifyForTxDtlsMsgDelete(ssl, head))
DtlsMsgDelete(head, ssl->heap);
else
/* Stored packets should be in order so break on first failed
* verify */
break;
ssl->dtls_tx_msg_list_sz--;
head = next;
}
ssl->dtls_tx_msg_list = head;
}
static DtlsFragBucket* DtlsMsgCreateFragBucket(word32 offset, const byte* data,
word32 dataSz, void* heap)
{
DtlsFragBucket* bucket =
(DtlsFragBucket*)XMALLOC(sizeof(DtlsFragBucket) + dataSz, heap,
DYNAMIC_TYPE_DTLS_FRAG);
if (bucket != NULL) {
XMEMSET(bucket, 0, sizeof(*bucket));
bucket->m.m.next = NULL;
bucket->m.m.offset = offset;
bucket->m.m.sz = dataSz;
if (data != NULL)
XMEMCPY(bucket->buf, data, dataSz);
}
(void)heap;
return bucket;
}
void DtlsMsgDestroyFragBucket(DtlsFragBucket* fragBucket, void* heap)
{
(void)heap;
XFREE(fragBucket, heap, DYNAMIC_TYPE_DTLS_FRAG);
}
/*
* data overlaps with cur but is before next.
* data + dataSz has to end before or inside next. next can be NULL.
*/
static DtlsFragBucket* DtlsMsgCombineFragBuckets(DtlsMsg* msg,
DtlsFragBucket* cur, DtlsFragBucket* next, word32 offset,
const byte* data, word32 dataSz, void* heap)
{
word32 offsetEnd = offset + dataSz;
word32 newOffset = min(cur->m.m.offset, offset);
word32 newOffsetEnd;
word32 newSz;
word32 overlapSz = cur->m.m.sz;
DtlsFragBucket** chosenBucket;
DtlsFragBucket* newBucket;
DtlsFragBucket* otherBucket;
byte combineNext = FALSE;
if (next != NULL && offsetEnd >= next->m.m.offset)
combineNext = TRUE;
if (combineNext)
newOffsetEnd = next->m.m.offset + next->m.m.sz;
else
newOffsetEnd = max(cur->m.m.offset + cur->m.m.sz, offsetEnd);
newSz = newOffsetEnd - newOffset;
/* Expand the larger bucket if data bridges the gap between cur and next */
if (!combineNext || cur->m.m.sz >= next->m.m.sz) {
chosenBucket = &cur;
otherBucket = next;
}
else {
chosenBucket = &next;
otherBucket = cur;
}
{
#ifdef XREALLOC
DtlsFragBucket* tmp = (DtlsFragBucket*)XREALLOC(*chosenBucket,
sizeof(DtlsFragBucket) + newSz, heap, DYNAMIC_TYPE_DTLS_FRAG);
#else
DtlsFragBucket* tmp = (DtlsFragBucket*)XMALLOC(
sizeof(DtlsFragBucket) + newSz, heap, DYNAMIC_TYPE_DTLS_FRAG);
#endif
if (tmp == NULL)
return NULL;
#ifndef XREALLOC
XMEMCPY(tmp, *chosenBucket, sizeof(DtlsFragBucket) +
(*chosenBucket)->m.m.sz);
#endif
if (chosenBucket == &next) {
/* Update the link */
DtlsFragBucket* beforeNext = cur;
while (beforeNext->m.m.next != next)
beforeNext = beforeNext->m.m.next;
beforeNext->m.m.next = tmp;
}
#ifndef XREALLOC
XFREE(*chosenBucket, heap, DYNAMIC_TYPE_DTLS_FRAG);
#endif
newBucket = *chosenBucket = tmp;
}
if (combineNext) {
/* Put next first since it will always be at the end. Use memmove since
* newBucket may be next. */
XMEMMOVE(newBucket->buf + (next->m.m.offset - newOffset), next->buf,
next->m.m.sz);
/* memory after newOffsetEnd is already copied. Don't do extra work. */
newOffsetEnd = next->m.m.offset;
}
if (newOffset == offset) {
/* data comes first */
if (newOffsetEnd <= offsetEnd) {
/* data encompasses cur. only copy data */
XMEMCPY(newBucket->buf, data,
min(dataSz, newOffsetEnd - newOffset));
}
else {
/* data -> cur. memcpy as much possible as its faster. */
XMEMMOVE(newBucket->buf + dataSz, cur->buf,
cur->m.m.sz - (offsetEnd - cur->m.m.offset));
XMEMCPY(newBucket->buf, data, dataSz);
}
}
else {
/* cur -> data */
word32 curOffsetEnd = cur->m.m.offset + cur->m.m.sz;
if (newBucket != cur)
XMEMCPY(newBucket->buf, cur->buf, cur->m.m.sz);
XMEMCPY(newBucket->buf + cur->m.m.sz,
data + (curOffsetEnd - offset),
newOffsetEnd - curOffsetEnd);
}
/* FINALLY the newBucket is populated correctly */
/* All buckets up to and including next (if combining) have to be free'd */
{
DtlsFragBucket* toFree = cur->m.m.next;
while (toFree != next) {
DtlsFragBucket* n = toFree->m.m.next;
overlapSz += toFree->m.m.sz;
DtlsMsgDestroyFragBucket(toFree, heap);
msg->fragBucketListCount--;
toFree = n;
}
if (combineNext) {
newBucket->m.m.next = next->m.m.next;
overlapSz += next->m.m.sz;
DtlsMsgDestroyFragBucket(otherBucket, heap);
msg->fragBucketListCount--;
}
else {
newBucket->m.m.next = next;
}
}
/* Adjust size in msg */
msg->bytesReceived += newSz - overlapSz;
newBucket->m.m.offset = newOffset;
newBucket->m.m.sz = newSz;
return newBucket;
}
static void DtlsMsgAssembleCompleteMessage(DtlsMsg* msg)
{
DtlsHandShakeHeader* dtls;
/* We have received all necessary fragments. Reconstruct the header. */
if (msg->fragBucketListCount != 1 || msg->fragBucketList->m.m.offset != 0 ||
msg->fragBucketList->m.m.sz != msg->sz) {
WOLFSSL_MSG("Major error in fragment assembly logic");
return;
}
/* Re-cycle the DtlsFragBucket as the buffer that holds the complete
* handshake message and the header. */
msg->raw = (byte*)msg->fragBucketList;
msg->fullMsg = msg->fragBucketList->buf;
msg->ready = 1;
/* frag->padding makes sure we can fit the entire DTLS handshake header
* before frag->buf */
/* note the dtls pointer needs to be computed from msg->fragBucketList, not
* from msg->fragBucketList->buf, to avoid a pointerOutOfBounds access
* detected by cppcheck.
*
* also note, the (void *) intermediate cast is necessary to avoid a
* potential -Wcast-align around alignment of DtlsHandShakeHeader exceeding
* alignment of char.
*/
dtls = (DtlsHandShakeHeader*)(void *)((char *)msg->fragBucketList
+ OFFSETOF(DtlsFragBucket,buf)
- DTLS_HANDSHAKE_HEADER_SZ);
msg->fragBucketList = NULL;
msg->fragBucketListCount = 0;
dtls->type = msg->type;
c32to24(msg->sz, dtls->length);
c16toa((word16)msg->seq, dtls->message_seq);
c32to24(0, dtls->fragment_offset);
c32to24(msg->sz, dtls->fragment_length);
}
int DtlsMsgSet(DtlsMsg* msg, word32 seq, word16 epoch, const byte* data, byte type,
word32 fragOffset, word32 fragSz, void* heap, word32 totalLen,
byte encrypted)
{
word32 fragOffsetEnd = fragOffset + fragSz;
WOLFSSL_ENTER("DtlsMsgSet");
if (msg == NULL || data == NULL || msg->sz != totalLen ||
fragOffsetEnd > totalLen) {
WOLFSSL_ERROR_VERBOSE(BAD_FUNC_ARG);
return BAD_FUNC_ARG;
}
if (msg->ready)
return 0; /* msg is already complete */
if (msg->type != no_shake) {
/* msg is already populated with the correct seq, epoch, and type */
if (msg->type != type || msg->epoch != epoch || msg->seq != seq) {
WOLFSSL_ERROR_VERBOSE(SEQUENCE_ERROR);
return SEQUENCE_ERROR;
}
msg->encrypted = msg->encrypted && encrypted;
}
else {
msg->type = type;
msg->epoch = epoch;
msg->seq = seq;
msg->encrypted = encrypted;
}
if (msg->fragBucketList == NULL) {
/* Clean list. Create first fragment. */
msg->fragBucketList = DtlsMsgCreateFragBucket(fragOffset, data, fragSz, heap);
if (msg->fragBucketList != NULL) {
msg->bytesReceived = fragSz;
msg->fragBucketListCount++;
}
else {
return MEMORY_ERROR;
}
}
else {
/* See if we can expand any existing bucket to fit this new data into */
DtlsFragBucket* prev = NULL;
DtlsFragBucket* cur = msg->fragBucketList;
byte done = 0;
for (; cur != NULL; prev = cur, cur = cur->m.m.next) {
word32 curOffset = cur->m.m.offset;
word32 curEnd = cur->m.m.offset + cur->m.m.sz;
if (fragOffset >= curOffset && fragOffsetEnd <= curEnd) {
/* We already have this fragment */
done = 1;
break;
}
else if (fragOffset <= curEnd) {
/* found place to store fragment */
break;
}
}
if (!done) {
if (cur == NULL) {
/* We reached the end of the list. data is after and disjointed
* from anything we have received so far. */
if (msg->fragBucketListCount >= DTLS_FRAG_POOL_SZ) {
WOLFSSL_ERROR_VERBOSE(DTLS_TOO_MANY_FRAGMENTS_E);
return DTLS_TOO_MANY_FRAGMENTS_E;
}
prev->m.m.next =
DtlsMsgCreateFragBucket(fragOffset, data, fragSz, heap);
if (prev->m.m.next != NULL) {
msg->bytesReceived += fragSz;
msg->fragBucketListCount++;
}
}
else if (prev == NULL && fragOffsetEnd < cur->m.m.offset) {
/* This is the new first fragment we have received */
if (msg->fragBucketListCount >= DTLS_FRAG_POOL_SZ) {
WOLFSSL_ERROR_VERBOSE(DTLS_TOO_MANY_FRAGMENTS_E);
return DTLS_TOO_MANY_FRAGMENTS_E;
}
msg->fragBucketList = DtlsMsgCreateFragBucket(fragOffset, data,
fragSz, heap);
if (msg->fragBucketList != NULL) {
msg->fragBucketList->m.m.next = cur;
msg->bytesReceived += fragSz;
msg->fragBucketListCount++;
}
else {
/* reset on error */
msg->fragBucketList = cur;
}
}
else {
/* Find if this fragment overlaps with any more */
DtlsFragBucket* next = cur->m.m.next;
DtlsFragBucket** prev_next = prev != NULL
? &prev->m.m.next : &msg->fragBucketList;
while (next != NULL &&
(next->m.m.offset + next->m.m.sz) <= fragOffsetEnd)
next = next->m.m.next;
/* We can combine the buckets */
*prev_next = DtlsMsgCombineFragBuckets(msg, cur, next,
fragOffset, data, fragSz, heap);
if (*prev_next == NULL) /* reset on error */
*prev_next = cur;
}
}
}
if (msg->bytesReceived == msg->sz)
DtlsMsgAssembleCompleteMessage(msg);
return 0;
}
DtlsMsg* DtlsMsgFind(DtlsMsg* head, word16 epoch, word32 seq)
{
WOLFSSL_ENTER("DtlsMsgFind");
while (head != NULL && !(head->epoch == epoch && head->seq == seq)) {
head = head->next;
}
return head;
}
void DtlsMsgStore(WOLFSSL* ssl, word16 epoch, word32 seq, const byte* data,
word32 dataSz, byte type, word32 fragOffset, word32 fragSz, void* heap)
{
/* See if seq exists in the list. If it isn't in the list, make
* a new item of size dataSz, copy fragSz bytes from data to msg->msg
* starting at offset fragOffset, and add fragSz to msg->fragSz. If
* the seq is in the list and it isn't full, copy fragSz bytes from
* data to msg->msg starting at offset fragOffset, and add fragSz to
* msg->fragSz. Insertions take into account data already in the list
* in case there are overlaps in the handshake message due to retransmit
* messages. The new item should be inserted into the list in its
* proper position.
*
* 1. Find seq in list, or where seq should go in list. If seq not in
* list, create new item and insert into list. Either case, keep
* pointer to item.
* 2. Copy the data from the message to the stored message where it
* belongs without overlaps.
*/
DtlsMsg* head = ssl->dtls_rx_msg_list;
byte encrypted = ssl->keys.decryptedCur == 1;
WOLFSSL_ENTER("DtlsMsgStore");
if (head != NULL) {
DtlsMsg* cur = DtlsMsgFind(head, epoch, seq);
if (cur == NULL) {
cur = DtlsMsgNew(dataSz, 0, heap);
if (cur != NULL) {
if (DtlsMsgSet(cur, seq, epoch, data, type,
fragOffset, fragSz, heap, dataSz, encrypted) < 0) {
DtlsMsgDelete(cur, heap);
}
else {
ssl->dtls_rx_msg_list_sz++;
head = DtlsMsgInsert(head, cur);
}
}
}
else {
/* If this fails, the data is just dropped. */
DtlsMsgSet(cur, seq, epoch, data, type, fragOffset,
fragSz, heap, dataSz, encrypted);
}
}
else {
head = DtlsMsgNew(dataSz, 0, heap);
if (DtlsMsgSet(head, seq, epoch, data, type, fragOffset,
fragSz, heap, dataSz, encrypted) < 0) {
DtlsMsgDelete(head, heap);
head = NULL;
}
else {
ssl->dtls_rx_msg_list_sz++;
}
}
ssl->dtls_rx_msg_list = head;
}
/* DtlsMsgInsert() is an in-order insert. */
DtlsMsg* DtlsMsgInsert(DtlsMsg* head, DtlsMsg* item)
{
WOLFSSL_ENTER("DtlsMsgInsert");
if (head == NULL || (item->epoch <= head->epoch &&
item->seq < head->seq)) {
item->next = head;
head = item;
}
else if (head->next == NULL) {
head->next = item;
}
else {
DtlsMsg* cur = head->next;
DtlsMsg* prev = head;
while (cur) {
if (item->epoch <= cur->epoch &&
item->seq < cur->seq) {
item->next = cur;
prev->next = item;
break;
}
prev = cur;
cur = cur->next;
}
if (cur == NULL) {
prev->next = item;
}
}
return head;
}
/**
* DtlsMsgPoolSave() adds the message to the end of the stored transmit
* list. Must be called BEFORE BuildMessage or DtlsSEQIncrement or
* anything else that increments ssl->keys.dtls_handshake_number.
*/
int DtlsMsgPoolSave(WOLFSSL* ssl, const byte* data, word32 dataSz,
enum HandShakeType type)
{
DtlsMsg* item;
int ret = 0;
WOLFSSL_ENTER("DtlsMsgPoolSave");
if (ssl->dtls_tx_msg_list_sz > DTLS_POOL_SZ) {
WOLFSSL_ERROR(DTLS_POOL_SZ_E);
return DTLS_POOL_SZ_E;
}
item = DtlsMsgNew(dataSz, 1, ssl->heap);
if (item != NULL) {
DtlsMsg* cur = ssl->dtls_tx_msg_list;
XMEMCPY(item->raw, data, dataSz);
item->epoch = ssl->keys.dtls_epoch;
item->seq = ssl->keys.dtls_handshake_number;
item->type = type;
if (cur == NULL)
ssl->dtls_tx_msg_list = item;
else {
while (cur->next)
cur = cur->next;
cur->next = item;
}
ssl->dtls_tx_msg_list_sz++;
}
else
ret = MEMORY_E;
WOLFSSL_LEAVE("DtlsMsgPoolSave()", ret);
return ret;
}
/* DtlsMsgPoolTimeout() updates the timeout time. */
int DtlsMsgPoolTimeout(WOLFSSL* ssl)
{
int result = -1;
WOLFSSL_ENTER("DtlsMsgPoolTimeout");
if (ssl->dtls_timeout < ssl->dtls_timeout_max) {
ssl->dtls_timeout *= DTLS_TIMEOUT_MULTIPLIER;
result = 0;
}
WOLFSSL_LEAVE("DtlsMsgPoolTimeout()", result);
return result;
}
/* DtlsMsgPoolReset() deletes the stored transmit list. */
void DtlsMsgPoolReset(WOLFSSL* ssl)
{
WOLFSSL_ENTER("DtlsMsgPoolReset");
if (ssl->dtls_tx_msg_list) {
DtlsMsgListDelete(ssl->dtls_tx_msg_list, ssl->heap);
ssl->dtls_tx_msg_list = NULL;
ssl->dtls_tx_msg = NULL;
ssl->dtls_tx_msg_list_sz = 0;
}
#ifdef WOLFSSL_DTLS13
/* Clear DTLS 1.3 buffer too */
Dtls13RtxFlushBuffered(ssl, 1);
#endif
}
int VerifyForDtlsMsgPoolSend(WOLFSSL* ssl, byte type, word32 fragOffset)
{
/**
* only the first message from previous flight should be valid
* to be used for triggering retransmission of whole DtlsMsgPool.
* change cipher suite type is not verified here
*/
if (fragOffset == 0) {
if (ssl->options.side == WOLFSSL_SERVER_END) {
if (type == client_hello)
return 1;
else if (ssl->options.verifyPeer && type == certificate)
return 1;
else if (!ssl->options.verifyPeer && type == client_key_exchange)
return 1;
}
else {
if (type == hello_request || type == server_hello)
return 1;
}
}
return 0;
}
/**
* Verify if message `item` from `ssl->dtls_tx_msg_list` should be deleted
* depending on the current state of the handshake negotiation.
*/
int VerifyForTxDtlsMsgDelete(WOLFSSL* ssl, DtlsMsg* item)
{
WOLFSSL_ENTER("VerifyForTxDtlsMsgDelete");
if (item->epoch < ssl->keys.dtls_epoch - 1)
/* Messages not from current or previous epoch can be deleted */
return 1;
switch (ssl->options.side) {
case WOLFSSL_CLIENT_END:
if (item->type == client_hello &&
ssl->options.serverState >= SERVER_HELLODONE_COMPLETE)
return 1; /* client can forget first client_hello if received full
* flight of packets from server */
else
return 0;
case WOLFSSL_SERVER_END:
if (ssl->options.clientState >= CLIENT_HELLO_COMPLETE &&
item->type == hello_request)
return 1; /* Server can forget HelloRequest if client sent a valid
* ClientHello */
if (ssl->options.clientState >= CLIENT_FINISHED_COMPLETE &&
item->type <= server_hello_done)
return 1; /* server can forget everything up to ServerHelloDone if
* a client finished message has been received and
* successfully processed */
else
return 0;
default:
return 0;
}
}
/* DtlsMsgPoolSend() will send the stored transmit list. The stored list is
* updated with new sequence numbers, and will be re-encrypted if needed. */
int DtlsMsgPoolSend(WOLFSSL* ssl, int sendOnlyFirstPacket)
{
int ret = 0;
DtlsMsg* pool;
WOLFSSL_ENTER("DtlsMsgPoolSend");
pool = ssl->dtls_tx_msg == NULL ? ssl->dtls_tx_msg_list : ssl->dtls_tx_msg;
if (pool != NULL) {
if ((ssl->options.side == WOLFSSL_SERVER_END &&
!(ssl->options.acceptState == ACCEPT_BEGIN_RENEG ||
ssl->options.acceptState == SERVER_HELLO_DONE ||
ssl->options.acceptState == ACCEPT_FINISHED_DONE ||
ssl->options.acceptState == ACCEPT_THIRD_REPLY_DONE)) ||
(ssl->options.side == WOLFSSL_CLIENT_END &&
!(ssl->options.connectState == CLIENT_HELLO_SENT ||
ssl->options.connectState == HELLO_AGAIN_REPLY ||
ssl->options.connectState == FINISHED_DONE ||
ssl->options.connectState == SECOND_REPLY_DONE))) {
WOLFSSL_ERROR(DTLS_RETX_OVER_TX);
ssl->error = DTLS_RETX_OVER_TX;
return WOLFSSL_FATAL_ERROR;
}
while (pool != NULL) {
int epochOrder;
if (pool->epoch == 0) {
DtlsRecordLayerHeader* dtls;
dtls = (DtlsRecordLayerHeader*)pool->raw;
/* If the stored record's epoch is 0, and the currently set
* epoch is 0, use the "current order" sequence number.
* If the stored record's epoch is 0 and the currently set
* epoch is not 0, the stored record is considered a "previous
* order" sequence number. */
epochOrder = (ssl->keys.dtls_epoch == 0) ?
CUR_ORDER : PREV_ORDER;
WriteSEQ(ssl, epochOrder, dtls->sequence_number);
DtlsSEQIncrement(ssl, epochOrder);
if ((ret = CheckAvailableSize(ssl, pool->sz)) != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
XMEMCPY(GetOutputBuffer(ssl), pool->raw, pool->sz);
ssl->buffers.outputBuffer.length += pool->sz;
}
else {
/* Handle sending packets from previous epoch */
byte* input;
byte* output;
int inputSz, sendSz;
input = pool->raw;
inputSz = pool->sz;
sendSz = inputSz + cipherExtraData(ssl);
#ifdef HAVE_SECURE_RENEGOTIATION
/*
* CUR_ORDER will use ssl->secure_renegotiation from epoch 2+.
* ssl->keys otherwise
* PREV_ORDER will always use ssl->keys
*/
if (DtlsSCRKeysSet(ssl)) {
if (pool->epoch == ssl->secure_renegotiation->tmp_keys.dtls_epoch)
epochOrder = CUR_ORDER;
else
epochOrder = PREV_ORDER;
}
else {
epochOrder = CUR_ORDER;
}
#else
epochOrder = CUR_ORDER;
#endif
/* add back in record header space from saved pool size */
sendSz += DTLS_RECORD_HEADER_SZ;
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
output = GetOutputBuffer(ssl);
if (inputSz != ENUM_LEN)
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 0, 0, 0, epochOrder);
else
/* inputSz == ENUM_LEN must mean that this is a change cipher
* spec message */
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
change_cipher_spec, 0, 0, 0, epochOrder);
if (sendSz < 0) {
WOLFSSL_ERROR(BUILD_MSG_ERROR);
return BUILD_MSG_ERROR;
}
ssl->buffers.outputBuffer.length += sendSz;
}
if (!ssl->options.groupMessages)
ret = SendBuffered(ssl);
/**
* on server side, retransmission is being triggered only by sending
* first message of given flight, in order to trigger client
* to retransmit its whole flight. Sending the whole previous flight
* could lead to retransmission of previous client flight for each
* server message from previous flight. Therefore one message should
* be enough to do the trick.
*/
if (sendOnlyFirstPacket &&
ssl->options.side == WOLFSSL_SERVER_END)
pool = NULL;
else
pool = pool->next;
ssl->dtls_tx_msg = pool;
}
if (ret == 0 && ssl->options.groupMessages)
ret = SendBuffered(ssl);
}
WOLFSSL_LEAVE("DtlsMsgPoolSend()", ret);
return ret;
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
ProtocolVersion MakeSSLv3(void)
{
ProtocolVersion pv;
pv.major = SSLv3_MAJOR;
pv.minor = SSLv3_MINOR;
return pv;
}
#endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */
#ifdef WOLFSSL_DTLS
ProtocolVersion MakeDTLSv1(void)
{
ProtocolVersion pv;
pv.major = DTLS_MAJOR;
pv.minor = DTLS_MINOR;
return pv;
}
#ifndef WOLFSSL_NO_TLS12
ProtocolVersion MakeDTLSv1_2(void)
{
ProtocolVersion pv;
pv.major = DTLS_MAJOR;
pv.minor = DTLSv1_2_MINOR;
return pv;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_DTLS13
ProtocolVersion MakeDTLSv1_3(void)
{
ProtocolVersion pv;
pv.major = DTLS_MAJOR;
pv.minor = DTLSv1_3_MINOR;
return pv;
}
#endif /* WOLFSSL_DTLS13 */
#endif /* WOLFSSL_DTLS */
#ifndef NO_ASN_TIME
#if defined(USER_TICKS)
#if 0
word32 LowResTimer(void)
{
/*
write your own clock tick function if don't want time(0)
needs second accuracy but doesn't have to correlated to EPOCH
*/
}
#endif
#elif defined(TIME_OVERRIDES)
#if !defined(NO_ASN) && !defined(NO_ASN_TIME)
/* use same asn time overrides unless user wants tick override above */
word32 LowResTimer(void)
{
return (word32) wc_Time(0);
}
#else
#ifndef HAVE_TIME_T_TYPE
typedef long time_t;
#endif
extern time_t XTIME(time_t * timer);
word32 LowResTimer(void)
{
return (word32) XTIME(0);
}
#endif
#elif defined(USE_WINDOWS_API)
word32 LowResTimer(void)
{
static int init = 0;
static LARGE_INTEGER freq;
LARGE_INTEGER count;
if (!init) {
QueryPerformanceFrequency(&freq);
init = 1;
}
QueryPerformanceCounter(&count);
return (word32)(count.QuadPart / freq.QuadPart);
}
#elif defined(HAVE_RTP_SYS)
#include "rtptime.h"
word32 LowResTimer(void)
{
return (word32)rtp_get_system_sec();
}
#elif defined(WOLFSSL_DEOS)
word32 LowResTimer(void)
{
const word32 systemTickTimeInHz = 1000000 / systemTickInMicroseconds();
const volatile word32 *systemTickPtr = systemTickPointer();
return (word32) *systemTickPtr/systemTickTimeInHz;
}
#elif defined(MICRIUM)
word32 LowResTimer(void)
{
OS_TICK ticks = 0;
OS_ERR err;
ticks = OSTimeGet(&err);
return (word32) (ticks / OSCfg_TickRate_Hz);
}
#elif defined(MICROCHIP_TCPIP_V5)
word32 LowResTimer(void)
{
return (word32) (TickGet() / TICKS_PER_SECOND);
}
#elif defined(MICROCHIP_TCPIP)
#if defined(MICROCHIP_MPLAB_HARMONY)
#include <system/tmr/sys_tmr.h>
word32 LowResTimer(void)
{
return (word32) (SYS_TMR_TickCountGet() /
SYS_TMR_TickCounterFrequencyGet());
}
#else
word32 LowResTimer(void)
{
return (word32) (SYS_TICK_Get() / SYS_TICK_TicksPerSecondGet());
}
#endif
#elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
word32 LowResTimer(void)
{
TIME_STRUCT mqxTime;
_time_get_elapsed(&mqxTime);
return (word32) mqxTime.SECONDS;
}
#elif defined(FREESCALE_FREE_RTOS) || defined(FREESCALE_KSDK_FREERTOS)
#include "include/task.h"
unsigned int LowResTimer(void)
{
return (unsigned int)(((float)xTaskGetTickCount())/configTICK_RATE_HZ);
}
#elif defined(FREERTOS)
#include "task.h"
unsigned int LowResTimer(void)
{
return (unsigned int)(((float)xTaskGetTickCount())/configTICK_RATE_HZ);
}
#elif defined(FREESCALE_KSDK_BM)
#include "lwip/sys.h" /* lwIP */
word32 LowResTimer(void)
{
return sys_now()/1000;
}
#elif defined(WOLFSSL_CMSIS_RTOS) || defined(WOLFSSL_CMSIS_RTOSv2)
word32 LowResTimer(void)
{
return (word32)osKernelGetTickCount() / 1000;
}
#elif defined(WOLFSSL_TIRTOS)
word32 LowResTimer(void)
{
return (word32) Seconds_get();
}
#elif defined(WOLFSSL_XILINX)
#include "xrtcpsu.h"
word32 LowResTimer(void)
{
XRtcPsu_Config* con;
XRtcPsu rtc;
con = XRtcPsu_LookupConfig(XPAR_XRTCPSU_0_DEVICE_ID);
if (con != NULL) {
if (XRtcPsu_CfgInitialize(&rtc, con, con->BaseAddr)
== XST_SUCCESS) {
return (word32)XRtcPsu_GetCurrentTime(&rtc);
}
else {
WOLFSSL_MSG("Unable to initialize RTC");
}
}
return 0;
}
#elif defined(WOLFSSL_UTASKER)
word32 LowResTimer(void)
{
return (word32)(uTaskerSystemTick / TICK_RESOLUTION);
}
#elif defined(WOLFSSL_NUCLEUS_1_2)
#define NU_TICKS_PER_SECOND 100
word32 LowResTimer(void)
{
/* returns number of 10ms ticks, so 100 ticks/sec */
return NU_Retrieve_Clock() / NU_TICKS_PER_SECOND;
}
#elif defined(WOLFSSL_APACHE_MYNEWT)
#include "os/os_time.h"
word32 LowResTimer(void)
{
word32 now;
struct os_timeval tv;
os_gettimeofday(&tv, NULL);
now = (word32)tv.tv_sec;
return now;
}
#elif defined(WOLFSSL_ZEPHYR)
word32 LowResTimer(void)
{
return k_uptime_get() / 1000;
}
#elif defined(WOLFSSL_LINUXKM)
word32 LowResTimer(void)
{
return (word32)time(NULL);
}
#else
/* Posix style time */
#if !defined(USER_TIME) && !defined(USE_WOLF_TM)
#include <time.h>
#endif
word32 LowResTimer(void)
{
#if !defined(NO_ASN) && !defined(NO_ASN_TIME)
return (word32)wc_Time(0);
#else
return (word32)XTIME(0);
#endif
}
#endif
#else
/* user must supply timer function to return elapsed seconds:
* word32 LowResTimer(void);
*/
#endif /* !NO_ASN_TIME */
#if !defined(WOLFSSL_NO_CLIENT_AUTH) && \
((defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)) || \
(defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)) || \
(defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)))
/* Store the message for use with CertificateVerify using EdDSA.
*
* ssl SSL/TLS object.
* data Message to store.
* sz Size of message to store.
* returns MEMORY_E if not able to reallocate, otherwise 0.
*/
static int EdDSA_Update(WOLFSSL* ssl, const byte* data, int sz)
{
int ret = 0;
byte* msgs;
if (ssl->options.cacheMessages) {
msgs = (byte*)XMALLOC(ssl->hsHashes->length + sz, ssl->heap,
DYNAMIC_TYPE_HASHES);
if (msgs == NULL)
ret = MEMORY_E;
if ((ret == 0) && (ssl->hsHashes->messages != NULL)) {
XMEMCPY(msgs, ssl->hsHashes->messages, ssl->hsHashes->length);
ForceZero(ssl->hsHashes->messages, ssl->hsHashes->length);
XFREE(ssl->hsHashes->messages, ssl->heap, DYNAMIC_TYPE_HASHES);
}
if (ret == 0) {
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("Handshake messages", msgs,
ssl->hsHashes->length + sz);
#endif
ssl->hsHashes->messages = msgs;
XMEMCPY(msgs + ssl->hsHashes->length, data, sz);
ssl->hsHashes->prevLen = ssl->hsHashes->length;
ssl->hsHashes->length += sz;
}
}
return ret;
}
#endif /* (HAVE_ED25519 || HAVE_ED448) && !WOLFSSL_NO_CLIENT_AUTH */
int HashRaw(WOLFSSL* ssl, const byte* data, int sz)
{
int ret = 0;
#ifdef WOLFSSL_DEBUG_TLS
byte digest[WC_MAX_DIGEST_SIZE];
WOLFSSL_MSG("HashRaw:");
WOLFSSL_MSG("Data:");
WOLFSSL_BUFFER(data, sz);
WOLFSSL_MSG("Hashes:");
#endif
(void)data;
(void)sz;
if (ssl->hsHashes == NULL) {
return BAD_FUNC_ARG;
}
#if defined(WOLFSSL_RENESAS_TSIP_TLS)
ret = tsip_StoreMessage(ssl, data, sz);
if (ret != 0 && ret != CRYPTOCB_UNAVAILABLE) {
return ret;
}
#endif /* WOLFSSL_RENESAS_TSIP_TLS */
#ifndef NO_OLD_TLS
#ifndef NO_SHA
wc_ShaUpdate(&ssl->hsHashes->hashSha, data, sz);
#endif
#ifndef NO_MD5
wc_Md5Update(&ssl->hsHashes->hashMd5, data, sz);
#endif
#endif /* NO_OLD_TLS */
if (IsAtLeastTLSv1_2(ssl)) {
#ifndef NO_SHA256
ret = wc_Sha256Update(&ssl->hsHashes->hashSha256, data, sz);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Sha256");
wc_Sha256GetHash(&ssl->hsHashes->hashSha256, digest);
WOLFSSL_BUFFER(digest, WC_SHA256_DIGEST_SIZE);
#endif
#endif
#ifdef WOLFSSL_SHA384
ret = wc_Sha384Update(&ssl->hsHashes->hashSha384, data, sz);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Sha384");
wc_Sha384GetHash(&ssl->hsHashes->hashSha384, digest);
WOLFSSL_BUFFER(digest, WC_SHA384_DIGEST_SIZE);
#endif
#endif
#ifdef WOLFSSL_SHA512
ret = wc_Sha512Update(&ssl->hsHashes->hashSha512, data, sz);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Sha512");
wc_Sha512GetHash(&ssl->hsHashes->hashSha512, digest);
WOLFSSL_BUFFER(digest, WC_SHA512_DIGEST_SIZE);
#endif
#endif
#ifdef WOLFSSL_SM3
ret = wc_Sm3Update(&ssl->hsHashes->hashSm3, data, sz);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("SM3");
wc_Sm3GetHash(&ssl->hsHashes->hashSm3, digest);
WOLFSSL_BUFFER(digest, WC_SM3_DIGEST_SIZE);
#endif
#endif
#if !defined(WOLFSSL_NO_CLIENT_AUTH) && \
((defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)) || \
(defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)) || \
(defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)))
ret = EdDSA_Update(ssl, data, sz);
if (ret != 0)
return ret;
#endif
}
return ret;
}
/* add output to md5 and sha handshake hashes, exclude record header */
int HashOutput(WOLFSSL* ssl, const byte* output, int sz, int ivSz)
{
const byte* adj;
if (ssl->hsHashes == NULL)
return BAD_FUNC_ARG;
adj = output + RECORD_HEADER_SZ + ivSz;
sz -= RECORD_HEADER_SZ;
#ifdef HAVE_FUZZER
if (ssl->fuzzerCb)
ssl->fuzzerCb(ssl, output, sz, FUZZ_HASH, ssl->fuzzerCtx);
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
if (IsAtLeastTLSv1_3(ssl->version)) {
#ifdef WOLFSSL_DTLS13
word16 dtls_record_extra;
dtls_record_extra = Dtls13GetRlHeaderLength(ssl, (byte)IsEncryptionOn(ssl, 1));
dtls_record_extra -= RECORD_HEADER_SZ;
adj += dtls_record_extra;
sz -= dtls_record_extra;
#endif /* WOLFSSL_DTLS13 */
} else {
adj += DTLS_RECORD_EXTRA;
sz -= DTLS_RECORD_EXTRA;
}
}
#endif
return HashRaw(ssl, adj, sz);
}
/* add input to md5 and sha handshake hashes, include handshake header */
int HashInput(WOLFSSL* ssl, const byte* input, int sz)
{
const byte* adj;
if (ssl->hsHashes == NULL) {
return BAD_FUNC_ARG;
}
adj = input - HANDSHAKE_HEADER_SZ;
sz += HANDSHAKE_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
adj -= DTLS_HANDSHAKE_EXTRA;
sz += DTLS_HANDSHAKE_EXTRA;
#ifdef WOLFSSL_DTLS13
if (IsAtLeastTLSv1_3(ssl->version))
return Dtls13HashHandshake(ssl, adj, (word16)sz);
#endif /* WOLFSSL_DTLS13 */
}
#endif
return HashRaw(ssl, adj, sz);
}
/* add record layer header for message */
static void AddRecordHeader(byte* output, word32 length, byte type, WOLFSSL* ssl, int epochOrder)
{
RecordLayerHeader* rl;
(void)epochOrder;
/* record layer header */
rl = (RecordLayerHeader*)output;
if (rl == NULL) {
return;
}
rl->type = type;
rl->pvMajor = ssl->version.major; /* type and version same in each */
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
rl->pvMinor = TLSv1_2_MINOR;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
rl->pvMinor = DTLSv1_2_MINOR;
#endif /* WOLFSSL_DTLS */
}
else
#endif
rl->pvMinor = ssl->version.minor;
#ifdef WOLFSSL_ALTERNATIVE_DOWNGRADE
if (ssl->options.side == WOLFSSL_CLIENT_END
&& ssl->options.connectState == CONNECT_BEGIN
&& !ssl->options.resuming) {
rl->pvMinor = ssl->options.downgrade ? ssl->options.minDowngrade
: ssl->version.minor;
}
#endif
if (!ssl->options.dtls) {
c16toa((word16)length, rl->length);
}
else {
#ifdef WOLFSSL_DTLS
DtlsRecordLayerHeader* dtls;
/* dtls record layer header extensions */
dtls = (DtlsRecordLayerHeader*)output;
WriteSEQ(ssl, epochOrder, dtls->sequence_number);
c16toa((word16)length, dtls->length);
#endif
}
}
#if !defined(WOLFSSL_NO_TLS12) || (defined(HAVE_SESSION_TICKET) && \
!defined(NO_WOLFSSL_SERVER))
/* add handshake header for message */
static void AddHandShakeHeader(byte* output, word32 length,
word32 fragOffset, word32 fragLength,
byte type, WOLFSSL* ssl)
{
HandShakeHeader* hs;
(void)fragOffset;
(void)fragLength;
(void)ssl;
/* handshake header */
hs = (HandShakeHeader*)output;
if (hs == NULL)
return;
hs->type = type;
c32to24(length, hs->length); /* type and length same for each */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
DtlsHandShakeHeader* dtls;
/* dtls handshake header extensions */
dtls = (DtlsHandShakeHeader*)output;
c16toa(ssl->keys.dtls_handshake_number++, dtls->message_seq);
c32to24(fragOffset, dtls->fragment_offset);
c32to24(fragLength, dtls->fragment_length);
}
#endif
}
/* add both headers for handshake message */
static void AddHeaders(byte* output, word32 length, byte type, WOLFSSL* ssl)
{
word32 lengthAdj = HANDSHAKE_HEADER_SZ;
word32 outputAdj = RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
lengthAdj += DTLS_HANDSHAKE_EXTRA;
outputAdj += DTLS_RECORD_EXTRA;
}
#endif
AddRecordHeader(output, length + lengthAdj, handshake, ssl, CUR_ORDER);
AddHandShakeHeader(output + outputAdj, length, 0, length, type, ssl);
}
#endif /* !WOLFSSL_NO_TLS12 || (HAVE_SESSION_TICKET && !NO_WOLFSSL_SERVER) */
#ifndef WOLFSSL_NO_TLS12
#if !defined(NO_CERTS) && (!defined(NO_WOLFSSL_SERVER) || \
!defined(WOLFSSL_NO_CLIENT_AUTH)) || \
defined(WOLFSSL_DTLS)
static void AddFragHeaders(byte* output, word32 fragSz, word32 fragOffset,
word32 length, byte type, WOLFSSL* ssl)
{
word32 lengthAdj = HANDSHAKE_HEADER_SZ;
word32 outputAdj = RECORD_HEADER_SZ;
(void)fragSz;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
lengthAdj += DTLS_HANDSHAKE_EXTRA;
outputAdj += DTLS_RECORD_EXTRA;
}
#endif
AddRecordHeader(output, fragSz + lengthAdj, handshake, ssl, CUR_ORDER);
AddHandShakeHeader(output + outputAdj, length, fragOffset, fragSz, type, ssl);
}
#endif /* NO_CERTS */
#if !defined(NO_WOLFSSL_SERVER) || \
(!defined(NO_WOLFSSL_CLIENT) && !defined(NO_CERTS) && \
!defined(WOLFSSL_NO_CLIENT_AUTH))
/**
* Send the handshake message. This function handles fragmenting the message
* so that it will fit into the desired MTU or the max fragment size.
* @param ssl Connection object
* @param input Input starting at the record layer header. This function
* assumes that the appropriate record and handshake headers
* are present. These headers must assume no fragmentation.
* That is handled here.
* @param inputSz Length of message excluding headers (this is the total
* length of all fragments)
* @param type Type of message being sent
* @return 0 on success and negative otherwise
*/
static int SendHandshakeMsg(WOLFSSL* ssl, byte* input, word32 inputSz,
enum HandShakeType type, const char* packetName)
{
int maxFrag;
int ret = 0;
int headerSz;
WOLFSSL_ENTER("SendHandshakeMsg");
(void)type;
(void)packetName;
if (ssl == NULL || input == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
headerSz = DTLS_RECORD_HEADER_SZ + DTLS_HANDSHAKE_HEADER_SZ;
else
#endif
{
/* In TLS we send one handshake header in total, not one
* per fragment like in DTLS. The handshake header should
* already be in the input buffer. */
inputSz += HANDSHAKE_HEADER_SZ;
headerSz = RECORD_HEADER_SZ;
}
maxFrag = wolfSSL_GetMaxFragSize(ssl, (int)inputSz);
/* Make sure input is not the ssl output buffer as this
* function doesn't handle that */
if (input >= ssl->buffers.outputBuffer.buffer &&
input < ssl->buffers.outputBuffer.buffer +
ssl->buffers.outputBuffer.bufferSize) {
WOLFSSL_MSG("Can't use output buffer for input in SendHandshakeMsg");
return BAD_FUNC_ARG;
}
if (!ssl->options.buildingMsg) {
/* Hash it before the loop as we modify the input with
* encryption on */
ret = HashOutput(ssl, input, headerSz + (int)inputSz, 0);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DTLS
/* Decrement msg number so that we continue to use the
* same msg number for this msg */
if (ssl->options.dtls)
ssl->keys.dtls_handshake_number--;
#endif
}
while (ssl->fragOffset < inputSz) {
byte* output;
int outputSz;
byte* data = input + ssl->fragOffset + headerSz;
word32 fragSz = (word32)maxFrag;
ssl->options.buildingMsg = 1;
if (inputSz - ssl->fragOffset < fragSz)
fragSz = inputSz - ssl->fragOffset;
/* check for available size */
outputSz = headerSz + fragSz;
if (IsEncryptionOn(ssl, 1))
outputSz += cipherExtraData(ssl);
if ((ret = CheckAvailableSize(ssl, outputSz)) != 0)
return ret;
if (ssl->buffers.outputBuffer.buffer == NULL)
return MEMORY_E;
output = GetOutputBuffer(ssl);
if (IsEncryptionOn(ssl, 1)) {
/* First we need to add the fragment header ourselves.
* We do this in the input to minimize allocations */
int dataSz = (int)fragSz;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
data -= DTLS_HANDSHAKE_HEADER_SZ;
dataSz += DTLS_HANDSHAKE_HEADER_SZ;
AddHandShakeHeader(data, inputSz, ssl->fragOffset, fragSz,
type, ssl);
ssl->keys.dtls_handshake_number--;
}
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, data,
fragSz + DTLS_HANDSHAKE_HEADER_SZ, type))
!= 0)
return ret;
#endif
ret = BuildMessage(ssl, output, outputSz,
data, dataSz, handshake, 0, 0, 0, CUR_ORDER);
if (ret >= 0)
outputSz = ret;
else
return ret;
ret = 0;
}
else {
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
AddFragHeaders(output, fragSz, ssl->fragOffset,
inputSz, type, ssl);
else
#endif
AddRecordHeader(output, fragSz, handshake, ssl, CUR_ORDER);
XMEMCPY(output + headerSz, data, fragSz);
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->keys.dtls_handshake_number--;
DtlsSEQIncrement(ssl, CUR_ORDER);
}
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, output, headerSz + fragSz,
type)) != 0) {
return ret;
}
}
#endif
}
ssl->buffers.outputBuffer.length += outputSz;
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn) {
AddPacketName(ssl, packetName);
}
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, packetName, handshake,
output, outputSz, WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->fragOffset += fragSz;
if (!ssl->options.groupMessages)
ret = SendBuffered(ssl);
if (ret != 0)
return ret;
}
#ifdef WOLFSSL_DTLS
/* Increment msg number once we sent all fragments */
if (ssl->options.dtls)
ssl->keys.dtls_handshake_number++;
#endif
ssl->fragOffset = 0;
ssl->options.buildingMsg = 0;
return ret;
}
#endif /* !NO_WOLFSSL_SERVER || (!NO_WOLFSSL_CLIENT && !NO_CERTS &&
* !WOLFSSL_NO_CLIENT_AUTH) */
#endif /* !WOLFSSL_NO_TLS12 */
/* return bytes received, -1 on error */
static int wolfSSLReceive(WOLFSSL* ssl, byte* buf, word32 sz)
{
int recvd;
int retryLimit = WOLFSSL_MODE_AUTO_RETRY_ATTEMPTS;
#ifdef WOLFSSL_QUIC
if (WOLFSSL_IS_QUIC(ssl)) {
/* QUIC only "reads" from data provided by the application
* via wolfSSL_provide_quic_data(). Transfer from there
* into the inputBuffer. */
return wolfSSL_quic_receive(ssl, buf, sz);
}
#endif
if (ssl->CBIORecv == NULL) {
WOLFSSL_MSG("Your IO Recv callback is null, please set");
return -1;
}
retry:
recvd = ssl->CBIORecv(ssl, (char *)buf, (int)sz, ssl->IOCB_ReadCtx);
if (recvd < 0) {
switch (recvd) {
case WOLFSSL_CBIO_ERR_GENERAL: /* general/unknown error */
#ifdef WOLFSSL_APACHE_HTTPD
#ifndef NO_BIO
if (ssl->biord) {
/* If retry and read flags are set, return WANT_READ */
if ((ssl->biord->flags & WOLFSSL_BIO_FLAG_READ) &&
(ssl->biord->flags & WOLFSSL_BIO_FLAG_RETRY)) {
return WANT_READ;
}
}
#endif
#endif
return -1;
case WOLFSSL_CBIO_ERR_WANT_READ: /* want read, would block */
if (retryLimit > 0 && ssl->ctx->autoRetry &&
!ssl->options.handShakeDone && !ssl->options.dtls) {
retryLimit--;
goto retry;
}
return WANT_READ;
case WOLFSSL_CBIO_ERR_CONN_RST: /* connection reset */
#ifdef USE_WINDOWS_API
if (ssl->options.dtls) {
goto retry;
}
#endif
ssl->options.connReset = 1;
return -1;
case WOLFSSL_CBIO_ERR_ISR: /* interrupt */
/* see if we got our timeout */
#ifdef WOLFSSL_CALLBACKS
if (ssl->toInfoOn) {
struct itimerval timeout;
getitimer(ITIMER_REAL, &timeout);
if (timeout.it_value.tv_sec == 0 &&
timeout.it_value.tv_usec == 0) {
XSTRNCPY(ssl->timeoutInfo.timeoutName,
"recv() timeout", MAX_TIMEOUT_NAME_SZ);
ssl->timeoutInfo.timeoutName[
MAX_TIMEOUT_NAME_SZ] = '\0';
WOLFSSL_MSG("Got our timeout");
return WANT_READ;
}
}
#endif
goto retry;
case WOLFSSL_CBIO_ERR_CONN_CLOSE: /* peer closed connection */
ssl->options.isClosed = 1;
return -1;
case WOLFSSL_CBIO_ERR_TIMEOUT:
#ifdef WOLFSSL_DTLS
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
/* TODO: support WANT_WRITE here */
if (Dtls13RtxTimeout(ssl) < 0) {
WOLFSSL_MSG(
"Error trying to retransmit DTLS buffered message");
return -1;
}
goto retry;
}
#endif /* WOLFSSL_DTLS13 */
if (IsDtlsNotSctpMode(ssl) &&
ssl->options.handShakeState != HANDSHAKE_DONE &&
DtlsMsgPoolTimeout(ssl) == 0 &&
DtlsMsgPoolSend(ssl, 0) == 0) {
/* retry read for DTLS during handshake only */
goto retry;
}
#endif
return -1;
default:
WOLFSSL_MSG("Unexpected recv return code");
return recvd;
}
}
return recvd;
}
/* Switch dynamic output buffer back to static, buffer is assumed clear */
void ShrinkOutputBuffer(WOLFSSL* ssl)
{
WOLFSSL_MSG("Shrinking output buffer");
XFREE(ssl->buffers.outputBuffer.buffer - ssl->buffers.outputBuffer.offset,
ssl->heap, DYNAMIC_TYPE_OUT_BUFFER);
ssl->buffers.outputBuffer.buffer = ssl->buffers.outputBuffer.staticBuffer;
ssl->buffers.outputBuffer.bufferSize = STATIC_BUFFER_LEN;
ssl->buffers.outputBuffer.dynamicFlag = 0;
ssl->buffers.outputBuffer.offset = 0;
/* idx and length are assumed to be 0. */
}
/* Switch dynamic input buffer back to static, keep any remaining input */
/* forced free means cleaning up */
/* Be *CAREFUL* where this function is called. ProcessReply relies on
* inputBuffer.idx *NOT* changing inside the ProcessReply function. ProcessReply
* calls ShrinkInputBuffer itself when it is safe to do so. Don't overuse it. */
void ShrinkInputBuffer(WOLFSSL* ssl, int forcedFree)
{
int usedLength = ssl->buffers.inputBuffer.length -
ssl->buffers.inputBuffer.idx;
if (!forcedFree && (usedLength > STATIC_BUFFER_LEN ||
ssl->buffers.clearOutputBuffer.length > 0))
return;
WOLFSSL_MSG("Shrinking input buffer");
if (!forcedFree && usedLength > 0) {
XMEMCPY(ssl->buffers.inputBuffer.staticBuffer,
ssl->buffers.inputBuffer.buffer + ssl->buffers.inputBuffer.idx,
usedLength);
}
ForceZero(ssl->buffers.inputBuffer.buffer,
ssl->buffers.inputBuffer.length);
XFREE(ssl->buffers.inputBuffer.buffer - ssl->buffers.inputBuffer.offset,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
ssl->buffers.inputBuffer.buffer = ssl->buffers.inputBuffer.staticBuffer;
ssl->buffers.inputBuffer.bufferSize = STATIC_BUFFER_LEN;
ssl->buffers.inputBuffer.dynamicFlag = 0;
ssl->buffers.inputBuffer.offset = 0;
ssl->buffers.inputBuffer.idx = 0;
ssl->buffers.inputBuffer.length = usedLength;
}
int SendBuffered(WOLFSSL* ssl)
{
int retryLimit = WOLFSSL_MODE_AUTO_RETRY_ATTEMPTS;
if (ssl->CBIOSend == NULL && !WOLFSSL_IS_QUIC(ssl)) {
WOLFSSL_MSG("Your IO Send callback is null, please set");
return SOCKET_ERROR_E;
}
#ifdef WOLFSSL_DEBUG_TLS
if (ssl->buffers.outputBuffer.idx == 0) {
WOLFSSL_MSG("Data to send");
WOLFSSL_BUFFER(ssl->buffers.outputBuffer.buffer,
ssl->buffers.outputBuffer.length);
}
#endif
#ifdef WOLFSSL_QUIC
if (WOLFSSL_IS_QUIC(ssl)) {
return wolfSSL_quic_send(ssl);
}
#endif
while (ssl->buffers.outputBuffer.length > 0) {
int sent = 0;
retry:
sent = ssl->CBIOSend(ssl,
(char*)ssl->buffers.outputBuffer.buffer +
ssl->buffers.outputBuffer.idx,
(int)ssl->buffers.outputBuffer.length,
ssl->IOCB_WriteCtx);
if (sent < 0) {
switch (sent) {
case WOLFSSL_CBIO_ERR_WANT_WRITE: /* would block */
if (retryLimit > 0 && ssl->ctx->autoRetry &&
!ssl->options.handShakeDone && !ssl->options.dtls) {
retryLimit--;
goto retry;
}
return WANT_WRITE;
case WOLFSSL_CBIO_ERR_CONN_RST: /* connection reset */
ssl->options.connReset = 1;
break;
case WOLFSSL_CBIO_ERR_ISR: /* interrupt */
/* see if we got our timeout */
#ifdef WOLFSSL_CALLBACKS
if (ssl->toInfoOn) {
struct itimerval timeout;
getitimer(ITIMER_REAL, &timeout);
if (timeout.it_value.tv_sec == 0 &&
timeout.it_value.tv_usec == 0) {
XSTRNCPY(ssl->timeoutInfo.timeoutName,
"send() timeout", MAX_TIMEOUT_NAME_SZ);
ssl->timeoutInfo.timeoutName[
MAX_TIMEOUT_NAME_SZ] = '\0';
WOLFSSL_MSG("Got our timeout");
return WANT_WRITE;
}
}
#endif
continue;
case WOLFSSL_CBIO_ERR_CONN_CLOSE: /* epipe / conn closed */
ssl->options.connReset = 1; /* treat same as reset */
break;
default:
return SOCKET_ERROR_E;
}
return SOCKET_ERROR_E;
}
if (sent > (int)ssl->buffers.outputBuffer.length) {
WOLFSSL_MSG("SendBuffered() out of bounds read");
return SEND_OOB_READ_E;
}
ssl->buffers.outputBuffer.idx += sent;
ssl->buffers.outputBuffer.length -= sent;
}
ssl->buffers.outputBuffer.idx = 0;
if (ssl->buffers.outputBuffer.dynamicFlag)
ShrinkOutputBuffer(ssl);
return 0;
}
/* returns the current location in the output buffer to start writing to */
byte* GetOutputBuffer(WOLFSSL* ssl)
{
return ssl->buffers.outputBuffer.buffer + ssl->buffers.outputBuffer.idx +
ssl->buffers.outputBuffer.length;
}
/* Grow the output buffer */
static WC_INLINE int GrowOutputBuffer(WOLFSSL* ssl, int size)
{
byte* tmp;
#if WOLFSSL_GENERAL_ALIGNMENT > 0
byte hdrSz = ssl->options.dtls ? DTLS_RECORD_HEADER_SZ :
RECORD_HEADER_SZ;
byte align = WOLFSSL_GENERAL_ALIGNMENT;
#else
const byte align = WOLFSSL_GENERAL_ALIGNMENT;
#endif
int newSz = size + ssl->buffers.outputBuffer.idx +
ssl->buffers.outputBuffer.length;
#if WOLFSSL_GENERAL_ALIGNMENT > 0
/* the encrypted data will be offset from the front of the buffer by
the header, if the user wants encrypted alignment they need
to define their alignment requirement */
while (align < hdrSz)
align *= 2;
#endif
tmp = (byte*)XMALLOC(newSz + align, ssl->heap, DYNAMIC_TYPE_OUT_BUFFER);
WOLFSSL_MSG("growing output buffer");
if (tmp == NULL)
return MEMORY_E;
#if WOLFSSL_GENERAL_ALIGNMENT > 0
if (align)
tmp += align - hdrSz;
#endif
#ifdef WOLFSSL_STATIC_MEMORY
/* can be from IO memory pool which does not need copy if same buffer */
if (ssl->buffers.outputBuffer.length &&
tmp == ssl->buffers.outputBuffer.buffer) {
ssl->buffers.outputBuffer.bufferSize = newSz;
return 0;
}
#endif
if (ssl->buffers.outputBuffer.length)
XMEMCPY(tmp, ssl->buffers.outputBuffer.buffer,
ssl->buffers.outputBuffer.idx +
ssl->buffers.outputBuffer.length);
if (ssl->buffers.outputBuffer.dynamicFlag) {
XFREE(ssl->buffers.outputBuffer.buffer -
ssl->buffers.outputBuffer.offset, ssl->heap,
DYNAMIC_TYPE_OUT_BUFFER);
}
ssl->buffers.outputBuffer.dynamicFlag = 1;
#if WOLFSSL_GENERAL_ALIGNMENT > 0
if (align)
ssl->buffers.outputBuffer.offset = align - hdrSz;
else
#endif
ssl->buffers.outputBuffer.offset = 0;
ssl->buffers.outputBuffer.buffer = tmp;
ssl->buffers.outputBuffer.bufferSize = newSz;
return 0;
}
/* Grow the input buffer, should only be to read cert or big app data */
int GrowInputBuffer(WOLFSSL* ssl, int size, int usedLength)
{
byte* tmp;
#if defined(WOLFSSL_DTLS) || WOLFSSL_GENERAL_ALIGNMENT > 0
byte align = ssl->options.dtls ? WOLFSSL_GENERAL_ALIGNMENT : 0;
byte hdrSz = DTLS_RECORD_HEADER_SZ;
#else
const byte align = WOLFSSL_GENERAL_ALIGNMENT;
#endif
#if defined(WOLFSSL_DTLS) || WOLFSSL_GENERAL_ALIGNMENT > 0
/* the encrypted data will be offset from the front of the buffer by
the dtls record header, if the user wants encrypted alignment they need
to define their alignment requirement. in tls we read record header
to get size of record and put actual data back at front, so don't need */
if (align) {
while (align < hdrSz)
align *= 2;
}
#endif
if (usedLength < 0 || size < 0) {
WOLFSSL_MSG("GrowInputBuffer() called with negative number");
return BAD_FUNC_ARG;
}
tmp = (byte*)XMALLOC(size + usedLength + align,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
WOLFSSL_MSG("growing input buffer");
if (tmp == NULL)
return MEMORY_E;
#if defined(WOLFSSL_DTLS) || WOLFSSL_GENERAL_ALIGNMENT > 0
if (align)
tmp += align - hdrSz;
#endif
#ifdef WOLFSSL_STATIC_MEMORY
/* can be from IO memory pool which does not need copy if same buffer */
if (usedLength && tmp == ssl->buffers.inputBuffer.buffer) {
ssl->buffers.inputBuffer.bufferSize = size + usedLength;
ssl->buffers.inputBuffer.idx = 0;
ssl->buffers.inputBuffer.length = usedLength;
return 0;
}
#endif
if (usedLength)
XMEMCPY(tmp, ssl->buffers.inputBuffer.buffer +
ssl->buffers.inputBuffer.idx, usedLength);
if (ssl->buffers.inputBuffer.dynamicFlag) {
if (IsEncryptionOn(ssl, 1)) {
ForceZero(ssl->buffers.inputBuffer.buffer,
ssl->buffers.inputBuffer.length);
}
XFREE(ssl->buffers.inputBuffer.buffer - ssl->buffers.inputBuffer.offset,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
}
ssl->buffers.inputBuffer.dynamicFlag = 1;
#if defined(WOLFSSL_DTLS) || WOLFSSL_GENERAL_ALIGNMENT > 0
if (align)
ssl->buffers.inputBuffer.offset = align - hdrSz;
else
#endif
ssl->buffers.inputBuffer.offset = 0;
ssl->buffers.inputBuffer.buffer = tmp;
ssl->buffers.inputBuffer.bufferSize = size + usedLength;
ssl->buffers.inputBuffer.idx = 0;
ssl->buffers.inputBuffer.length = usedLength;
return 0;
}
/* Check available size into output buffer, make room if needed.
* This function needs to be called before anything gets put
* into the output buffers since it flushes pending data if it
* predicts that the msg will exceed MTU. */
int CheckAvailableSize(WOLFSSL *ssl, int size)
{
if (size < 0) {
WOLFSSL_MSG("CheckAvailableSize() called with negative number");
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
#if defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU)
word32 mtu = (word32)ssl->dtlsMtuSz;
#else
word32 mtu = MAX_MTU;
#endif
if ((word32)size + ssl->buffers.outputBuffer.length > mtu) {
int ret;
WOLFSSL_MSG("CheckAvailableSize() flushing buffer "
"to make room for new message");
if ((ret = SendBuffered(ssl)) != 0) {
return ret;
}
}
if ((word32)size > mtu
#ifdef WOLFSSL_DTLS13
/* DTLS1.3 uses the output buffer to store the full message and deal
with fragmentation later in dtls13HandshakeSend() */
&& !IsAtLeastTLSv1_3(ssl->version)
#endif /* WOLFSSL_DTLS13 */
) {
WOLFSSL_MSG("CheckAvailableSize() called with size greater than MTU.");
return DTLS_SIZE_ERROR;
}
}
#endif
if ((ssl->buffers.outputBuffer.bufferSize -
ssl->buffers.outputBuffer.length -
ssl->buffers.outputBuffer.idx) < (word32)size) {
if (GrowOutputBuffer(ssl, size) < 0)
return MEMORY_E;
}
return 0;
}
#ifndef WOLFSSL_DISABLE_EARLY_SANITY_CHECKS
int MsgCheckEncryption(WOLFSSL* ssl, byte type, byte encrypted)
{
#ifdef WOLFSSL_QUIC
/* QUIC protects messages outside of the TLS scope */
if (WOLFSSL_IS_QUIC(ssl) && IsAtLeastTLSv1_3(ssl->version))
return 0;
#endif
/* Verify which messages always have to be encrypted */
if (IsAtLeastTLSv1_3(ssl->version)) {
switch ((enum HandShakeType)type) {
case client_hello:
case server_hello:
case hello_verify_request:
case hello_retry_request:
case change_cipher_hs:
if (encrypted) {
WOLFSSL_MSG("Message can not be encrypted");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case hello_request:
case session_ticket:
case end_of_early_data:
case encrypted_extensions:
case certificate:
case server_key_exchange:
case certificate_request:
case server_hello_done:
case certificate_verify:
case client_key_exchange:
case finished:
case certificate_status:
case key_update:
if (!encrypted) {
WOLFSSL_MSG("Message always has to be encrypted");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case message_hash:
case no_shake:
default:
WOLFSSL_MSG("Unknown message type");
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
}
else {
switch ((enum HandShakeType)type) {
case client_hello:
if ((IsSCR(ssl) || ssl->options.handShakeDone) && !encrypted) {
WOLFSSL_MSG("Message has to be encrypted for SCR");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case server_hello:
case hello_verify_request:
case hello_retry_request:
case certificate:
case server_key_exchange:
case certificate_request:
case server_hello_done:
case certificate_verify:
case client_key_exchange:
case certificate_status:
case session_ticket:
case change_cipher_hs:
if (IsSCR(ssl)) {
if (!encrypted) {
WOLFSSL_MSG("Message has to be encrypted during SCR");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
else if (encrypted) {
WOLFSSL_MSG("Message can not be encrypted in regular "
"handshake");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case hello_request:
case finished:
if (!encrypted) {
WOLFSSL_MSG("Message always has to be encrypted");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case key_update:
case encrypted_extensions:
case end_of_early_data:
case message_hash:
case no_shake:
default:
WOLFSSL_MSG("Unknown message type");
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
}
return 0;
}
static WC_INLINE int isLastMsg(const WOLFSSL* ssl, word32 msgSz)
{
word32 extra = 0;
if (IsEncryptionOn(ssl, 0)) {
extra = ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
extra += MacSize(ssl);
#endif
}
return (ssl->buffers.inputBuffer.idx - ssl->curStartIdx) + msgSz + extra
== ssl->curSize;
}
/* Check if the msg is the last msg in a record. This is also an easy way
* to check that a record doesn't span different key boundaries. */
static int MsgCheckBoundary(const WOLFSSL* ssl, byte type,
byte version_negotiated, word32 msgSz)
{
if (version_negotiated) {
if (IsAtLeastTLSv1_3(ssl->version)) {
switch ((enum HandShakeType)type) {
case hello_request:
case client_hello:
case server_hello:
case hello_verify_request:
case hello_retry_request:
case finished:
case end_of_early_data:
if (!isLastMsg(ssl, msgSz)) {
WOLFSSL_MSG("Message type is not last in record");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case session_ticket:
case encrypted_extensions:
case certificate:
case server_key_exchange:
case certificate_request:
case certificate_verify:
case client_key_exchange:
case certificate_status:
case key_update:
case change_cipher_hs:
break;
case server_hello_done:
case message_hash:
case no_shake:
default:
WOLFSSL_MSG("Unknown message type");
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
}
else {
switch ((enum HandShakeType)type) {
case hello_request:
case client_hello:
case hello_verify_request:
if (!isLastMsg(ssl, msgSz)) {
WOLFSSL_MSG("Message type is not last in record");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case server_hello:
case session_ticket:
case end_of_early_data:
case certificate:
case server_key_exchange:
case certificate_request:
case server_hello_done:
case certificate_verify:
case client_key_exchange:
case finished:
case certificate_status:
case change_cipher_hs:
break;
case hello_retry_request:
case encrypted_extensions:
case key_update:
case message_hash:
case no_shake:
default:
WOLFSSL_MSG("Unknown message type");
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
}
}
else {
switch ((enum HandShakeType)type) {
case hello_request:
case client_hello:
case hello_verify_request:
if (!isLastMsg(ssl, msgSz)) {
WOLFSSL_MSG("Message type is not last in record");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
case server_hello:
case session_ticket:
case end_of_early_data:
case hello_retry_request:
case encrypted_extensions:
case certificate:
case server_key_exchange:
case certificate_request:
case server_hello_done:
case certificate_verify:
case client_key_exchange:
case finished:
case certificate_status:
case key_update:
case change_cipher_hs:
break;
case message_hash:
case no_shake:
default:
WOLFSSL_MSG("Unknown message type");
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
}
return 0;
}
#endif /* WOLFSSL_DISABLE_EARLY_SANITY_CHECKS */
/**
* This check is performed as soon as the handshake message type becomes known.
* These checks can not be delayed and need to be performed when the msg is
* received and not when it is processed (fragmentation may cause messages to
* be processed at a later time). This function CAN NOT be called on stored
* messages as it relies on the state of the WOLFSSL object right after
* receiving the message.
*
* @param ssl The current connection
* @param type The enum HandShakeType of the current message
* @param msgSz Size of the current message
* @return
*/
int EarlySanityCheckMsgReceived(WOLFSSL* ssl, byte type, word32 msgSz)
{
int ret = 0;
#ifndef WOLFSSL_DISABLE_EARLY_SANITY_CHECKS
byte version_negotiated = 0;
WOLFSSL_ENTER("EarlySanityCheckMsgReceived");
#ifdef WOLFSSL_DTLS
/* Version has only been negotiated after we either send or process a
* ServerHello message */
if (ssl->options.dtls)
version_negotiated = ssl->options.serverState >= SERVER_HELLO_COMPLETE;
else
#endif
version_negotiated = 1;
if (version_negotiated)
ret = MsgCheckEncryption(ssl, type, ssl->keys.decryptedCur == 1);
if (ret == 0)
ret = MsgCheckBoundary(ssl, type, version_negotiated, msgSz);
if (ret != 0
#ifdef WOLFSSL_DTLS
&& ssl->options.dtls && ssl->options.dtlsStateful
#endif
)
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_LEAVE("EarlySanityCheckMsgReceived", ret);
#else
(void)ssl;
(void)type;
(void)msgSz;
#endif
return ret;
}
#ifdef WOLFSSL_DTLS13
static int GetInputData(WOLFSSL *ssl, word32 size);
static int GetDtls13RecordHeader(WOLFSSL* ssl, word32* inOutIdx,
RecordLayerHeader* rh, word16* size)
{
Dtls13UnifiedHdrInfo hdrInfo;
w64wrapper epochNumber;
byte epochBits;
int readSize;
int ret;
readSize = ssl->buffers.inputBuffer.length - *inOutIdx;
if (readSize < DTLS_UNIFIED_HEADER_MIN_SZ)
return BUFFER_ERROR;
epochBits = *(ssl->buffers.inputBuffer.buffer + *inOutIdx) & EE_MASK;
ret = Dtls13ReconstructEpochNumber(ssl, epochBits, &epochNumber);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG_EX("reconstructed epoch number: %ld",
epochNumber);
#endif /* WOLFSSL_DEBUG_TLS */
/* protected records always use unified_headers in DTLSv1.3 */
if (w64IsZero(epochNumber))
return SEQUENCE_ERROR;
if (ssl->dtls13DecryptEpoch == NULL)
return BAD_STATE_E;
#ifdef WOLFSSL_EARLY_DATA
if (w64Equal(epochNumber, w64From32(0x0, DTLS13_EPOCH_EARLYDATA)) &&
ssl->options.handShakeDone) {
WOLFSSL_MSG("discarding early data after handshake");
return SEQUENCE_ERROR;
}
#endif /* WOLFSSL_DTLS13 */
if (!w64Equal(ssl->dtls13DecryptEpoch->epochNumber, epochNumber)) {
ret = Dtls13SetEpochKeys(ssl, epochNumber, DECRYPT_SIDE_ONLY);
if (ret != 0)
return SEQUENCE_ERROR;
}
ret = Dtls13GetUnifiedHeaderSize(ssl,
*(ssl->buffers.inputBuffer.buffer+*inOutIdx), &ssl->dtls13CurRlLength);
if (ret != 0)
return ret;
if (readSize < ssl->dtls13CurRlLength + DTLS13_RN_MASK_SIZE) {
/* when using DTLS over a medium that does not guarantee that a full
* message is received in a single read, we may end up without the full
* header and minimum ciphertext to decrypt record sequence numbers */
ret = GetInputData(ssl, ssl->dtls13CurRlLength + DTLS13_RN_MASK_SIZE);
if (ret != 0)
return ret;
readSize = ssl->buffers.inputBuffer.length - *inOutIdx;
}
ret = Dtls13ParseUnifiedRecordLayer(ssl,
ssl->buffers.inputBuffer.buffer + *inOutIdx, (word16)readSize,
&hdrInfo);
if (ret != 0)
return ret;
*size = hdrInfo.recordLength;
c16toa(*size, rh->length);
/* type is implicit */
rh->type = application_data;
/* version is implicit */
rh->pvMajor = ssl->version.major;
rh->pvMinor = DTLSv1_2_MINOR;
ssl->keys.curEpoch64 = epochNumber;
ret = Dtls13ReconstructSeqNumber(ssl, &hdrInfo, &ssl->keys.curSeq);
if (ret != 0)
return ret;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG_EX("reconstructed seq number: %ld",
ssl->keys.curSeq);
#endif /* WOLFSSL_DEBUG_TLS */
XMEMCPY(ssl->dtls13CurRL, ssl->buffers.inputBuffer.buffer + *inOutIdx,
ssl->dtls13CurRlLength);
*inOutIdx += ssl->dtls13CurRlLength;
return 0;
}
#endif /* WOLFSSL_DTLS13 */
#ifdef WOLFSSL_DTLS
static int GetDtlsRecordHeader(WOLFSSL* ssl, word32* inOutIdx,
RecordLayerHeader* rh, word16* size)
{
#ifdef HAVE_FUZZER
if (ssl->fuzzerCb)
ssl->fuzzerCb(ssl, ssl->buffers.inputBuffer.buffer + *inOutIdx,
DTLS_RECORD_HEADER_SZ, FUZZ_HEAD, ssl->fuzzerCtx);
#endif
#ifdef WOLFSSL_DTLS13
int ret;
if (Dtls13IsUnifiedHeader(*(ssl->buffers.inputBuffer.buffer + *inOutIdx))) {
ssl->options.seenUnifiedHdr = 1; /* We can send ACKs to the peer */
/* version 1.3 already negotiated */
if (ssl->options.tls1_3) {
ret = GetDtls13RecordHeader(ssl, inOutIdx, rh, size);
if (ret == 0 || ret != SEQUENCE_ERROR || ret != DTLS_CID_ERROR)
return ret;
}
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END
&& ssl->options.serverState < SERVER_HELLO_COMPLETE
&& IsAtLeastTLSv1_3(ssl->version)
&& !ssl->options.handShakeDone) {
/* we may have lost ServerHello. Try to send a empty ACK to shortcut
Server retransmission timer */
ssl->dtls13Rtx.sendAcks = 1;
}
#endif
return SEQUENCE_ERROR;
}
/* not a unified header, check that we have at least
* DTLS_RECORD_HEADER_SZ */
if (ssl->buffers.inputBuffer.length - *inOutIdx < DTLS_RECORD_HEADER_SZ) {
ret = GetInputData(ssl, DTLS_RECORD_HEADER_SZ);
/* Check if Dtls13RtxTimeout(ssl) returned socket error */
if (ret == SOCKET_ERROR_E)
return ret;
if (ret != 0)
return LENGTH_ERROR;
}
#endif /* WOLFSSL_DTLS13 */
/* type and version in same spot */
XMEMCPY(rh, ssl->buffers.inputBuffer.buffer + *inOutIdx,
ENUM_LEN + VERSION_SZ);
*inOutIdx += ENUM_LEN + VERSION_SZ;
ato16(ssl->buffers.inputBuffer.buffer + *inOutIdx, &ssl->keys.curEpoch);
#ifdef WOLFSSL_DTLS13
/* only non protected message can use the DTLSPlaintext record header */
if (IsAtLeastTLSv1_3(ssl->version)) {
if (ssl->keys.curEpoch != 0)
return SEQUENCE_ERROR;
w64Zero(&ssl->keys.curEpoch64);
if (!w64IsZero(ssl->dtls13DecryptEpoch->epochNumber))
Dtls13SetEpochKeys(ssl, ssl->keys.curEpoch64, DECRYPT_SIDE_ONLY);
}
#endif /* WOLFSSL_DTLS13 */
*inOutIdx += OPAQUE16_LEN;
if (ssl->options.haveMcast) {
#ifdef WOLFSSL_MULTICAST
ssl->keys.curPeerId = ssl->buffers.inputBuffer.buffer[*inOutIdx];
ssl->keys.curSeq_hi = ssl->buffers.inputBuffer.buffer[*inOutIdx+1];
#endif
}
else
ato16(ssl->buffers.inputBuffer.buffer + *inOutIdx, &ssl->keys.curSeq_hi);
*inOutIdx += OPAQUE16_LEN;
ato32(ssl->buffers.inputBuffer.buffer + *inOutIdx, &ssl->keys.curSeq_lo);
*inOutIdx += OPAQUE32_LEN; /* advance past rest of seq */
#ifdef WOLFSSL_DTLS13
/* DTLSv1.3 PlainText records use DTLSv1.2 sequence number encoding. Update
the DTLv1.3 word64 version as well */
ssl->keys.curSeq = w64From32(ssl->keys.curSeq_hi, ssl->keys.curSeq_lo);
#endif /* WOLFSSL_DTLS13 */
ato16(ssl->buffers.inputBuffer.buffer + *inOutIdx, size);
*inOutIdx += LENGTH_SZ;
return 0;
}
#endif /* WOLFSSL_DTLS */
/* do all verify and sanity checks on record header */
static int GetRecordHeader(WOLFSSL* ssl, word32* inOutIdx,
RecordLayerHeader* rh, word16 *size)
{
byte tls12minor = 0;
#ifdef OPENSSL_ALL
word32 start = *inOutIdx;
#endif
(void)tls12minor;
if (!ssl->options.dtls) {
#ifdef HAVE_FUZZER
if (ssl->fuzzerCb)
ssl->fuzzerCb(ssl, ssl->buffers.inputBuffer.buffer + *inOutIdx,
RECORD_HEADER_SZ, FUZZ_HEAD, ssl->fuzzerCtx);
#endif
XMEMCPY(rh, ssl->buffers.inputBuffer.buffer + *inOutIdx, RECORD_HEADER_SZ);
*inOutIdx += RECORD_HEADER_SZ;
ato16(rh->length, size);
}
else {
#ifdef WOLFSSL_DTLS
int ret = GetDtlsRecordHeader(ssl, inOutIdx, rh, size);
if (ret != 0)
return ret;
#endif
}
#ifdef WOLFSSL_DTLS
/* DTLSv1.3 MUST check window after deprotecting to avoid timing channel
(RFC9147 Section 4.5.1) */
if (IsDtlsNotSctpMode(ssl) && !IsAtLeastTLSv1_3(ssl->version)) {
if (!_DtlsCheckWindow(ssl) ||
(rh->type == application_data && ssl->keys.curEpoch == 0) ||
(rh->type == alert && ssl->options.handShakeDone &&
ssl->keys.curEpoch == 0 && ssl->keys.dtls_epoch != 0)) {
WOLFSSL_LEAVE("GetRecordHeader()", SEQUENCE_ERROR);
return SEQUENCE_ERROR;
}
}
#endif
#if defined(WOLFSSL_DTLS13) || defined(WOLFSSL_TLS13)
tls12minor = TLSv1_2_MINOR;
#endif
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls)
tls12minor = DTLSv1_2_MINOR;
#endif /* WOLFSSL_DTLS13 */
/* catch version mismatch */
#ifndef WOLFSSL_TLS13
if (rh->pvMajor != ssl->version.major || rh->pvMinor != ssl->version.minor)
#else
if (rh->pvMajor != ssl->version.major ||
(rh->pvMinor != ssl->version.minor &&
(!IsAtLeastTLSv1_3(ssl->version) || rh->pvMinor != tls12minor)
))
#endif
{
if (ssl->options.side == WOLFSSL_SERVER_END &&
ssl->options.acceptState < ACCEPT_FIRST_REPLY_DONE)
WOLFSSL_MSG("Client attempting to connect with different version");
else if (ssl->options.side == WOLFSSL_CLIENT_END &&
ssl->options.downgrade &&
ssl->options.connectState < FIRST_REPLY_DONE)
WOLFSSL_MSG("Server attempting to accept with different version");
else if (ssl->options.dtls && rh->type == handshake)
/* Check the DTLS handshake message RH version later. */
WOLFSSL_MSG("DTLS handshake, skip RH version number check");
#ifdef WOLFSSL_DTLS13
else if (ssl->options.dtls && !ssl->options.handShakeDone) {
/* we may have lost the ServerHello and this is a unified record
before version been negotiated */
if (Dtls13IsUnifiedHeader(*ssl->buffers.inputBuffer.buffer)) {
return SEQUENCE_ERROR;
}
}
#endif /* WOLFSSL_DTLS13 */
else {
WOLFSSL_MSG("SSL version error");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR; /* only use requested version */
}
}
/* record layer length check */
#ifdef HAVE_MAX_FRAGMENT
if (*size > (ssl->max_fragment + MAX_COMP_EXTRA + MAX_MSG_EXTRA)) {
WOLFSSL_ERROR_VERBOSE(LENGTH_ERROR);
return LENGTH_ERROR;
}
#else
if (*size > (MAX_RECORD_SIZE + MAX_COMP_EXTRA + MAX_MSG_EXTRA)) {
WOLFSSL_ERROR_VERBOSE(LENGTH_ERROR);
return LENGTH_ERROR;
}
#endif
if (*size == 0 && rh->type != application_data) {
WOLFSSL_MSG("0 length, non-app data record.");
WOLFSSL_ERROR_VERBOSE(LENGTH_ERROR);
return LENGTH_ERROR;
}
/* verify record type here as well */
switch (rh->type) {
case handshake:
case change_cipher_spec:
case application_data:
case alert:
#ifdef WOLFSSL_DTLS13
case ack:
#endif /* WOLFSSL_DTLS13 */
break;
case no_type:
default:
#ifdef OPENSSL_ALL
if (!ssl->options.dtls) {
char *method = (char*)ssl->buffers.inputBuffer.buffer + start;
/* Attempt to identify if this is a plain HTTP request.
* No size checks because this function assumes at least
* RECORD_HEADER_SZ size of data has been read which is
* also the longest string comparison in this if. */
if (XSTRNCMP(method, "GET ", XSTR_SIZEOF("GET ")) == 0 ||
XSTRNCMP(method, "POST ", XSTR_SIZEOF("POST ")) == 0 ||
XSTRNCMP(method, "HEAD ", XSTR_SIZEOF("HEAD ")) == 0 ||
XSTRNCMP(method, "PUT ", XSTR_SIZEOF("PUT ")) == 0) {
WOLFSSL_MSG("Plain HTTP request detected");
return SSL_R_HTTP_REQUEST;
}
}
#endif
WOLFSSL_MSG("Unknown Record Type");
WOLFSSL_ERROR_VERBOSE(UNKNOWN_RECORD_TYPE);
return UNKNOWN_RECORD_TYPE;
}
/* haven't decrypted this record yet */
ssl->keys.decryptedCur = 0;
return 0;
}
#ifndef WOLFSSL_NO_TLS12
static int GetHandShakeHeader(WOLFSSL* ssl, const byte* input, word32* inOutIdx,
byte *type, word32 *size, word32 totalSz)
{
const byte *ptr = input + *inOutIdx;
(void)ssl;
*inOutIdx += HANDSHAKE_HEADER_SZ;
if (*inOutIdx > totalSz)
return BUFFER_E;
*type = ptr[0];
c24to32(&ptr[1], size);
return 0;
}
#endif
#ifdef WOLFSSL_DTLS
int GetDtlsHandShakeHeader(WOLFSSL* ssl, const byte* input,
word32* inOutIdx, byte *type, word32 *size,
word32 *fragOffset, word32 *fragSz,
word32 totalSz)
{
word32 idx = *inOutIdx;
*inOutIdx += HANDSHAKE_HEADER_SZ + DTLS_HANDSHAKE_EXTRA;
if (*inOutIdx > totalSz) {
WOLFSSL_ERROR(BUFFER_E);
return BUFFER_E;
}
*type = input[idx++];
c24to32(input + idx, size);
idx += OPAQUE24_LEN;
ato16(input + idx, &ssl->keys.dtls_peer_handshake_number);
idx += DTLS_HANDSHAKE_SEQ_SZ;
c24to32(input + idx, fragOffset);
idx += DTLS_HANDSHAKE_FRAG_SZ;
c24to32(input + idx, fragSz);
if ((ssl->curRL.pvMajor != ssl->version.major) ||
(!IsAtLeastTLSv1_3(ssl->version) && ssl->curRL.pvMinor != ssl->version.minor) ||
(IsAtLeastTLSv1_3(ssl->version) && ssl->curRL.pvMinor != DTLSv1_2_MINOR)
) {
if (*type != client_hello && *type != hello_verify_request && *type != server_hello) {
WOLFSSL_ERROR(VERSION_ERROR);
return VERSION_ERROR;
}
else {
WOLFSSL_MSG("DTLS Handshake ignoring hello or verify version");
}
}
return 0;
}
#endif
#if !defined(NO_OLD_TLS) || \
(defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_TLS_SHA1))
/* fill with MD5 pad size since biggest required */
static const byte PAD1[PAD_MD5] =
{ 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
};
static const byte PAD2[PAD_MD5] =
{ 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c
};
#endif /* !NO_OLD_TLS || (NO_OLD_TLS && WOLFSSL_ALLOW_TLS_SHA1) */
#ifndef NO_OLD_TLS
/* calculate MD5 hash for finished */
#ifdef WOLFSSL_TI_HASH
#include <wolfssl/wolfcrypt/hash.h>
#endif
static int BuildMD5(WOLFSSL* ssl, Hashes* hashes, const byte* sender)
{
int ret;
byte md5_result[WC_MD5_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
wc_Md5* md5 = (wc_Md5*)XMALLOC(sizeof(wc_Md5), ssl->heap, DYNAMIC_TYPE_HASHCTX);
if (md5 == NULL)
return MEMORY_E;
#else
wc_Md5 md5[1];
#endif
/* make md5 inner */
ret = wc_Md5Copy(&ssl->hsHashes->hashMd5, md5);
if (ret == 0)
ret = wc_Md5Update(md5, sender, SIZEOF_SENDER);
if (ret == 0)
ret = wc_Md5Update(md5, ssl->arrays->masterSecret,SECRET_LEN);
if (ret == 0)
ret = wc_Md5Update(md5, PAD1, PAD_MD5);
if (ret == 0)
ret = wc_Md5Final(md5, md5_result);
/* make md5 outer */
if (ret == 0) {
ret = wc_InitMd5_ex(md5, ssl->heap, ssl->devId);
if (ret == 0) {
ret = wc_Md5Update(md5, ssl->arrays->masterSecret,SECRET_LEN);
if (ret == 0)
ret = wc_Md5Update(md5, PAD2, PAD_MD5);
if (ret == 0)
ret = wc_Md5Update(md5, md5_result, WC_MD5_DIGEST_SIZE);
if (ret == 0)
ret = wc_Md5Final(md5, hashes->md5);
wc_Md5Free(md5);
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(md5, ssl->heap, DYNAMIC_TYPE_HASHCTX);
#endif
return ret;
}
/* calculate SHA hash for finished */
static int BuildSHA(WOLFSSL* ssl, Hashes* hashes, const byte* sender)
{
int ret;
byte sha_result[WC_SHA_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
wc_Sha* sha = (wc_Sha*)XMALLOC(sizeof(wc_Sha), ssl->heap, DYNAMIC_TYPE_HASHCTX);
if (sha == NULL)
return MEMORY_E;
#else
wc_Sha sha[1];
#endif
/* make sha inner */
ret = wc_ShaCopy(&ssl->hsHashes->hashSha, sha); /* Save current position */
if (ret == 0)
ret = wc_ShaUpdate(sha, sender, SIZEOF_SENDER);
if (ret == 0)
ret = wc_ShaUpdate(sha, ssl->arrays->masterSecret,SECRET_LEN);
if (ret == 0)
ret = wc_ShaUpdate(sha, PAD1, PAD_SHA);
if (ret == 0)
ret = wc_ShaFinal(sha, sha_result);
/* make sha outer */
if (ret == 0) {
ret = wc_InitSha_ex(sha, ssl->heap, ssl->devId);
if (ret == 0) {
ret = wc_ShaUpdate(sha, ssl->arrays->masterSecret,SECRET_LEN);
if (ret == 0)
ret = wc_ShaUpdate(sha, PAD2, PAD_SHA);
if (ret == 0)
ret = wc_ShaUpdate(sha, sha_result, WC_SHA_DIGEST_SIZE);
if (ret == 0)
ret = wc_ShaFinal(sha, hashes->sha);
wc_ShaFree(sha);
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(sha, ssl->heap, DYNAMIC_TYPE_HASHCTX);
#endif
return ret;
}
#endif
#ifndef WOLFSSL_NO_TLS12
/* Finished doesn't support SHA512, not SHA512 cipher suites yet */
static int BuildFinished(WOLFSSL* ssl, Hashes* hashes, const byte* sender)
{
int ret = 0;
if (ssl == NULL)
return BAD_FUNC_ARG;
#ifndef NO_TLS
if (ssl->options.tls) {
ret = BuildTlsFinished(ssl, hashes, sender);
}
#else
(void)hashes;
(void)sender;
#endif
#ifndef NO_OLD_TLS
if (!ssl->options.tls) {
ret = BuildMD5(ssl, hashes, sender);
if (ret == 0) {
ret = BuildSHA(ssl, hashes, sender);
}
}
#endif
return ret;
}
#endif /* WOLFSSL_NO_TLS12 */
#if !defined(NO_WOLFSSL_SERVER) || !defined(NO_WOLFSSL_CLIENT)
/* Does this cipher suite (first, second) have the requirement
an ephemeral key exchange will still require the key for signing
the key exchange so ECDHE_RSA requires an rsa key thus rsa_kea */
int CipherRequires(byte first, byte second, int requirement)
{
(void)requirement;
#ifndef WOLFSSL_NO_TLS12
#ifdef HAVE_CHACHA
if (first == CHACHA_BYTE) {
switch (second) {
case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
case TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_ECDHE_ECDSA_WITH_CHACHA20_OLD_POLY1305_SHA256 :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_DHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
case TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 :
if (requirement == REQUIRES_PSK)
return 1;
break;
case TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 :
if (requirement == REQUIRES_PSK)
return 1;
break;
case TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 :
if (requirement == REQUIRES_PSK)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
default:
WOLFSSL_MSG("Unsupported cipher suite, CipherRequires CHACHA");
return 0;
}
if (requirement == REQUIRES_AEAD)
return 1;
}
#endif /* HAVE_CHACHA */
/* ECC extensions */
if (first == ECC_BYTE) {
switch (second) {
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
break;
#ifndef NO_DES3
case TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
break;
#endif /* !NO_DES3 */
#ifndef NO_RC4
case TLS_ECDHE_RSA_WITH_RC4_128_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_ECDH_RSA_WITH_RC4_128_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
break;
#endif /* !NO_RC4 */
#endif /* NO_RSA */
#ifndef NO_DES3
case TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
break;
#endif /* !NO_DES3 */
#ifndef NO_RC4
case TLS_ECDHE_ECDSA_WITH_RC4_128_SHA :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_ECDH_ECDSA_WITH_RC4_128_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
break;
#endif /* !NO_RC4 */
#ifndef NO_RSA
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
break;
#endif /* !NO_RSA */
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
break;
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
break;
case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 :
if (requirement == REQUIRES_ECC)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_ECC)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifndef NO_RSA
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_ECC_STATIC)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifdef HAVE_AESCCM
case TLS_RSA_WITH_AES_128_CCM_8 :
case TLS_RSA_WITH_AES_256_CCM_8 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
#endif /* HAVE_AESCCM */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 :
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 :
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 :
if (requirement == REQUIRES_RSA_SIG)
return 1;
if (requirement == REQUIRES_ECC_STATIC)
return 1;
break;
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#endif /* !NO_RSA */
#ifdef HAVE_ARIA
case TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 :
case TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 :
if (requirement == REQUIRES_ECC)
return 1;
break;
#endif /* HAVE_ARIA */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
case TLS_ECDHE_ECDSA_WITH_AES_128_CCM :
case TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 :
case TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 :
if (requirement == REQUIRES_ECC)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 :
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 :
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 :
if (requirement == REQUIRES_ECC)
return 1;
if (requirement == REQUIRES_ECC_STATIC)
return 1;
break;
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifndef NO_PSK
case TLS_PSK_WITH_AES_128_CCM:
case TLS_PSK_WITH_AES_256_CCM:
case TLS_PSK_WITH_AES_128_CCM_8:
case TLS_PSK_WITH_AES_256_CCM_8:
if (requirement == REQUIRES_PSK)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_DHE_PSK_WITH_AES_128_CCM:
case TLS_DHE_PSK_WITH_AES_256_CCM:
if (requirement == REQUIRES_PSK)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
#endif /* !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
case TLS_ECDHE_ECDSA_WITH_NULL_SHA :
if (requirement == REQUIRES_ECC)
return 1;
break;
case TLS_ECDHE_PSK_WITH_NULL_SHA256 :
if (requirement == REQUIRES_PSK)
return 1;
break;
case TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 :
if (requirement == REQUIRES_PSK)
return 1;
break;
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#if defined(WOLFSSL_TLS13) && defined(HAVE_NULL_CIPHER)
case TLS_SHA256_SHA256:
break;
case TLS_SHA384_SHA384:
break;
#endif
default:
WOLFSSL_MSG("Unsupported cipher suite, CipherRequires ECC");
return 0;
} /* switch */
} /* if */
/* ECC extensions */
if (first == ECDHE_PSK_BYTE) {
switch (second) {
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
case TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 :
if (requirement == REQUIRES_PSK)
return 1;
break;
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
default:
WOLFSSL_MSG("Unsupported cipher suite, CipherRequires ECC PSK");
return 0;
} /* switch */
} /* if */
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_TLS13
/* Distinct TLS v1.3 cipher suites with cipher and digest only. */
if (first == TLS13_BYTE) {
switch (second) {
case TLS_AES_128_GCM_SHA256:
case TLS_AES_256_GCM_SHA384:
case TLS_CHACHA20_POLY1305_SHA256:
case TLS_AES_128_CCM_SHA256:
case TLS_AES_128_CCM_8_SHA256:
if (requirement == REQUIRES_AEAD)
return 1;
return 0;
default:
WOLFSSL_MSG("Unsupported cipher suite, CipherRequires "
"TLS v1.3");
return 0;
}
}
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3) && defined(WOLFSSL_SM4)
if (first == CIPHER_BYTE) {
/* Other cipher suites for TLS 1.2 below. */
switch (second) {
#if defined(WOLFSSL_SM4_GCM)
case TLS_SM4_GCM_SM3:
return 0;
break;
#endif
#if defined(WOLFSSL_SM4_CCM)
case TLS_SM4_CCM_SM3:
return 0;
break;
#endif
}
}
#endif /* WOLFSSL_SM2 && WOLFSSL_SM3 && WOLFSSL_SM4 */
#endif /* WOLFSSL_TLS13 */
#ifndef WOLFSSL_NO_TLS12
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3) && defined(WOLFSSL_SM4)
if (first == SM_BYTE) {
switch (second) {
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
case TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3:
if (requirement == REQUIRES_ECC)
return 1;
break;
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3
case TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3:
if (requirement == REQUIRES_ECC)
return 1;
break;
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3
case TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3:
if (requirement == REQUIRES_ECC)
return 1;
break;
#endif
default:
WOLFSSL_MSG("Unsupported cipher suite, CipherRequires SM");
return 0;
}
}
#endif
if (first == CIPHER_BYTE) {
/* normal suites */
switch (second) {
#ifndef NO_RSA
#ifndef NO_RC4
case SSL_RSA_WITH_RC4_128_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case SSL_RSA_WITH_RC4_128_MD5 :
if (requirement == REQUIRES_RSA)
return 1;
break;
#endif /* NO_RC4 */
case SSL_RSA_WITH_3DES_EDE_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_RSA_WITH_AES_128_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_RSA_WITH_AES_128_CBC_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_RSA_WITH_AES_256_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_RSA_WITH_AES_256_CBC_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_RSA_WITH_NULL_MD5 :
case TLS_RSA_WITH_NULL_SHA :
case TLS_RSA_WITH_NULL_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
break;
#endif /* !NO_RSA */
#ifndef NO_PSK
case TLS_PSK_WITH_AES_128_GCM_SHA256 :
if (requirement == REQUIRES_PSK)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_PSK_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_PSK)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_PSK_WITH_AES_128_CBC_SHA256 :
case TLS_PSK_WITH_AES_256_CBC_SHA384 :
case TLS_PSK_WITH_AES_128_CBC_SHA :
case TLS_PSK_WITH_AES_256_CBC_SHA :
case TLS_PSK_WITH_NULL_SHA384 :
case TLS_PSK_WITH_NULL_SHA256 :
case TLS_PSK_WITH_NULL_SHA :
if (requirement == REQUIRES_PSK)
return 1;
break;
case TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 :
case TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_DHE)
return 1;
if (requirement == REQUIRES_PSK)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_DHE_PSK_WITH_AES_128_CBC_SHA256 :
case TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 :
case TLS_DHE_PSK_WITH_NULL_SHA384 :
case TLS_DHE_PSK_WITH_NULL_SHA256 :
if (requirement == REQUIRES_DHE)
return 1;
if (requirement == REQUIRES_PSK)
return 1;
break;
#endif /* NO_PSK */
#ifndef NO_RSA
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
case TLS_RSA_WITH_AES_128_GCM_SHA256 :
case TLS_RSA_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 :
case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
#ifdef HAVE_CAMELLIA
case TLS_RSA_WITH_CAMELLIA_128_CBC_SHA :
case TLS_RSA_WITH_CAMELLIA_256_CBC_SHA :
case TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 :
case TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
break;
case TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA :
case TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA :
case TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 :
case TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256 :
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
#endif /* HAVE_CAMELLIA */
case TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA:
if (requirement == REQUIRES_RSA)
return 1;
if (requirement == REQUIRES_RSA_SIG)
return 1;
if (requirement == REQUIRES_DHE)
return 1;
break;
#endif /* !NO_RSA */
#ifdef HAVE_ANON
case TLS_DH_anon_WITH_AES_128_CBC_SHA :
if (requirement == REQUIRES_DHE)
return 1;
break;
case TLS_DH_anon_WITH_AES_256_GCM_SHA384:
if (requirement == REQUIRES_DHE)
return 1;
if (requirement == REQUIRES_AEAD)
return 1;
break;
#endif
#ifdef WOLFSSL_MULTICAST
case WDM_WITH_NULL_SHA256 :
break;
#endif
default:
WOLFSSL_MSG("Unsupported cipher suite, CipherRequires");
return 0;
} /* switch */
} /* if ECC / Normal suites else */
#endif /* !WOLFSSL_NO_TLS12 */
return 0;
}
#endif /* !NO_WOLFSSL_SERVER && !NO_WOLFSSL_CLIENT */
#ifndef NO_CERTS
/* Match names with wildcards, each wildcard can represent a single name
component or fragment but not multiple names, i.e.,
*.z.com matches y.z.com but not x.y.z.com
return 1 on success */
int MatchDomainName(const char* pattern, int len, const char* str)
{
int ret = 0;
if (pattern == NULL || str == NULL || len <= 0)
return 0;
while (len > 0) {
char p = (char)XTOLOWER((unsigned char)*pattern++);
if (p == '\0')
break;
if (p == '*') {
char s;
while (--len > 0) {
p = (char)XTOLOWER((unsigned char)*pattern);
pattern++;
if (p != '*')
break;
}
if (len == 0)
p = '\0';
while ( (s = (char)XTOLOWER((unsigned char) *str)) != '\0') {
if (s == p)
break;
if (s == '.')
return 0;
str++;
}
}
else {
if (p != (char)XTOLOWER((unsigned char) *str))
return 0;
}
if (len > 0) {
str++;
len--;
}
}
if (*str == '\0' && len == 0) {
ret = 1; /* success */
}
return ret;
}
/* Check that alternative names, if they exists, match the domain.
* Fail if there are wild patterns and they didn't match.
* Check the common name if no alternative names matched.
*
* dCert Decoded cert to get the alternative names from.
* domain Domain name to compare against.
* checkCN Whether to check the common name.
* returns 1 : match was found.
* 0 : no match found.
* -1 : No matches and wild pattern match failed.
*/
int CheckForAltNames(DecodedCert* dCert, const char* domain, int* checkCN)
{
int match = 0;
DNS_entry* altName = NULL;
char *buf;
word32 len;
WOLFSSL_MSG("Checking AltNames");
if (dCert)
altName = dCert->altNames;
if (checkCN != NULL) {
*checkCN = (altName == NULL) ? 1 : 0;
}
while (altName) {
WOLFSSL_MSG("\tindividual AltName check");
#if defined(OPENSSL_ALL) || defined(WOLFSSL_IP_ALT_NAME)
if (altName->type == ASN_IP_TYPE) {
buf = altName->ipString;
len = (word32)XSTRLEN(buf);
}
else
#endif /* OPENSSL_ALL || WOLFSSL_IP_ALT_NAME */
{
buf = altName->name;
len = altName->len;
}
if (MatchDomainName(buf, len, domain)) {
match = 1;
if (checkCN != NULL) {
*checkCN = 0;
}
WOLFSSL_MSG("\tmatch found");
break;
}
/* No matches and wild pattern match failed. */
else if (buf && (len >=1) && (buf[0] == '*')) {
match = -1;
WOLFSSL_MSG("\twildcard match failed");
}
altName = altName->next;
}
return match;
}
/* Check the domain name matches the subject alternative name or the subject
* name.
*
* dcert Decoded certificate.
* domainName The domain name.
* domainNameLen The length of the domain name.
* returns DOMAIN_NAME_MISMATCH when no match found and 0 on success.
*/
int CheckHostName(DecodedCert* dCert, const char *domainName, size_t domainNameLen)
{
int checkCN;
int ret = DOMAIN_NAME_MISMATCH;
/* Assume name is NUL terminated. */
(void)domainNameLen;
if (CheckForAltNames(dCert, domainName, &checkCN) != 1) {
WOLFSSL_MSG("DomainName match on alt names failed");
}
else {
ret = 0;
}
#ifndef WOLFSSL_HOSTNAME_VERIFY_ALT_NAME_ONLY
if (checkCN == 1) {
if (MatchDomainName(dCert->subjectCN, dCert->subjectCNLen,
domainName) == 1) {
ret = 0;
}
else {
WOLFSSL_MSG("DomainName match on common name failed");
}
}
#endif /* !WOLFSSL_HOSTNAME_VERIFY_ALT_NAME_ONLY */
return ret;
}
int CheckIPAddr(DecodedCert* dCert, const char* ipasc)
{
WOLFSSL_MSG("Checking IPAddr");
return CheckHostName(dCert, ipasc, (size_t)XSTRLEN(ipasc));
}
#ifdef SESSION_CERTS
static void AddSessionCertToChain(WOLFSSL_X509_CHAIN* chain,
byte* certBuf, word32 certSz)
{
if (chain->count < MAX_CHAIN_DEPTH &&
certSz < MAX_X509_SIZE) {
chain->certs[chain->count].length = certSz;
XMEMCPY(chain->certs[chain->count].buffer, certBuf, certSz);
chain->count++;
}
else {
WOLFSSL_MSG("Couldn't store chain cert for session");
}
}
#endif
#if defined(KEEP_PEER_CERT) || defined(SESSION_CERTS) || \
defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
void CopyDecodedName(WOLFSSL_X509_NAME* name, DecodedCert* dCert, int nameType)
{
if (nameType == SUBJECT) {
XSTRNCPY(name->name, dCert->subject, ASN_NAME_MAX);
name->name[ASN_NAME_MAX - 1] = '\0';
name->sz = (int)XSTRLEN(name->name) + 1;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY)
name->rawLen = min(dCert->subjectRawLen, ASN_NAME_MAX);
XMEMCPY(name->raw, dCert->subjectRaw, name->rawLen);
#endif
}
else {
XSTRNCPY(name->name, dCert->issuer, ASN_NAME_MAX);
name->name[ASN_NAME_MAX - 1] = '\0';
name->sz = (int)XSTRLEN(name->name) + 1;
#if (defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY)) \
&& (defined(HAVE_PKCS7) || defined(WOLFSSL_CERT_EXT))
name->rawLen = min(dCert->issuerRawLen, ASN_NAME_MAX);
if (name->rawLen) {
XMEMCPY(name->raw, dCert->issuerRaw, name->rawLen);
}
#endif
}
}
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
!defined(IGNORE_NAME_CONSTRAINTS)
/* copies over additional alt names such as dirName
* returns 0 on success
*/
static int CopyAdditionalAltNames(DNS_entry** to, DNS_entry* from, int type,
void* heap)
{
DNS_entry* cur = from;
if (to == NULL) {
return BAD_FUNC_ARG;
}
while (cur != NULL) {
if (cur->type == type) {
DNS_entry* dnsEntry;
int strLen = cur->len;
dnsEntry = AltNameNew(heap);
if (dnsEntry == NULL) {
WOLFSSL_MSG("\tOut of Memory");
return MEMORY_E;
}
dnsEntry->type = type;
dnsEntry->name = (char*)XMALLOC(strLen + 1, heap,
DYNAMIC_TYPE_ALTNAME);
if (dnsEntry->name == NULL) {
WOLFSSL_MSG("\tOut of Memory");
XFREE(dnsEntry, heap, DYNAMIC_TYPE_ALTNAME);
return MEMORY_E;
}
dnsEntry->len = strLen;
XMEMCPY(dnsEntry->name, cur->name, strLen);
dnsEntry->name[strLen] = '\0';
dnsEntry->next = *to;
*to = dnsEntry;
}
cur = cur->next;
}
return 0;
}
#endif /* OPENSSL_EXTRA */
#ifdef WOLFSSL_CERT_REQ
static int CopyREQAttributes(WOLFSSL_X509* x509, DecodedCert* dCert)
{
int ret = 0;
if (dCert->cPwd) {
if (dCert->cPwdLen < CTC_NAME_SIZE) {
XMEMCPY(x509->challengePw, dCert->cPwd, dCert->cPwdLen);
x509->challengePw[dCert->cPwdLen] = '\0';
#if defined(OPENSSL_ALL) && defined(WOLFSSL_CERT_GEN)
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_pkcs9_challengePassword,
MBSTRING_ASC,
(const byte*)dCert->cPwd,
dCert->cPwdLen) != WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
#endif
}
else {
WOLFSSL_MSG("Challenge password too long");
ret = MEMORY_E;
}
}
if (dCert->contentType) {
if (dCert->contentTypeLen < CTC_NAME_SIZE) {
XMEMCPY(x509->contentType, dCert->contentType, dCert->contentTypeLen);
x509->contentType[dCert->contentTypeLen] = '\0';
}
#if defined(OPENSSL_ALL) && defined(WOLFSSL_CERT_GEN)
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_pkcs9_contentType,
MBSTRING_ASC,
(const byte*)dCert->contentType,
dCert->contentTypeLen) !=
WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
#endif
}
#if defined(OPENSSL_ALL) && defined(WOLFSSL_CERT_GEN)
if (dCert->sNum) {
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_serialNumber,
MBSTRING_ASC,
(const byte*)dCert->sNum,
dCert->sNumLen) != WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (dCert->unstructuredName) {
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_pkcs9_unstructuredName,
MBSTRING_ASC,
(const byte*)dCert->unstructuredName,
dCert->unstructuredNameLen)
!= WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (dCert->surname) {
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_surname,
MBSTRING_ASC,
(const byte*)dCert->surname,
dCert->surnameLen) != WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (dCert->givenName) {
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_givenName,
MBSTRING_ASC,
(const byte*)dCert->givenName,
dCert->givenNameLen) != WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (dCert->dnQualifier) {
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_dnQualifier,
MBSTRING_ASC,
(const byte*)dCert->dnQualifier,
dCert->dnQualifierLen) != WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (dCert->initials) {
if (wolfSSL_X509_REQ_add1_attr_by_NID(x509,
NID_initials,
MBSTRING_ASC,
(const byte*)dCert->initials,
dCert->initialsLen) != WOLFSSL_SUCCESS) {
ret = REQ_ATTRIBUTE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif /* OPENSSL_ALL */
return ret;
}
#endif /* WOLFSSL_CERT_REQ */
/* Copy parts X509 needs from Decoded cert, 0 on success */
/* The same DecodedCert cannot be copied to WOLFSSL_X509 twice otherwise the
* altNames pointers could be free'd by second x509 still active by first */
int CopyDecodedToX509(WOLFSSL_X509* x509, DecodedCert* dCert)
{
int ret = 0;
if (x509 == NULL || dCert == NULL ||
dCert->subjectCNLen < 0)
return BAD_FUNC_ARG;
if (x509->issuer.name == NULL || x509->subject.name == NULL) {
WOLFSSL_MSG("Either init was not called on X509 or programming error");
WOLFSSL_ERROR_VERBOSE(BAD_FUNC_ARG);
return BAD_FUNC_ARG;
}
x509->version = dCert->version + 1;
CopyDecodedName(&x509->issuer, dCert, ISSUER);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (dCert->issuerName != NULL) {
wolfSSL_X509_set_issuer_name(x509,
(WOLFSSL_X509_NAME*)dCert->issuerName);
x509->issuer.x509 = x509;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
CopyDecodedName(&x509->subject, dCert, SUBJECT);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (dCert->subjectName != NULL) {
wolfSSL_X509_set_subject_name(x509,
(WOLFSSL_X509_NAME*)dCert->subjectName);
x509->subject.x509 = x509;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
XMEMCPY(x509->serial, dCert->serial, EXTERNAL_SERIAL_SIZE);
x509->serialSz = dCert->serialSz;
if (dCert->subjectCN && dCert->subjectCNLen < ASN_NAME_MAX) {
XMEMCPY(x509->subjectCN, dCert->subjectCN, dCert->subjectCNLen);
x509->subjectCN[dCert->subjectCNLen] = '\0';
}
else
x509->subjectCN[0] = '\0';
#ifdef WOLFSSL_CERT_REQ
x509->isCSR = dCert->isCSR;
/* CSR attributes */
if (x509->isCSR) {
ret = CopyREQAttributes(x509, dCert);
}
#endif /* WOLFSSL_CERT_REQ */
#ifdef WOLFSSL_SEP
{
int minSz = min(dCert->deviceTypeSz, EXTERNAL_SERIAL_SIZE);
if (minSz > 0) {
x509->deviceTypeSz = minSz;
XMEMCPY(x509->deviceType, dCert->deviceType, minSz);
}
else
x509->deviceTypeSz = 0;
minSz = min(dCert->hwTypeSz, EXTERNAL_SERIAL_SIZE);
if (minSz > 0) {
x509->hwTypeSz = minSz;
XMEMCPY(x509->hwType, dCert->hwType, minSz);
}
else
x509->hwTypeSz = 0;
minSz = min(dCert->hwSerialNumSz, EXTERNAL_SERIAL_SIZE);
if (minSz > 0) {
x509->hwSerialNumSz = minSz;
XMEMCPY(x509->hwSerialNum, dCert->hwSerialNum, minSz);
}
else
x509->hwSerialNumSz = 0;
}
#endif /* WOLFSSL_SEP */
{
int minSz;
if (dCert->beforeDateLen > 0) {
minSz = min(dCert->beforeDate[1], MAX_DATE_SZ);
x509->notBefore.type = dCert->beforeDate[0];
x509->notBefore.length = minSz;
XMEMCPY(x509->notBefore.data, &dCert->beforeDate[2], minSz);
}
else
x509->notBefore.length = 0;
if (dCert->afterDateLen > 0) {
minSz = min(dCert->afterDate[1], MAX_DATE_SZ);
x509->notAfter.type = dCert->afterDate[0];
x509->notAfter.length = minSz;
XMEMCPY(x509->notAfter.data, &dCert->afterDate[2], minSz);
}
else
x509->notAfter.length = 0;
}
if (dCert->publicKey != NULL && dCert->pubKeySize != 0) {
x509->pubKey.buffer = (byte*)XMALLOC(
dCert->pubKeySize, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (x509->pubKey.buffer != NULL) {
x509->pubKeyOID = dCert->keyOID;
x509->pubKey.length = dCert->pubKeySize;
XMEMCPY(x509->pubKey.buffer, dCert->publicKey, dCert->pubKeySize);
}
else
ret = MEMORY_E;
#if defined(OPENSSL_ALL)
if (ret == 0) {
x509->key.pubKeyOID = dCert->keyOID;
if (!x509->key.algor) {
x509->key.algor = wolfSSL_X509_ALGOR_new();
} else {
wolfSSL_ASN1_OBJECT_free(x509->key.algor->algorithm);
}
if (!x509->key.algor) {
ret = MEMORY_E;
} else {
if (!(x509->key.algor->algorithm =
wolfSSL_OBJ_nid2obj(oid2nid(dCert->keyOID, oidKeyType)))) {
ret = PUBLIC_KEY_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
wolfSSL_EVP_PKEY_free(x509->key.pkey);
if (!(x509->key.pkey = wolfSSL_d2i_PUBKEY(NULL,
&dCert->publicKey,
dCert->pubKeySize))) {
ret = PUBLIC_KEY_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif
}
if (dCert->signature != NULL && dCert->sigLength != 0 &&
dCert->sigLength <= MAX_ENCODED_SIG_SZ) {
x509->sig.buffer = (byte*)XMALLOC(
dCert->sigLength, x509->heap, DYNAMIC_TYPE_SIGNATURE);
if (x509->sig.buffer == NULL) {
ret = MEMORY_E;
}
else {
XMEMCPY(x509->sig.buffer, dCert->signature, dCert->sigLength);
x509->sig.length = dCert->sigLength;
x509->sigOID = dCert->signatureOID;
}
#if defined(OPENSSL_ALL)
wolfSSL_ASN1_OBJECT_free(x509->algor.algorithm);
if (!(x509->algor.algorithm =
wolfSSL_OBJ_nid2obj(oid2nid(dCert->signatureOID, oidSigType)))) {
ret = PUBLIC_KEY_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
#endif
}
/* if der contains original source buffer then store for potential
* retrieval */
if (dCert->source != NULL && dCert->maxIdx > 0) {
if (AllocDer(&x509->derCert, dCert->maxIdx, CERT_TYPE, x509->heap)
== 0) {
XMEMCPY(x509->derCert->buffer, dCert->source, dCert->maxIdx);
}
else {
ret = MEMORY_E;
}
}
x509->altNames = dCert->altNames;
dCert->weOwnAltNames = 0;
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
!defined(IGNORE_NAME_CONSTRAINTS)
/* add copies of email names from dCert to X509 */
if (CopyAdditionalAltNames(&x509->altNames, dCert->altEmailNames,
ASN_RFC822_TYPE, x509->heap) != 0) {
return MEMORY_E;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) && !defined(IGNORE_NAME_CONSTRAINTS)
/* add copies of alternate directory names from dCert to X509 */
if (CopyAdditionalAltNames(&x509->altNames, dCert->altDirNames,
ASN_DIR_TYPE, x509->heap) != 0) {
return MEMORY_E;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
x509->altNamesNext = x509->altNames; /* index hint */
x509->isCa = dCert->isCA;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
x509->pathLength = dCert->pathLength;
x509->keyUsage = dCert->extKeyUsage;
x509->CRLdistSet = dCert->extCRLdistSet;
x509->CRLdistCrit = dCert->extCRLdistCrit;
if (dCert->extCrlInfoRaw != NULL && dCert->extCrlInfoRawSz > 0) {
x509->rawCRLInfo = (byte*)XMALLOC(dCert->extCrlInfoRawSz, x509->heap,
DYNAMIC_TYPE_X509_EXT);
if (x509->rawCRLInfo != NULL) {
XMEMCPY(x509->rawCRLInfo, dCert->extCrlInfoRaw, dCert->extCrlInfoRawSz);
x509->rawCRLInfoSz = dCert->extCrlInfoRawSz;
}
else {
ret = MEMORY_E;
}
}
if (dCert->extCrlInfo != NULL && dCert->extCrlInfoSz > 0) {
x509->CRLInfo = (byte*)XMALLOC(dCert->extCrlInfoSz, x509->heap,
DYNAMIC_TYPE_X509_EXT);
if (x509->CRLInfo != NULL) {
XMEMCPY(x509->CRLInfo, dCert->extCrlInfo, dCert->extCrlInfoSz);
x509->CRLInfoSz = dCert->extCrlInfoSz;
}
else {
ret = MEMORY_E;
}
}
x509->authInfoSet = dCert->extAuthInfoSet;
x509->authInfoCrit = dCert->extAuthInfoCrit;
if (dCert->extAuthInfo != NULL && dCert->extAuthInfoSz > 0) {
x509->authInfo = (byte*)XMALLOC(dCert->extAuthInfoSz, x509->heap,
DYNAMIC_TYPE_X509_EXT);
if (x509->authInfo != NULL) {
XMEMCPY(x509->authInfo, dCert->extAuthInfo, dCert->extAuthInfoSz);
x509->authInfoSz = dCert->extAuthInfoSz;
}
else {
ret = MEMORY_E;
}
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
if (dCert->extAuthInfoCaIssuer != NULL && dCert->extAuthInfoCaIssuerSz > 0) {
x509->authInfoCaIssuer = (byte*)XMALLOC(dCert->extAuthInfoCaIssuerSz, x509->heap,
DYNAMIC_TYPE_X509_EXT);
if (x509->authInfoCaIssuer != NULL) {
XMEMCPY(x509->authInfoCaIssuer, dCert->extAuthInfoCaIssuer, dCert->extAuthInfoCaIssuerSz);
x509->authInfoCaIssuerSz = dCert->extAuthInfoCaIssuerSz;
}
else {
ret = MEMORY_E;
}
}
#endif
x509->basicConstSet = dCert->extBasicConstSet;
x509->basicConstCrit = dCert->extBasicConstCrit;
x509->basicConstPlSet = dCert->pathLengthSet;
x509->subjAltNameSet = dCert->extSubjAltNameSet;
x509->subjAltNameCrit = dCert->extSubjAltNameCrit;
x509->authKeyIdSet = dCert->extAuthKeyIdSet;
x509->authKeyIdCrit = dCert->extAuthKeyIdCrit;
if (dCert->extAuthKeyIdSrc != NULL && dCert->extAuthKeyIdSz != 0) {
#ifdef WOLFSSL_AKID_NAME
if (dCert->extRawAuthKeyIdSrc != NULL &&
dCert->extAuthKeyIdSrc > dCert->extRawAuthKeyIdSrc &&
dCert->extAuthKeyIdSrc <
(dCert->extRawAuthKeyIdSrc + dCert->extRawAuthKeyIdSz)) {
/* Confirmed: extAuthKeyIdSrc points inside extRawAuthKeyIdSrc */
x509->authKeyIdSrc = (byte*)XMALLOC(dCert->extRawAuthKeyIdSz,
x509->heap, DYNAMIC_TYPE_X509_EXT);
if (x509->authKeyIdSrc != NULL) {
XMEMCPY(x509->authKeyIdSrc, dCert->extRawAuthKeyIdSrc,
dCert->extRawAuthKeyIdSz);
x509->authKeyIdSrcSz = dCert->extRawAuthKeyIdSz;
/* Set authKeyId to same offset inside authKeyIdSrc */
x509->authKeyId = x509->authKeyIdSrc +
(dCert->extAuthKeyIdSrc - dCert->extRawAuthKeyIdSrc);
x509->authKeyIdSz = dCert->extAuthKeyIdSz;
}
else
ret = MEMORY_E;
}
#else
x509->authKeyId = (byte*)XMALLOC(dCert->extAuthKeyIdSz, x509->heap,
DYNAMIC_TYPE_X509_EXT);
if (x509->authKeyId != NULL) {
XMEMCPY(x509->authKeyId,
dCert->extAuthKeyIdSrc, dCert->extAuthKeyIdSz);
x509->authKeyIdSz = dCert->extAuthKeyIdSz;
}
#endif
else
ret = MEMORY_E;
}
x509->subjKeyIdSet = dCert->extSubjKeyIdSet;
x509->subjKeyIdCrit = dCert->extSubjKeyIdCrit;
if (dCert->extSubjKeyIdSrc != NULL && dCert->extSubjKeyIdSz != 0) {
x509->subjKeyId = (byte*)XMALLOC(dCert->extSubjKeyIdSz, x509->heap,
DYNAMIC_TYPE_X509_EXT);
if (x509->subjKeyId != NULL) {
XMEMCPY(x509->subjKeyId,
dCert->extSubjKeyIdSrc, dCert->extSubjKeyIdSz);
x509->subjKeyIdSz = dCert->extSubjKeyIdSz;
}
else
ret = MEMORY_E;
}
x509->keyUsageSet = dCert->extKeyUsageSet;
x509->keyUsageCrit = dCert->extKeyUsageCrit;
if (dCert->extExtKeyUsageSrc != NULL && dCert->extExtKeyUsageSz > 0) {
x509->extKeyUsageSrc = (byte*)XMALLOC(dCert->extExtKeyUsageSz,
x509->heap, DYNAMIC_TYPE_X509_EXT);
if (x509->extKeyUsageSrc != NULL) {
XMEMCPY(x509->extKeyUsageSrc, dCert->extExtKeyUsageSrc,
dCert->extExtKeyUsageSz);
x509->extKeyUsage = dCert->extExtKeyUsage;
x509->extKeyUsageSz = dCert->extExtKeyUsageSz;
x509->extKeyUsageCrit = dCert->extExtKeyUsageCrit;
x509->extKeyUsageCount = dCert->extExtKeyUsageCount;
}
else {
ret = MEMORY_E;
}
}
#ifndef IGNORE_NETSCAPE_CERT_TYPE
x509->nsCertType = dCert->nsCertType;
#endif
#if defined(WOLFSSL_SEP) || defined(WOLFSSL_QT)
x509->certPolicySet = dCert->extCertPolicySet;
x509->certPolicyCrit = dCert->extCertPolicyCrit;
#endif /* WOLFSSL_SEP || WOLFSSL_QT */
#ifdef WOLFSSL_CERT_EXT
{
int i;
for (i = 0; i < dCert->extCertPoliciesNb && i < MAX_CERTPOL_NB; i++)
XMEMCPY(x509->certPolicies[i], dCert->extCertPolicies[i],
MAX_CERTPOL_SZ);
x509->certPoliciesNb = dCert->extCertPoliciesNb;
}
#endif /* WOLFSSL_CERT_EXT */
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_ALL
if (dCert->extSubjAltNameSrc != NULL && dCert->extSubjAltNameSz != 0) {
x509->subjAltNameSrc = (byte*)XMALLOC(dCert->extSubjAltNameSz, x509->heap,
DYNAMIC_TYPE_X509_EXT);
if (x509->subjAltNameSrc != NULL) {
XMEMCPY(x509->subjAltNameSrc,
dCert->extSubjAltNameSrc, dCert->extSubjAltNameSz);
x509->subjAltNameSz = dCert->extSubjAltNameSz;
}
else
ret = MEMORY_E;
}
#endif
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
x509->pkCurveOID = dCert->pkCurveOID;
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
return ret;
}
#endif /* KEEP_PEER_CERT || SESSION_CERTS */
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) || \
(defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) && !defined(WOLFSSL_NO_TLS12))
static int ProcessCSR(WOLFSSL* ssl, byte* input, word32* inOutIdx,
word32 status_length)
{
int ret = 0;
OcspRequest* request;
#ifdef WOLFSSL_SMALL_STACK
CertStatus* status;
OcspEntry* single;
OcspResponse* response;
#else
CertStatus status[1];
OcspEntry single[1];
OcspResponse response[1];
#endif
WOLFSSL_ENTER("ProcessCSR");
do {
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
if (ssl->status_request) {
request = (OcspRequest*)TLSX_CSR_GetRequest(ssl->extensions);
ssl->status_request = 0;
break;
}
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
if (ssl->status_request_v2) {
request = (OcspRequest*)TLSX_CSR2_GetRequest(ssl->extensions,
WOLFSSL_CSR2_OCSP, 0);
ssl->status_request_v2 = 0;
break;
}
#endif
return BUFFER_ERROR;
} while(0);
if (request == NULL)
return BAD_CERTIFICATE_STATUS_ERROR; /* not expected */
#ifdef WOLFSSL_SMALL_STACK
status = (CertStatus*)XMALLOC(sizeof(CertStatus), ssl->heap,
DYNAMIC_TYPE_OCSP_STATUS);
single = (OcspEntry*)XMALLOC(sizeof(OcspEntry), ssl->heap,
DYNAMIC_TYPE_OCSP_ENTRY);
response = (OcspResponse*)XMALLOC(sizeof(OcspResponse), ssl->heap,
DYNAMIC_TYPE_OCSP_REQUEST);
if (status == NULL || single == NULL || response == NULL) {
if (status)
XFREE(status, ssl->heap, DYNAMIC_TYPE_OCSP_STATUS);
if (single)
XFREE(single, ssl->heap, DYNAMIC_TYPE_OCSP_ENTRY);
if (response)
XFREE(response, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
return MEMORY_ERROR;
}
#endif
InitOcspResponse(response, single, status, input +*inOutIdx, status_length, ssl->heap);
if (OcspResponseDecode(response, SSL_CM(ssl), ssl->heap, 0) != 0)
ret = BAD_CERTIFICATE_STATUS_ERROR;
else if (CompareOcspReqResp(request, response) != 0)
ret = BAD_CERTIFICATE_STATUS_ERROR;
else if (response->responseStatus != OCSP_SUCCESSFUL)
ret = BAD_CERTIFICATE_STATUS_ERROR;
else if (response->single->status->status == CERT_REVOKED)
ret = OCSP_CERT_REVOKED;
else if (response->single->status->status != CERT_GOOD)
ret = BAD_CERTIFICATE_STATUS_ERROR;
else {
XMEMCPY(ssl->ocspProducedDate, response->producedDate, sizeof ssl->ocspProducedDate);
ssl->ocspProducedDateFormat = response->producedDateFormat;
}
*inOutIdx += status_length;
FreeOcspResponse(response);
#ifdef WOLFSSL_SMALL_STACK
XFREE(status, ssl->heap, DYNAMIC_TYPE_OCSP_STATUS);
XFREE(single, ssl->heap, DYNAMIC_TYPE_OCSP_ENTRY);
XFREE(response, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
#endif
WOLFSSL_LEAVE("ProcessCSR", ret);
return ret;
}
#endif
#ifdef HAVE_PK_CALLBACKS
#ifdef HAVE_ECC
static int SigPkCbEccVerify(const unsigned char* sig, unsigned int sigSz,
const unsigned char* hash, unsigned int hashSz,
const unsigned char* keyDer, unsigned int keySz,
int* result, void* ctx)
{
int ret = NOT_COMPILED_IN;
WOLFSSL* ssl = (WOLFSSL*)ctx;
if (ssl && ssl->ctx->EccVerifyCb) {
ret = ssl->ctx->EccVerifyCb(ssl, sig, sigSz, hash, hashSz,
keyDer, keySz, result, ssl->EccVerifyCtx);
}
return ret;
}
#endif
#ifndef NO_RSA
static int SigPkCbRsaVerify(unsigned char* sig, unsigned int sigSz,
unsigned char** out, const unsigned char* keyDer, unsigned int keySz,
void* ctx)
{
int ret = NOT_COMPILED_IN;
WOLFSSL* ssl = (WOLFSSL*)ctx;
if (ssl && ssl->ctx->RsaVerifyCb) {
ret = ssl->ctx->RsaVerifyCb(ssl, sig, sigSz, out, keyDer, keySz,
ssl->RsaVerifyCtx);
}
return ret;
}
#endif
int InitSigPkCb(WOLFSSL* ssl, SignatureCtx* sigCtx)
{
if (ssl == NULL || sigCtx == NULL)
return BAD_FUNC_ARG;
/* only setup the verify callback if a PK is set */
#ifdef HAVE_ECC
#if defined(WOLFSSL_RENESAS_FSPSM_TLS) || defined(WOLFSSL_RENESAS_TSIP_TLS)
sigCtx->pkCbEcc = Renesas_cmn_SigPkCbEccVerify;
sigCtx->pkCtxEcc = (void*)&sigCtx->CertAtt;
(void)SigPkCbEccVerify;
#else
if (ssl->ctx->EccVerifyCb) {
sigCtx->pkCbEcc = SigPkCbEccVerify;
sigCtx->pkCtxEcc = ssl;
}
#endif
#endif
#ifndef NO_RSA
/* only setup the verify callback if a PK is set */
#if defined(WOLFSSL_RENESAS_FSPSM_TLS) || defined(WOLFSSL_RENESAS_TSIP_TLS)
sigCtx->pkCbRsa = Renesas_cmn_SigPkCbRsaVerify;
sigCtx->pkCtxRsa = (void*)&sigCtx->CertAtt;
(void)SigPkCbRsaVerify;
#else
if (ssl->ctx->RsaVerifyCb) {
sigCtx->pkCbRsa = SigPkCbRsaVerify;
sigCtx->pkCtxRsa = ssl;
}
#endif
#endif
return 0;
}
#endif /* HAVE_PK_CALLBACKS */
#if !defined(NO_WOLFSSL_CLIENT) || !defined(WOLFSSL_NO_CLIENT_AUTH)
void DoCertFatalAlert(WOLFSSL* ssl, int ret)
{
int alertWhy;
if (ssl == NULL || ret == 0) {
return;
}
WOLFSSL_ERROR(ret);
/* Determine alert reason */
alertWhy = bad_certificate;
if (ret == ASN_AFTER_DATE_E || ret == ASN_BEFORE_DATE_E) {
alertWhy = certificate_expired;
}
else if (ret == ASN_NO_SIGNER_E || ret == ASN_PATHLEN_INV_E ||
ret == ASN_PATHLEN_SIZE_E) {
alertWhy = unknown_ca;
}
#ifdef OPENSSL_EXTRA
else if (ret == CRL_CERT_REVOKED) {
alertWhy = certificate_revoked;
}
#endif
#if defined(HAVE_RPK)
else if (ret == UNSUPPORTED_CERTIFICATE) {
alertWhy = unsupported_certificate;
}
#endif /* HAVE_RPK */
else if (ret == NO_PEER_CERT) {
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
alertWhy = certificate_required;
}
else
#endif
{
alertWhy = handshake_failure;
}
}
/* send fatal alert and mark connection closed */
SendAlert(ssl, alert_fatal, alertWhy); /* try to send */
ssl->options.isClosed = 1;
}
/* WOLFSSL_ALWAYS_VERIFY_CB: Use verify callback for success or failure cases */
/* WOLFSSL_VERIFY_CB_ALL_CERTS: Issue callback for all intermediate certificates */
/* Callback is issued for certificate presented in TLS Certificate (11) packet.
* The intermediates are done first then peer leaf cert last. Use the
* store->error_depth member to determine index (0=peer, >1 intermediates)
*/
int DoVerifyCallback(WOLFSSL_CERT_MANAGER* cm, WOLFSSL* ssl, int ret,
ProcPeerCertArgs* args)
{
int verify_ok = 0, use_cb = 0;
void *heap;
if (cm == NULL) {
return BAD_FUNC_ARG;
}
heap = (ssl != NULL) ? ssl->heap : cm->heap;
/* Determine if verify was okay */
if (ret == 0) {
verify_ok = 1;
}
/* Determine if verify callback should be used */
if (ret != 0) {
if ((ssl != NULL) && (!ssl->options.verifyNone)) {
use_cb = 1; /* always report errors */
}
}
#ifdef WOLFSSL_ALWAYS_VERIFY_CB
/* always use verify callback on peer leaf cert */
if (args->certIdx == 0) {
use_cb = 1;
}
#endif
#ifdef WOLFSSL_VERIFY_CB_ALL_CERTS
/* perform verify callback on other intermediate certs (not just peer) */
if (args->certIdx > 0) {
use_cb = 1;
}
#endif
#if defined(OPENSSL_EXTRA)
/* Perform domain and IP check only for the leaf certificate */
if (args->certIdx == 0) {
/* perform domain name check on the peer certificate */
if (args->dCertInit && args->dCert && (ssl != NULL) &&
ssl->param && ssl->param->hostName[0]) {
/* If altNames names is present, then subject common name is ignored */
if (args->dCert->altNames != NULL) {
if (CheckForAltNames(args->dCert, ssl->param->hostName, NULL) != 1) {
if (ret == 0) {
ret = DOMAIN_NAME_MISMATCH;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
}
#ifndef WOLFSSL_HOSTNAME_VERIFY_ALT_NAME_ONLY
else {
if (args->dCert->subjectCN) {
if (MatchDomainName(args->dCert->subjectCN,
args->dCert->subjectCNLen,
ssl->param->hostName) == 0) {
if (ret == 0) {
ret = DOMAIN_NAME_MISMATCH;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
}
}
#else
else {
if (ret == 0) {
ret = DOMAIN_NAME_MISMATCH;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif /* !WOLFSSL_HOSTNAME_VERIFY_ALT_NAME_ONLY */
}
/* perform IP address check on the peer certificate */
if ((args->dCertInit != 0) && (args->dCert != NULL) && (ssl != NULL) &&
(ssl->param != NULL) && (XSTRLEN(ssl->param->ipasc) > 0)) {
if (CheckIPAddr(args->dCert, ssl->param->ipasc) != 0) {
if (ret == 0) {
ret = IPADDR_MISMATCH;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
}
}
#endif
/* if verify callback has been set */
if ((use_cb && (ssl != NULL) && ((ssl->verifyCallback != NULL)
#ifdef OPENSSL_ALL
|| (ssl->ctx->verifyCertCb != NULL)
#endif
))
#ifndef NO_WOLFSSL_CM_VERIFY
|| (cm->verifyCallback != NULL)
#endif
) {
int verifyFail = 0;
#ifdef WOLFSSL_SMALL_STACK
WOLFSSL_X509_STORE_CTX* store;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
WOLFSSL_X509* x509;
#endif
char* domain = NULL;
#else
WOLFSSL_X509_STORE_CTX store[1];
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
WOLFSSL_X509 x509[1];
#endif
char domain[ASN_NAME_MAX];
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
int x509Free = 0;
#endif
#ifdef WOLFSSL_SMALL_STACK
store = (WOLFSSL_X509_STORE_CTX*)XMALLOC(
sizeof(WOLFSSL_X509_STORE_CTX), heap, DYNAMIC_TYPE_X509_STORE);
if (store == NULL) {
return MEMORY_E;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), heap,
DYNAMIC_TYPE_X509);
if (x509 == NULL) {
XFREE(store, heap, DYNAMIC_TYPE_X509_STORE);
return MEMORY_E;
}
#endif
domain = (char*)XMALLOC(ASN_NAME_MAX, heap, DYNAMIC_TYPE_STRING);
if (domain == NULL) {
XFREE(store, heap, DYNAMIC_TYPE_X509_STORE);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
XFREE(x509, heap, DYNAMIC_TYPE_X509);
#endif
return MEMORY_E;
}
#endif /* WOLFSSL_SMALL_STACK */
XMEMSET(store, 0, sizeof(WOLFSSL_X509_STORE_CTX));
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
XMEMSET(x509, 0, sizeof(WOLFSSL_X509));
#endif
domain[0] = '\0';
/* build subject CN as string to return in store */
if (args->dCertInit && args->dCert && args->dCert->subjectCN) {
int subjectCNLen = args->dCert->subjectCNLen;
if (subjectCNLen > ASN_NAME_MAX-1)
subjectCNLen = ASN_NAME_MAX-1;
if (subjectCNLen > 0) {
XMEMCPY(domain, args->dCert->subjectCN, subjectCNLen);
domain[subjectCNLen] = '\0';
}
}
#ifndef OPENSSL_COMPATIBLE_DEFAULTS
store->error = ret;
#else
store->error = GetX509Error(ret);
#endif
store->error_depth = args->certIdx;
store->discardSessionCerts = 0;
store->domain = domain;
if (ssl != NULL) {
if (ssl->verifyCbCtx != NULL) {
/* Use the WOLFSSL user context if set */
store->userCtx = ssl->verifyCbCtx;
}
else {
/* Else use the WOLFSSL_CTX user context */
store->userCtx = ssl->ctx->verifyCbCtx;
}
}
else {
store->userCtx = cm;
}
store->certs = args->certs;
store->totalCerts = args->totalCerts;
#if defined(HAVE_EX_DATA) && \
(defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL))
if (wolfSSL_CRYPTO_set_ex_data(&store->ex_data, 0, ssl)
!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Failed to store ssl context in WOLFSSL_X509_STORE_CTX");
}
#endif
if (ssl != NULL) {
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
store->store = SSL_STORE(ssl);
#if defined(OPENSSL_EXTRA)
store->depth = args->count;
store->param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC(
sizeof(WOLFSSL_X509_VERIFY_PARAM),
heap, DYNAMIC_TYPE_OPENSSL);
if (store->param == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(domain, heap, DYNAMIC_TYPE_STRING);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
XFREE(x509, heap, DYNAMIC_TYPE_X509);
#endif
XFREE(store, heap, DYNAMIC_TYPE_X509_STORE);
#endif
return MEMORY_E;
}
XMEMSET(store->param, 0, sizeof(WOLFSSL_X509_VERIFY_PARAM));
/* Overwrite with non-default param values in SSL */
if (ssl->param) {
if (ssl->param->check_time)
store->param->check_time = ssl->param->check_time;
if (ssl->param->flags)
store->param->flags = ssl->param->flags;
if (ssl->param->hostName[0])
XMEMCPY(store->param->hostName, ssl->param->hostName,
WOLFSSL_HOST_NAME_MAX);
}
#endif /* defined(OPENSSL_EXTRA) */
#endif /* defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)*/
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
#ifdef KEEP_PEER_CERT
if (args->certIdx == 0) {
store->current_cert = &ssl->peerCert; /* use existing X509 */
}
else
#endif
{
InitX509(x509, 0, heap);
if (CopyDecodedToX509(x509, args->dCert) == 0) {
store->current_cert = x509;
x509Free = 1;
}
else {
FreeX509(x509);
}
}
#endif
#ifdef SESSION_CERTS
store->sesChain = &ssl->session->chain;
#endif
}
#ifndef NO_WOLFSSL_CM_VERIFY
/* non-zero return code indicates failure override */
if (cm->verifyCallback != NULL) {
store->userCtx = cm;
if (cm->verifyCallback(verify_ok, store)) {
if (ret != 0) {
WOLFSSL_MSG("Verify CM callback overriding error!");
ret = 0;
}
}
else {
verifyFail = 1;
}
}
#endif
if (ssl != NULL) {
#ifdef OPENSSL_ALL
/* non-zero return code indicates failure override */
if (ssl->ctx->verifyCertCb) {
if (ssl->ctx->verifyCertCb(store, ssl->ctx->verifyCertCbArg)) {
if (ret != 0) {
WOLFSSL_MSG("Verify Cert callback overriding error!");
ret = 0;
}
}
else {
verifyFail = 1;
}
}
#endif
/* non-zero return code indicates failure override */
if (ssl->verifyCallback) {
if (ssl->verifyCallback(verify_ok, store)) {
if (ret != 0) {
WOLFSSL_MSG("Verify callback overriding error!");
ret = 0;
}
}
else {
verifyFail = 1;
}
}
}
if (verifyFail) {
/* induce error if one not present */
if (ret == 0) {
ret = VERIFY_CERT_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
/* mark as verify error */
args->verifyErr = 1;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (x509Free) {
FreeX509(x509);
}
#endif
#if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA)
wolfSSL_sk_X509_pop_free(store->chain, NULL);
store->chain = NULL;
#endif
#ifdef SESSION_CERTS
if ((ssl != NULL) && (store->discardSessionCerts)) {
WOLFSSL_MSG("Verify callback requested discard sess certs");
ssl->session->chain.count = 0;
#ifdef WOLFSSL_ALT_CERT_CHAINS
ssl->session->altChain.count = 0;
#endif
}
#endif /* SESSION_CERTS */
#ifdef OPENSSL_EXTRA
if ((ssl != NULL) && (store->param)) {
XFREE(store->param, heap, DYNAMIC_TYPE_OPENSSL);
}
#endif
#ifdef WOLFSSL_SMALL_STACK
XFREE(domain, heap, DYNAMIC_TYPE_STRING);
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
XFREE(x509, heap, DYNAMIC_TYPE_X509);
#endif
XFREE(store, heap, DYNAMIC_TYPE_X509_STORE);
#endif
}
(void)heap;
return ret;
}
static void FreeProcPeerCertArgs(WOLFSSL* ssl, void* pArgs)
{
ProcPeerCertArgs* args = (ProcPeerCertArgs*)pArgs;
(void)ssl;
if (args->certs) {
XFREE(args->certs, ssl->heap, DYNAMIC_TYPE_DER);
args->certs = NULL;
}
#ifdef WOLFSSL_TLS13
if (args->exts) {
XFREE(args->exts, ssl->heap, DYNAMIC_TYPE_CERT_EXT);
args->exts = NULL;
}
#endif
if (args->dCert) {
if (args->dCertInit) {
FreeDecodedCert(args->dCert);
args->dCertInit = 0;
}
XFREE(args->dCert, ssl->heap, DYNAMIC_TYPE_DCERT);
args->dCert = NULL;
}
}
#if defined(OPENSSL_ALL) && defined(WOLFSSL_CERT_GEN) && \
(defined(WOLFSSL_CERT_REQ) || defined(WOLFSSL_CERT_EXT)) && \
!defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
/* load certificate file which has the form <hash>.(r)N[0..N] */
/* in the folder. */
/* (r), in the case of CRL file */
/* @param store a pointer to X509_STORE structure */
/* @param issuer a pointer to X509_NAME that presents an issuer */
/* @param type X509_LU_X509 or X509_LU_CRL */
/* @return WOLFSSL_SUCCESS on successful, otherwise WOLFSSL_FAILURE */
int LoadCertByIssuer(WOLFSSL_X509_STORE* store, X509_NAME* issuer, int type)
{
const int MAX_SUFFIX = 10;/* The number comes from CA_TABLE_SIZE=10 */
int ret = WOLFSSL_SUCCESS;
WOLFSSL_X509_LOOKUP* lookup;
WOLFSSL_BY_DIR_entry* entry;
WOLFSSL_BY_DIR_HASH hash_tmp;
WOLFSSL_BY_DIR_HASH* ph = NULL;
WOLFSSL_X509* x509;
unsigned long hash = 0;
char* filename = NULL;
const char* post = "";
byte* pbuf = NULL;
int len, num, i, idx;
int suffix = 0;
int retHash = NOT_COMPILED_IN;
byte dgt[WC_MAX_DIGEST_SIZE];
WOLFSSL_ENTER("LoadCertByIssuer");
/* sanity check */
if (store == NULL || issuer == NULL || (type != X509_LU_X509 && type != X509_LU_CRL)) {
return WOLFSSL_FAILURE;
}
lookup = &store->lookup;
if (lookup->dirs == NULL || lookup->type != 1) {
return WOLFSSL_FAILURE;
}
len = wolfSSL_i2d_X509_NAME_canon(issuer, &pbuf);
if (len > 0) {
#if defined(NO_SHA) && !defined(NO_SHA256)
retHash = wc_Sha256Hash((const byte*)pbuf, len, dgt);
#elif !defined(NO_SHA)
retHash = wc_ShaHash((const byte*)pbuf, len, dgt);
#endif
if (retHash == 0) {
/* 4 bytes in little endian as unsigned long */
hash = (((unsigned long)dgt[3] << 24) |
((unsigned long)dgt[2] << 16) |
((unsigned long)dgt[1] << 8) |
((unsigned long)dgt[0]));
} else {
WOLFSSL_MSG("failed hash operation");
return WOLFSSL_FAILURE;
}
wolfSSL_OPENSSL_free(pbuf);
}
/* try to load each hashed name file in path */
#if !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
if (type == X509_LU_CRL) {
post = "r";
}
num = wolfSSL_sk_BY_DIR_entry_num(lookup->dirs->dir_entry);
for (i=0; i<num; i++) {
entry = wolfSSL_sk_BY_DIR_entry_value(lookup->dirs->dir_entry, i);
if (type == X509_LU_CRL && entry->hashes != NULL &&
wolfSSL_sk_BY_DIR_HASH_num(entry->hashes) > 0) {
/* lock the list */
if (wc_LockMutex(&lookup->dirs->lock) != 0) {
WOLFSSL_MSG("wc_LockMutex cdir Lock error");
return BAD_MUTEX_E;
}
hash_tmp.hash_value = hash;
idx = wolfSSL_sk_BY_DIR_HASH_find(entry->hashes, &hash_tmp);
if (idx >= 0) {
WOLFSSL_MSG("find hashed CRL in list");
ph = wolfSSL_sk_BY_DIR_HASH_value(entry->hashes, idx);
suffix = ph->last_suffix;
} else {
ph = NULL;
suffix = 0;
}
wc_UnLockMutex(&lookup->dirs->lock);
}
/* Additional buffer length for file name memory allocation : */
/* / <hashvalue>.(r)N\0 */
/*|1| 8 |1|1|1|1| => 13 */
len = (int)XSTRLEN(entry->dir_name) + 13;
if (filename != NULL) {
XFREE(filename, NULL, DYNAMIC_TYPE_OPENSSL);
}
filename = (char*)XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL);
if (filename == NULL) {
WOLFSSL_MSG("memory allocation error");
return MEMORY_E;
}
/* set as FAILURE, if successfully loading cert of CRL, this becomes */
/* WOLFSSL_SUCCESS */
ret = WOLFSSL_FAILURE;
for (; suffix < MAX_SUFFIX; suffix++) {
/* /folder-path/<hash>.(r)N[0..9] */
if (XSNPRINTF(filename, len, "%s/%08lx.%s%d", entry->dir_name,
hash, post, suffix)
>= len)
{
WOLFSSL_MSG("buffer overrun in LoadCertByIssuer");
ret = BUFFER_E;
break;
}
if(wc_FileExists(filename) == 0/*0 file exists */) {
if (type == X509_LU_X509) {
x509 = wolfSSL_X509_load_certificate_file(filename,
WOLFSSL_FILETYPE_PEM);
if (x509 != NULL) {
ret = wolfSSL_X509_STORE_add_cert(store, x509);
wolfSSL_X509_free(x509);
} else {
WOLFSSL_MSG("failed to load certificate");
ret = WOLFSSL_FAILURE;
break;
}
}
else if (type == X509_LU_CRL) {
#if defined(HAVE_CRL)
ret = wolfSSL_X509_load_crl_file(&store->lookup, filename,
entry->dir_type);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("failed to load CRL");
break;
}
#else
WOLFSSL_MSG("CRL is not supported");
ret = WOLFSSL_FAILURE;
break;
#endif /* HAVE_CRL */
}
} else
break;
}
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("not found file");
ret = WOLFSSL_FAILURE;
} else {
if (type == X509_LU_CRL) {
if (wc_LockMutex(&lookup->dirs->lock) != 0) {
WOLFSSL_MSG("wc_LockMutex cdir Lock error");
XFREE(filename, NULL, DYNAMIC_TYPE_OPENSSL);
WOLFSSL_ERROR_VERBOSE(BAD_MUTEX_E);
return BAD_MUTEX_E;
}
if (ph == NULL) {
ph = wolfSSL_BY_DIR_HASH_new();
if (ph == NULL) {
WOLFSSL_MSG("failed to allocate hash stack");
ret = WOLFSSL_FAILURE;
} else {
ph->hash_value = hash;
ph->last_suffix = suffix;
ret = wolfSSL_sk_BY_DIR_HASH_push(entry->hashes, ph);
}
}
wc_UnLockMutex(&lookup->dirs->lock);
}
}
XFREE(filename, NULL, DYNAMIC_TYPE_OPENSSL);
filename = NULL;
}
#else
(void) type;
(void) ret;
(void) x509;
(void) filename;
(void) suffix;
(void) num;
(void) i;
ret = WOLFSSL_NOT_IMPLEMENTED;
#endif
WOLFSSL_LEAVE("LoadCertByIssuer", ret);
return ret;
}
#endif
static int ProcessPeerCertParse(WOLFSSL* ssl, ProcPeerCertArgs* args,
int certType, int verify, byte** pSubjectHash, int* pAlreadySigner)
{
int ret = 0;
buffer* cert;
byte* subjectHash = NULL;
int alreadySigner = 0;
#if defined(HAVE_RPK)
int cType;
#endif
#ifdef WOLFSSL_SMALL_CERT_VERIFY
int sigRet = 0;
#endif
if (ssl == NULL || args == NULL
#ifndef WOLFSSL_SMALL_CERT_VERIFY
|| args->dCert == NULL
#endif
) {
return BAD_FUNC_ARG;
}
PRAGMA_GCC_DIAG_PUSH
PRAGMA_GCC("GCC diagnostic ignored \"-Wstrict-overflow\"")
/* Surrounded in gcc pragma to avoid -Werror=strict-overflow when the
* compiler optimizes out the check and assumes no underflow. Keeping the
* check in place to handle multiple build configurations and future
* changes. */
/* check to make sure certificate index is valid */
if (args->certIdx > args->count)
return BUFFER_E;
PRAGMA_GCC_DIAG_POP
/* check if returning from non-blocking OCSP */
/* skip this section because cert is already initialized and parsed */
#ifdef WOLFSSL_NONBLOCK_OCSP
if (args->lastErr == OCSP_WANT_READ) {
args->lastErr = 0; /* clear error */
return 0;
}
#endif
#ifdef WOLFSSL_TRUST_PEER_CERT
/* we have trusted peer */
if (args->haveTrustPeer) {
return 0;
}
#endif
/* get certificate buffer */
cert = &args->certs[args->certIdx];
#ifdef WOLFSSL_SMALL_CERT_VERIFY
if (verify == VERIFY) {
/* for small cert verify, release decoded cert during signature check to
reduce peak memory usage */
if (args->dCert != NULL) {
if (args->dCertInit) {
FreeDecodedCert(args->dCert);
args->dCertInit = 0;
}
XFREE(args->dCert, ssl->heap, DYNAMIC_TYPE_DCERT);
args->dCert = NULL;
}
/* perform cert parsing and signature check */
sigRet = CheckCertSignature(cert->buffer, cert->length,
ssl->heap, SSL_CM(ssl));
/* fail on errors here after the ParseCertRelative call, so dCert is populated */
/* verify name only in ParseCertRelative below, signature check done */
verify = VERIFY_NAME;
}
#endif /* WOLFSSL_SMALL_CERT_VERIFY */
/* make sure the decoded cert structure is allocated and initialized */
if (!args->dCertInit
#ifdef WOLFSSL_SMALL_CERT_VERIFY
|| args->dCert == NULL
#endif
) {
#ifdef WOLFSSL_SMALL_CERT_VERIFY
if (args->dCert == NULL) {
args->dCert = (DecodedCert*)XMALLOC(
sizeof(DecodedCert), ssl->heap,
DYNAMIC_TYPE_DCERT);
if (args->dCert == NULL) {
return MEMORY_E;
}
}
#endif
InitDecodedCert(args->dCert, cert->buffer, cert->length, ssl->heap);
args->dCertInit = 1;
args->dCert->sigCtx.devId = ssl->devId;
#ifdef WOLFSSL_ASYNC_CRYPT
args->dCert->sigCtx.asyncCtx = ssl;
#endif
#ifdef HAVE_PK_CALLBACKS
/* setup the PK callback context */
ret = InitSigPkCb(ssl, &args->dCert->sigCtx);
if (ret != 0)
return ret;
#endif
}
/* Parse Certificate */
ret = ParseCertRelative(args->dCert, certType, verify, SSL_CM(ssl));
#if defined(HAVE_RPK)
/* if cert type has negotiated with peer, confirm the cert received has
* the same type.
*/
if (ret == 0 ) {
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if (ssl->options.rpkState.received_ServerCertTypeCnt == 1) {
cType = ssl->options.rpkState.received_ServerCertTypes[0];
if ((cType == WOLFSSL_CERT_TYPE_RPK && !args->dCert->isRPK) ||
(cType == WOLFSSL_CERT_TYPE_X509 && args->dCert->isRPK)) {
/* cert type mismatch */
WOLFSSL_MSG("unsupported certificate type received");
ret = UNSUPPORTED_CERTIFICATE;
}
}
}
else if (ssl->options.side == WOLFSSL_SERVER_END) {
if (ssl->options.rpkState.received_ClientCertTypeCnt == 1) {
cType = ssl->options.rpkState.sending_ClientCertTypes[0];
if ((cType == WOLFSSL_CERT_TYPE_RPK && !args->dCert->isRPK) ||
(cType == WOLFSSL_CERT_TYPE_X509 && args->dCert->isRPK)) {
/* cert type mismatch */
WOLFSSL_MSG("unsupported certificate type received");
ret = UNSUPPORTED_CERTIFICATE;
}
}
}
}
#endif /* HAVE_RPK */
/* perform below checks for date failure cases */
if (ret == 0 || ret == ASN_BEFORE_DATE_E || ret == ASN_AFTER_DATE_E) {
/* get subject and determine if already loaded */
#ifndef NO_SKID
if (args->dCert->extAuthKeyIdSet)
subjectHash = args->dCert->extSubjKeyId;
else
#endif
subjectHash = args->dCert->subjectHash;
alreadySigner = AlreadySigner(SSL_CM(ssl), subjectHash);
}
#ifdef WOLFSSL_SMALL_CERT_VERIFY
/* get signature check failures from above */
if (ret == 0)
ret = sigRet;
#endif
if (pSubjectHash)
*pSubjectHash = subjectHash;
if (pAlreadySigner)
*pAlreadySigner = alreadySigner;
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl,
args->dCert->sigCtx.asyncDev);
}
#endif
#if defined(WOLFSSL_PUBLIC_ASN) && defined(HAVE_PK_CALLBACKS)
/* This block gives the callback a chance to process the peer cert.
* If there is no callback set or it returns NOT_COMPILED_IN, then the
* original return code is returned. */
if (ssl->ctx && ssl->ctx->ProcessPeerCertCb) {
int new_ret = ssl->ctx->ProcessPeerCertCb(ssl, args->dCert);
if (new_ret != NOT_COMPILED_IN) {
ret = new_ret;
}
}
#endif /* WOLFSSL_PUBLIC_ASN && HAVE_PK_CALLBACKS */
return ret;
}
/* Check key sizes for certs. Is redundant check since
ProcessBuffer also performs this check. */
static int ProcessPeerCertCheckKey(WOLFSSL* ssl, ProcPeerCertArgs* args)
{
int ret = 0;
if (ssl->options.verifyNone) {
return ret;
}
switch (args->dCert->keyOID) {
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case RSAPSSk:
#endif
case RSAk:
if (ssl->options.minRsaKeySz < 0 ||
args->dCert->pubKeySize <
(word16)ssl->options.minRsaKeySz) {
WOLFSSL_MSG(
"RSA key size in cert chain error");
ret = RSA_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
break;
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
if (ssl->options.minEccKeySz < 0 ||
args->dCert->pubKeySize <
(word16)ssl->options.minEccKeySz) {
WOLFSSL_MSG(
"ECC key size in cert chain error");
ret = ECC_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
if (ssl->options.minEccKeySz < 0 ||
ED25519_KEY_SIZE < (word16)ssl->options.minEccKeySz) {
WOLFSSL_MSG(
"ECC key size in cert chain error");
ret = ECC_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
break;
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
case ED448k:
if (ssl->options.minEccKeySz < 0 ||
ED448_KEY_SIZE < (word16)ssl->options.minEccKeySz) {
WOLFSSL_MSG(
"ECC key size in cert chain error");
ret = ECC_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
break;
#endif /* HAVE_ED448 */
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
case FALCON_LEVEL1k:
if (ssl->options.minFalconKeySz < 0 ||
FALCON_LEVEL1_KEY_SIZE < (word16)ssl->options.minFalconKeySz) {
WOLFSSL_MSG("Falcon key size in cert chain error");
ret = FALCON_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
break;
case FALCON_LEVEL5k:
if (ssl->options.minFalconKeySz < 0 ||
FALCON_LEVEL5_KEY_SIZE < (word16)ssl->options.minFalconKeySz) {
WOLFSSL_MSG("Falcon key size in cert chain error");
ret = FALCON_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
break;
#endif /* HAVE_FALCON */
#endif /* HAVE_PQC */
#if defined(HAVE_DILITHIUM)
case DILITHIUM_LEVEL2k:
if (ssl->options.minDilithiumKeySz < 0 ||
DILITHIUM_LEVEL2_KEY_SIZE
< (word16)ssl->options.minDilithiumKeySz) {
WOLFSSL_MSG("Dilithium key size in cert chain error");
ret = DILITHIUM_KEY_SIZE_E;
}
break;
case DILITHIUM_LEVEL3k:
if (ssl->options.minDilithiumKeySz < 0 ||
DILITHIUM_LEVEL3_KEY_SIZE
< (word16)ssl->options.minDilithiumKeySz) {
WOLFSSL_MSG( "Dilithium key size in cert chain error");
ret = DILITHIUM_KEY_SIZE_E;
}
break;
case DILITHIUM_LEVEL5k:
if (ssl->options.minDilithiumKeySz < 0 ||
DILITHIUM_LEVEL5_KEY_SIZE
< (word16)ssl->options.minDilithiumKeySz) {
WOLFSSL_MSG("Dilithium key size in cert chain error");
ret = DILITHIUM_KEY_SIZE_E;
}
break;
#endif /* HAVE_DILITHIUM */
default:
WOLFSSL_MSG("Key size not checked");
/* key not being checked for size if not in
switch */
break;
}
return ret;
}
#ifdef HAVE_CRL
static int ProcessPeerCertsChainCRLCheck(WOLFSSL_CERT_MANAGER* cm, Signer* ca)
{
Signer* prev = NULL;
int ret = 0;
/* End loop if no more issuers found or if we have
* found a self signed cert (ca == prev) */
for (; ret == 0 && ca != NULL && ca != prev;
prev = ca, ca = GetCAByName(cm, ca->issuerNameHash)) {
ret = CheckCertCRL_ex(cm->crl, ca->issuerNameHash, NULL, 0,
ca->serialHash, NULL, 0, NULL);
if (ret != 0)
break;
}
return ret;
}
#endif
int ProcessPeerCerts(WOLFSSL* ssl, byte* input, word32* inOutIdx,
word32 totalSz)
{
int ret = 0;
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
ProcPeerCertArgs* args = NULL;
WOLFSSL_ASSERT_SIZEOF_GE(ssl->async->args, *args);
#elif defined(WOLFSSL_SMALL_STACK)
ProcPeerCertArgs* args = NULL;
#else
ProcPeerCertArgs args[1];
#endif
byte* subjectHash = NULL;
int alreadySigner = 0;
WOLFSSL_ENTER("ProcessPeerCerts");
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
ERROR_OUT(MEMORY_E, exit_ppc);
}
args = (ProcPeerCertArgs*)ssl->async->args;
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_ppc;
}
else
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_NONBLOCK_OCSP
if (ssl->error == OCSP_WANT_READ) {
/* Re-entry after non-blocking OCSP */
#ifdef WOLFSSL_ASYNC_CRYPT
/* if async operationg not pending, reset error code */
if (ret == WC_NO_PENDING_E)
ret = 0;
#endif
}
else
#endif /* WOLFSSL_NONBLOCK_OCSP */
#elif defined(WOLFSSL_SMALL_STACK)
args = (ProcPeerCertArgs*)XMALLOC(
sizeof(ProcPeerCertArgs), ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (args == NULL) {
ERROR_OUT(MEMORY_E, exit_ppc);
}
#endif /* WOLFSSL_ASYNC_CRYPT || WOLFSSL_NONBLOCK_OCSP */
{
/* Reset state */
ret = 0;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
XMEMSET(args, 0, sizeof(ProcPeerCertArgs));
args->idx = *inOutIdx;
args->begin = *inOutIdx;
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
ssl->async->freeArgs = FreeProcPeerCertArgs;
#endif
}
switch (ssl->options.asyncState)
{
case TLS_ASYNC_BEGIN:
{
word32 listSz;
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn)
AddPacketName(ssl, "Certificate");
if (ssl->toInfoOn)
AddLateName("Certificate", &ssl->timeoutInfo);
#endif
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
byte ctxSz;
/* Certificate Request Context */
if ((args->idx - args->begin) + OPAQUE8_LEN > totalSz)
ERROR_OUT(BUFFER_ERROR, exit_ppc);
ctxSz = *(input + args->idx);
args->idx++;
if ((args->idx - args->begin) + ctxSz > totalSz)
ERROR_OUT(BUFFER_ERROR, exit_ppc);
#ifndef NO_WOLFSSL_CLIENT
/* Must be empty when received from server. */
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if (ctxSz != 0) {
WOLFSSL_ERROR_VERBOSE(INVALID_CERT_CTX_E);
ERROR_OUT(INVALID_CERT_CTX_E, exit_ppc);
}
}
#endif
#ifndef NO_WOLFSSL_SERVER
/* Must contain value sent in request. */
if (ssl->options.side == WOLFSSL_SERVER_END) {
if (ssl->options.handShakeState != HANDSHAKE_DONE &&
ctxSz != 0) {
WOLFSSL_ERROR_VERBOSE(INVALID_CERT_CTX_E);
ERROR_OUT(INVALID_CERT_CTX_E, exit_ppc);
}
else if (ssl->options.handShakeState == HANDSHAKE_DONE) {
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
CertReqCtx* curr = ssl->certReqCtx;
CertReqCtx* prev = NULL;
while (curr != NULL) {
if ((ctxSz == curr->len) &&
XMEMCMP(&curr->ctx, input + args->idx, ctxSz)
== 0) {
if (prev != NULL)
prev->next = curr->next;
else
ssl->certReqCtx = curr->next;
XFREE(curr, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
break;
}
prev = curr;
curr = curr->next;
}
if (curr == NULL)
#endif
{
WOLFSSL_ERROR_VERBOSE(INVALID_CERT_CTX_E);
ERROR_OUT(INVALID_CERT_CTX_E, exit_ppc);
}
}
}
#endif
args->idx += ctxSz;
/* allocate buffer for cert extensions */
args->exts = (buffer*)XMALLOC(sizeof(buffer) *
MAX_CHAIN_DEPTH, ssl->heap, DYNAMIC_TYPE_CERT_EXT);
if (args->exts == NULL) {
ERROR_OUT(MEMORY_E, exit_ppc);
}
}
#endif
/* allocate buffer for certs */
args->certs = (buffer*)XMALLOC(sizeof(buffer) * MAX_CHAIN_DEPTH,
ssl->heap, DYNAMIC_TYPE_DER);
if (args->certs == NULL) {
ERROR_OUT(MEMORY_E, exit_ppc);
}
XMEMSET(args->certs, 0, sizeof(buffer) * MAX_CHAIN_DEPTH);
/* Certificate List */
if ((args->idx - args->begin) + OPAQUE24_LEN > totalSz) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
c24to32(input + args->idx, &listSz);
args->idx += OPAQUE24_LEN;
if (listSz > MAX_CERTIFICATE_SZ) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
if ((args->idx - args->begin) + listSz != totalSz) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
WOLFSSL_MSG("Loading peer's cert chain");
/* first put cert chain into buffer so can verify top down
we're sent bottom up */
while (listSz) {
word32 certSz;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (args->totalCerts >= MAX_CHAIN_DEPTH) {
if (ssl->peerVerifyRet == 0) /* Return first cert error here */
ssl->peerVerifyRet =
WOLFSSL_X509_V_ERR_CERT_CHAIN_TOO_LONG;
ret = MAX_CHAIN_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Too many certs for MAX_CHAIN_DEPTH");
break; /* break out to avoid reading more certs then buffer
* can hold */
}
#else
if (args->totalCerts >= ssl->verifyDepth ||
args->totalCerts >= MAX_CHAIN_DEPTH) {
WOLFSSL_ERROR_VERBOSE(MAX_CHAIN_ERROR);
ERROR_OUT(MAX_CHAIN_ERROR, exit_ppc);
}
#endif
if ((args->idx - args->begin) + OPAQUE24_LEN > totalSz) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
c24to32(input + args->idx, &certSz);
args->idx += OPAQUE24_LEN;
if ((args->idx - args->begin) + certSz > totalSz) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
args->certs[args->totalCerts].length = certSz;
args->certs[args->totalCerts].buffer = input + args->idx;
#ifdef SESSION_CERTS
AddSessionCertToChain(&ssl->session->chain,
input + args->idx, certSz);
#endif /* SESSION_CERTS */
args->idx += certSz;
listSz -= certSz + CERT_HEADER_SZ;
#ifdef WOLFSSL_TLS13
/* Extensions */
if (ssl->options.tls1_3) {
word16 extSz;
if (args->exts == NULL) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
if ((args->idx - args->begin) + OPAQUE16_LEN > totalSz) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
ato16(input + args->idx, &extSz);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + extSz > totalSz) {
ERROR_OUT(BUFFER_ERROR, exit_ppc);
}
/* Store extension data info for later processing. */
args->exts[args->totalCerts].length = extSz;
args->exts[args->totalCerts].buffer = input + args->idx;
args->idx += extSz;
listSz -= extSz + OPAQUE16_LEN;
WOLFSSL_MSG_EX("\tParsing %d bytes of cert extensions",
args->exts[args->totalCerts].length);
#if !defined(NO_TLS)
ret = TLSX_Parse(ssl, args->exts[args->totalCerts].buffer,
(word16)args->exts[args->totalCerts].length,
certificate, NULL);
#endif /* !NO_TLS */
if (ret < 0) {
WOLFSSL_ERROR_VERBOSE(ret);
ERROR_OUT(ret, exit_ppc);
}
}
#endif
args->totalCerts++;
WOLFSSL_MSG("\tPut another cert into chain");
} /* while (listSz) */
args->count = args->totalCerts;
args->certIdx = 0; /* select peer cert (first one) */
if (args->count == 0) {
/* Empty certificate message. */
if ((ssl->options.side == WOLFSSL_SERVER_END) &&
(ssl->options.mutualAuth || (ssl->options.failNoCert &&
IsAtLeastTLSv1_3(ssl->version)))) {
WOLFSSL_MSG("No peer cert from Client");
ret = NO_PEER_CERT;
WOLFSSL_ERROR_VERBOSE(ret);
DoCertFatalAlert(ssl, ret);
}
else if ((ssl->options.side == WOLFSSL_CLIENT_END) &&
IsAtLeastTLSv1_3(ssl->version)) {
WOLFSSL_MSG("No peer cert from Server");
ret = NO_PEER_CERT;
WOLFSSL_ERROR_VERBOSE(ret);
SendAlert(ssl, alert_fatal, decode_error);
}
}
args->dCertInit = 0;
#ifndef WOLFSSL_SMALL_CERT_VERIFY
args->dCert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), ssl->heap,
DYNAMIC_TYPE_DCERT);
if (args->dCert == NULL) {
ERROR_OUT(MEMORY_E, exit_ppc);
}
XMEMSET(args->dCert, 0, sizeof(DecodedCert));
#endif
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_BUILD;
} /* case TLS_ASYNC_BEGIN */
FALL_THROUGH;
case TLS_ASYNC_BUILD:
{
if (args->count > 0) {
/* check for trusted peer and get untrustedDepth */
#if defined(WOLFSSL_TRUST_PEER_CERT) || defined(OPENSSL_EXTRA)
if (args->certIdx == 0) {
#ifdef WOLFSSL_TRUST_PEER_CERT
TrustedPeerCert* tp;
#endif
ret = ProcessPeerCertParse(ssl, args, CERT_TYPE, NO_VERIFY,
&subjectHash, &alreadySigner);
if (ret != 0)
goto exit_ppc;
#ifdef OPENSSL_EXTRA
/* Determine untrusted depth */
if (!alreadySigner && (!args->dCert ||
!args->dCertInit || !args->dCert->selfSigned)) {
args->untrustedDepth = 1;
}
#endif
#ifdef WOLFSSL_TRUST_PEER_CERT
tp = GetTrustedPeer(SSL_CM(ssl), args->dCert);
WOLFSSL_MSG("Checking for trusted peer cert");
if (tp && MatchTrustedPeer(tp, args->dCert)) {
WOLFSSL_MSG("Found matching trusted peer cert");
args->haveTrustPeer = 1;
}
else if (tp == NULL) {
/* no trusted peer cert */
WOLFSSL_MSG("No matching trusted peer cert. Checking CAs");
}
else {
WOLFSSL_MSG("Trusted peer cert did not match!");
}
if (!args->haveTrustPeer)
#endif
{
/* free cert if not trusted peer */
FreeDecodedCert(args->dCert);
args->dCertInit = 0;
}
}
#endif /* WOLFSSL_TRUST_PEER_CERT || OPENSSL_EXTRA */
/* check certificate up to peer's first */
/* do not verify chain if trusted peer cert found */
while (args->count > 1
#ifdef WOLFSSL_TRUST_PEER_CERT
&& !args->haveTrustPeer
#endif /* WOLFSSL_TRUST_PEER_CERT */
) {
int skipAddCA = 0;
/* select last certificate */
args->certIdx = args->count - 1;
ret = ProcessPeerCertParse(ssl, args, CHAIN_CERT_TYPE,
!ssl->options.verifyNone ? VERIFY : NO_VERIFY,
&subjectHash, &alreadySigner);
#if defined(OPENSSL_ALL) && defined(WOLFSSL_CERT_GEN) && \
(defined(WOLFSSL_CERT_REQ) || defined(WOLFSSL_CERT_EXT)) && \
!defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
if (ret == ASN_NO_SIGNER_E || ret == ASN_SELF_SIGNED_E) {
WOLFSSL_MSG("try to load certificate if hash dir is set");
ret = LoadCertByIssuer(SSL_STORE(ssl),
(WOLFSSL_X509_NAME*)args->dCert->issuerName,
X509_LU_X509);
if (ret == WOLFSSL_SUCCESS) {
FreeDecodedCert(args->dCert);
args->dCertInit = 0;
/* once again */
ret = ProcessPeerCertParse(ssl, args, CHAIN_CERT_TYPE,
!ssl->options.verifyNone ? VERIFY : NO_VERIFY,
&subjectHash, &alreadySigner);
}
else {
ret = ASN_NO_SIGNER_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E)
goto exit_ppc;
#endif
if (ret == 0) {
ret = ProcessPeerCertCheckKey(ssl, args);
}
else if (ret == ASN_PARSE_E || ret == BUFFER_E ||
ret == MEMORY_E) {
WOLFSSL_MSG(
"Got Peer cert ASN PARSE_E, BUFFER E, MEMORY_E");
ERROR_OUT(ret, exit_ppc);
}
if (ret == 0 && args->dCert->isCA == 0) {
WOLFSSL_MSG("Chain cert is not a CA, not adding as one");
}
else if (ret == 0 && ssl->options.verifyNone) {
WOLFSSL_MSG("Chain cert not verified by option, "
"not adding as CA");
}
else if (ret == 0) {
#ifdef OPENSSL_EXTRA
if (args->certIdx > args->untrustedDepth) {
args->untrustedDepth = (char)args->certIdx + 1;
}
#endif
if (alreadySigner) {
WOLFSSL_MSG("Verified CA from chain and already had it");
}
}
else {
WOLFSSL_MSG("Failed to verify CA from chain");
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (ssl->peerVerifyRet == 0) /* Return first cert error here */
ssl->peerVerifyRet = WOLFSSL_X509_V_ERR_INVALID_CA;
#endif
}
if (ret == 0) {
#ifdef HAVE_OCSP
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
if (ssl->status_request_v2) {
ret = TLSX_CSR2_InitRequests(ssl->extensions,
args->dCert, 0, ssl->heap);
}
else /* skips OCSP and force CRL check */
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
if (SSL_CM(ssl)->ocspEnabled &&
SSL_CM(ssl)->ocspCheckAll) {
WOLFSSL_MSG("Doing Non Leaf OCSP check");
ret = CheckCertOCSP_ex(SSL_CM(ssl)->ocsp,
args->dCert, ssl);
#ifdef WOLFSSL_NONBLOCK_OCSP
if (ret == OCSP_WANT_READ) {
args->lastErr = ret;
goto exit_ppc;
}
#endif
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("\tOCSP Lookup not ok");
}
}
#endif /* HAVE_OCSP */
#ifdef HAVE_CRL
if (SSL_CM(ssl)->crlEnabled &&
SSL_CM(ssl)->crlCheckAll) {
int doCrlLookup = 1;
#ifdef HAVE_OCSP
if (SSL_CM(ssl)->ocspEnabled &&
SSL_CM(ssl)->ocspCheckAll) {
/* If the cert status is unknown to the OCSP
responder, do a CRL lookup. If any other
error, skip the CRL lookup and fail the
certificate. */
doCrlLookup = (ret == OCSP_CERT_UNKNOWN);
}
#endif /* HAVE_OCSP */
if (doCrlLookup) {
WOLFSSL_MSG("Doing Non Leaf CRL check");
ret = CheckCertCRL(SSL_CM(ssl)->crl,
args->dCert);
#ifdef WOLFSSL_NONBLOCK_OCSP
/* The CRL lookup I/O callback is using the
* same WOULD_BLOCK error code as OCSP's I/O
* callback, and it is enabling it using the
* same flag. */
if (ret == OCSP_WANT_READ) {
args->lastErr = ret;
goto exit_ppc;
}
#endif
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("\tCRL check not ok");
}
if (ret == 0 &&
args->certIdx == args->totalCerts-1) {
ret = ProcessPeerCertsChainCRLCheck(
SSL_CM(ssl), args->dCert->ca);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("\tCRL chain check not ok");
args->fatal = 0;
}
}
}
}
#endif /* HAVE_CRL */
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (ret == 0 &&
/* extend the limit "+1" until reaching
* an ultimately trusted issuer.*/
args->count > (ssl->verifyDepth + 1)) {
if (ssl->peerVerifyRet == 0) /* Return first cert error here */
ssl->peerVerifyRet =
WOLFSSL_X509_V_ERR_CERT_CHAIN_TOO_LONG;
ret = MAX_CHAIN_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
#endif
#ifdef WOLFSSL_ALT_CERT_CHAINS
/* For alternate cert chain, its okay for a CA cert to fail
with ASN_NO_SIGNER_E here. The "alternate" certificate
chain mode only requires that the peer certificate
validate to a trusted CA */
if (ret != 0 && args->dCert->isCA) {
if (ret == ASN_NO_SIGNER_E || ret == ASN_SELF_SIGNED_E) {
if (!ssl->options.usingAltCertChain) {
WOLFSSL_MSG("Trying alternate cert chain");
ssl->options.usingAltCertChain = 1;
}
ret = 0; /* clear errors and continue */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
ssl->peerVerifyRet = 0;
#endif
args->verifyErr = 0;
/* do not add to certificate manager */
skipAddCA = 1;
}
}
#endif /* WOLFSSL_ALT_CERT_CHAINS */
#if defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS)
/* If we are using native Apple CA validation, it is okay
* for a CA cert to fail validation here, as we will verify
* the entire chain when we hit the peer (leaf) cert */
if ((ssl->ctx->doAppleNativeCertValidationFlag)
&& (ret == ASN_NO_SIGNER_E)) {
WOLFSSL_MSG("Bypassing errors to allow for Apple native"
" CA validation");
ret = 0; /* clear errors and continue */
args->verifyErr = 0;
#if defined(OPENSSL_EXTRA) \
|| defined(OPENSSL_EXTRA_X509_SMALL)
ssl->peerVerifyRet = 0;
#endif
/* do not add to certificate manager */
skipAddCA = 1;
}
#endif /* defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS) */
/* Do verify callback */
ret = DoVerifyCallback(SSL_CM(ssl), ssl, ret, args);
if (ssl->options.verifyNone &&
(ret == CRL_MISSING || ret == CRL_CERT_REVOKED ||
ret == CRL_CERT_DATE_ERR)) {
WOLFSSL_MSG("Ignoring CRL problem based on verify setting");
ret = ssl->error = 0;
}
#ifdef WOLFSSL_ALT_CERT_CHAINS
if (ret != 0 && args->dCert->isCA) {
/* do not add to certificate manager */
skipAddCA = 1;
}
#endif
/* If valid CA then add to Certificate Manager */
if (ret == 0 && args->dCert->isCA &&
!ssl->options.verifyNone && !skipAddCA) {
buffer* cert = &args->certs[args->certIdx];
/* Is valid CA */
#if defined(SESSION_CERTS) && defined(WOLFSSL_ALT_CERT_CHAINS)
/* if using alternate chain, store the cert used */
if (ssl->options.usingAltCertChain) {
AddSessionCertToChain(&ssl->session->altChain,
cert->buffer, cert->length);
}
#endif /* SESSION_CERTS && WOLFSSL_ALT_CERT_CHAINS */
if (!alreadySigner) {
DerBuffer* add = NULL;
ret = AllocDer(&add, cert->length, CA_TYPE, ssl->heap);
if (ret < 0)
goto exit_ppc;
XMEMCPY(add->buffer, cert->buffer, cert->length);
/* CA already verified above in ParseCertRelative */
WOLFSSL_MSG("Adding CA from chain");
SSL_CM_WARNING(ssl);
ret = AddCA(SSL_CM(ssl), &add, WOLFSSL_CHAIN_CA,
NO_VERIFY);
if (ret == WOLFSSL_SUCCESS) {
ret = 0;
}
}
}
/* Handle error codes */
ssl->error = ret; /* Report SSL error or clear error if
* callback overrides. */
if (ret != 0) {
if (!ssl->options.verifyNone) {
WOLFSSL_ERROR_VERBOSE(ret);
DoCertFatalAlert(ssl, ret);
args->lastErr = ret;
break; /* We sent a fatal alert.
* No point continuing. */
}
if (args->lastErr == 0) {
args->lastErr = ret; /* save error from last time */
ret = 0; /* reset error */
}
}
FreeDecodedCert(args->dCert);
args->dCertInit = 0;
args->count--;
} /* while (count > 1 && !args->haveTrustPeer) */
} /* if (count > 0) */
/* Check for error */
if (ret != 0) {
goto exit_ppc;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_DO;
} /* case TLS_ASYNC_BUILD */
FALL_THROUGH;
case TLS_ASYNC_DO:
{
/* peer's, may not have one if blank client cert sent by TLSv1.2 */
if (args->count > 0) {
WOLFSSL_MSG("Verifying Peer's cert");
/* select peer cert (first one) */
args->certIdx = 0;
ret = ProcessPeerCertParse(ssl, args, CERT_TYPE,
!ssl->options.verifyNone ? VERIFY : NO_VERIFY,
&subjectHash, &alreadySigner);
#if defined(OPENSSL_ALL) && defined(WOLFSSL_CERT_GEN) && \
(defined(WOLFSSL_CERT_REQ) || defined(WOLFSSL_CERT_EXT)) && \
!defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
if (ret == ASN_NO_SIGNER_E || ret == ASN_SELF_SIGNED_E) {
int lastErr = ret; /* save error from last time */
WOLFSSL_MSG("try to load certificate if hash dir is set");
ret = LoadCertByIssuer(SSL_STORE(ssl),
(WOLFSSL_X509_NAME*)args->dCert->issuerName,
X509_LU_X509);
if (ret == WOLFSSL_SUCCESS) {
FreeDecodedCert(args->dCert);
args->dCertInit = 0;
/* once again */
ret = ProcessPeerCertParse(ssl, args, CERT_TYPE,
!ssl->options.verifyNone ? VERIFY : NO_VERIFY,
&subjectHash, &alreadySigner);
}
else {
ret = lastErr; /* restore error */
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E)
goto exit_ppc;
#endif
if (ret == 0) {
WOLFSSL_MSG("Verified Peer's cert");
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (ssl->peerVerifyRet == 0) /* Return first cert error here */
ssl->peerVerifyRet = WOLFSSL_X509_V_OK;
#endif
#if defined(SESSION_CERTS) && defined(WOLFSSL_ALT_CERT_CHAINS)
/* if using alternate chain, store the cert used */
if (ssl->options.usingAltCertChain) {
buffer* cert = &args->certs[args->certIdx];
AddSessionCertToChain(&ssl->session->altChain,
cert->buffer, cert->length);
}
#endif /* SESSION_CERTS && WOLFSSL_ALT_CERT_CHAINS */
#ifndef OPENSSL_COMPATIBLE_DEFAULTS
/* Check peer's certificate version number. TLS 1.2 / 1.3
* requires the clients certificate be version 3 unless a
* different version has been negotiated using RFC 7250.
* OpenSSL doesn't appear to be performing this check.
* For TLS 1.3 see RFC8446 Section 4.4.2.3 */
if (ssl->options.side == WOLFSSL_SERVER_END) {
#if defined(HAVE_RPK)
if (args->dCert->isRPK) {
/* to verify Raw Public Key cert, DANE(RFC6698)
* should be introduced. Without DANE, no
* authentication is performed.
*/
#if defined(HAVE_DANE)
if (ssl->useDANE) {
/* DANE authentication should be added */
}
#endif /* HAVE_DANE */
}
else /* skip followingx509 version check */
#endif /* HAVE_RPK */
if (args->dCert->version != WOLFSSL_X509_V3) {
WOLFSSL_MSG("Peers certificate was not version 3!");
args->lastErr = ASN_VERSION_E;
/* setting last error but not considering it fatal
* giving the user a chance to override */
}
}
#endif
/* check if fatal error */
if (args->verifyErr) {
args->fatal = 1;
ret = args->lastErr;
}
else {
args->fatal = 0;
}
}
else if (ret == ASN_PARSE_E || ret == BUFFER_E ||
ret == MEMORY_E || ret == BAD_FUNC_ARG) {
WOLFSSL_MSG("Got Peer cert ASN_PARSE_E, BUFFER_E, MEMORY_E,"
" BAD_FUNC_ARG");
#if defined(WOLFSSL_EXTRA_ALERTS) || defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL)
DoCertFatalAlert(ssl, ret);
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (ssl->peerVerifyRet == 0) /* Return first cert error here */
ssl->peerVerifyRet = WOLFSSL_X509_V_ERR_CERT_REJECTED;
#endif
args->fatal = 1;
}
else {
WOLFSSL_MSG("Failed to verify Peer's cert");
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (ssl->peerVerifyRet == 0) { /* Return first cert error here */
if (ret == ASN_BEFORE_DATE_E) {
ssl->peerVerifyRet =
(unsigned long)WOLFSSL_X509_V_ERR_CERT_NOT_YET_VALID;
}
else if (ret == ASN_AFTER_DATE_E) {
ssl->peerVerifyRet =
(unsigned long)WOLFSSL_X509_V_ERR_CERT_HAS_EXPIRED;
}
else {
ssl->peerVerifyRet =
(unsigned long)
WOLFSSL_X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE;
}
}
#endif
if (ssl->verifyCallback) {
WOLFSSL_MSG(
"\tCallback override available, will continue");
/* check if fatal error */
args->fatal = (args->verifyErr) ? 1 : 0;
if (args->fatal)
DoCertFatalAlert(ssl, ret);
}
#if defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS)
/* Disregard failure to verify peer cert, as we will verify
* the whole chain with the native API later */
else if (ssl->ctx->doAppleNativeCertValidationFlag) {
WOLFSSL_MSG("\tApple native CA validation override"
" available, will continue");
/* check if fatal error */
args->fatal = (args->verifyErr) ? 1 : 0;
if (args->fatal)
DoCertFatalAlert(ssl, ret);
}
#endif/*defined(__APPLE__)&& defined(WOLFSSL_SYS_CA_CERTS)*/
else {
WOLFSSL_MSG("\tNo callback override available, fatal");
args->fatal = 1;
DoCertFatalAlert(ssl, ret);
}
}
#ifdef HAVE_SECURE_RENEGOTIATION
if (args->fatal == 0 && !IsAtLeastTLSv1_3(ssl->version)
&& ssl->secure_renegotiation
&& ssl->secure_renegotiation->enabled) {
if (IsEncryptionOn(ssl, 0)) {
/* compare against previous time */
if (ssl->secure_renegotiation->subject_hash_set) {
if (XMEMCMP(args->dCert->subjectHash,
ssl->secure_renegotiation->subject_hash,
KEYID_SIZE) != 0) {
WOLFSSL_MSG(
"Peer sent different cert during scr, fatal");
args->fatal = 1;
ret = SCR_DIFFERENT_CERT_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
}
/* cache peer's hash */
if (args->fatal == 0) {
XMEMCPY(ssl->secure_renegotiation->subject_hash,
args->dCert->subjectHash, KEYID_SIZE);
ssl->secure_renegotiation->subject_hash_set = 1;
}
}
#endif /* HAVE_SECURE_RENEGOTIATION */
} /* if (count > 0) */
/* Check for error */
if (args->fatal && ret != 0) {
goto exit_ppc;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_VERIFY;
} /* case TLS_ASYNC_DO */
FALL_THROUGH;
case TLS_ASYNC_VERIFY:
{
if (args->count > 0) {
#if defined(HAVE_OCSP) || defined(HAVE_CRL)
/* only attempt to check OCSP or CRL if not previous error such
* as ASN_BEFORE_DATE_E or ASN_AFTER_DATE_E */
if (args->fatal == 0 && ret == 0) {
int doLookup = 1;
WOLFSSL_MSG("Checking if ocsp needed");
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
if (ssl->status_request) {
args->fatal = (TLSX_CSR_InitRequest(ssl->extensions,
args->dCert, ssl->heap) != 0);
doLookup = 0;
WOLFSSL_MSG("\tHave status request");
#if defined(WOLFSSL_TLS13)
if (ssl->options.tls1_3) {
TLSX* ext = TLSX_Find(ssl->extensions,
TLSX_STATUS_REQUEST);
if (ext != NULL) {
word32 idx = 0;
CertificateStatusRequest* csr =
(CertificateStatusRequest*)ext->data;
ret = ProcessCSR(ssl, csr->response.buffer,
&idx, csr->response.length);
if (ret < 0) {
WOLFSSL_ERROR_VERBOSE(ret);
goto exit_ppc;
}
}
}
#endif
}
/* Ensure a stapling response was seen */
else if (ssl->options.tls1_3 &&
SSL_CM(ssl)->ocspMustStaple) {
ret = OCSP_CERT_UNKNOWN;
goto exit_ppc;
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
if (ssl->status_request_v2) {
args->fatal = (TLSX_CSR2_InitRequests(ssl->extensions,
args->dCert, 1, ssl->heap) != 0);
doLookup = 0;
WOLFSSL_MSG("\tHave status request v2");
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
}
#ifdef HAVE_OCSP
if (doLookup && SSL_CM(ssl)->ocspEnabled) {
WOLFSSL_MSG("Doing Leaf OCSP check");
ret = CheckCertOCSP_ex(SSL_CM(ssl)->ocsp,
args->dCert, ssl);
#ifdef WOLFSSL_NONBLOCK_OCSP
if (ret == OCSP_WANT_READ) {
goto exit_ppc;
}
#endif
doLookup = (ret == OCSP_CERT_UNKNOWN);
if (ret != 0) {
WOLFSSL_MSG("\tOCSP Lookup not ok");
args->fatal = 0;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (ssl->peerVerifyRet == 0) {
/* Return first cert error here */
ssl->peerVerifyRet =
ret == OCSP_CERT_REVOKED
? WOLFSSL_X509_V_ERR_CERT_REVOKED
: WOLFSSL_X509_V_ERR_CERT_REJECTED;
}
#endif
}
}
#endif /* HAVE_OCSP */
#ifdef HAVE_CRL
if (ret == 0 && doLookup && SSL_CM(ssl)->crlEnabled) {
WOLFSSL_MSG("Doing Leaf CRL check");
ret = CheckCertCRL(SSL_CM(ssl)->crl, args->dCert);
#ifdef WOLFSSL_NONBLOCK_OCSP
/* The CRL lookup I/O callback is using the
* same WOULD_BLOCK error code as OCSP's I/O
* callback, and it is enabling it using the
* same flag. */
if (ret == OCSP_WANT_READ) {
goto exit_ppc;
}
#endif
if (ret != 0) {
WOLFSSL_MSG("\tCRL check not ok");
args->fatal = 0;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
if (ssl->peerVerifyRet == 0) {
/* Return first cert error here */
ssl->peerVerifyRet =
ret == CRL_CERT_REVOKED
? WOLFSSL_X509_V_ERR_CERT_REVOKED
: WOLFSSL_X509_V_ERR_CERT_REJECTED;
}
#endif
}
}
if (ret == 0 && doLookup && SSL_CM(ssl)->crlEnabled &&
SSL_CM(ssl)->crlCheckAll && args->totalCerts == 1) {
/* Check the entire cert chain */
if (args->dCert->ca != NULL) {
ret = ProcessPeerCertsChainCRLCheck(SSL_CM(ssl),
args->dCert->ca);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("\tCRL chain check not ok");
args->fatal = 0;
}
}
else {
WOLFSSL_MSG("No CA signer set");
}
}
#endif /* HAVE_CRL */
(void)doLookup;
}
#endif /* HAVE_OCSP || HAVE_CRL */
#ifdef KEEP_PEER_CERT
if (args->fatal == 0) {
int copyRet = 0;
#ifdef WOLFSSL_POST_HANDSHAKE_AUTH
if (ssl->options.handShakeDone) {
FreeX509(&ssl->peerCert);
InitX509(&ssl->peerCert, 0, ssl->heap);
}
else
#endif
#ifdef HAVE_SECURE_RENEGOTIATION
if (ssl->secure_renegotiation &&
ssl->secure_renegotiation->enabled) {
/* free old peer cert */
FreeX509(&ssl->peerCert);
InitX509(&ssl->peerCert, 0, ssl->heap);
}
else
#endif
{
}
/* set X509 format for peer cert */
copyRet = CopyDecodedToX509(&ssl->peerCert, args->dCert);
if (copyRet == MEMORY_E) {
args->fatal = 1;
}
}
#endif /* KEEP_PEER_CERT */
#ifndef IGNORE_KEY_EXTENSIONS
#if defined(OPENSSL_EXTRA)
/* when compatibility layer is turned on and no verify is
* set then ignore the certificate key extension */
if (args->dCert->extKeyUsageSet &&
args->dCert->extKeyUsageCrit == 0 &&
ssl->options.verifyNone) {
WOLFSSL_MSG("Not verifying certificate key usage");
}
else
#endif
if (args->dCert->extKeyUsageSet) {
if ((ssl->specs.kea == rsa_kea) &&
(ssl->options.side == WOLFSSL_CLIENT_END) &&
(args->dCert->extKeyUsage & KEYUSE_KEY_ENCIPHER) == 0) {
ret = KEYUSE_ENCIPHER_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
if ((ssl->specs.kea != rsa_kea) &&
(ssl->specs.sig_algo == rsa_sa_algo ||
(ssl->specs.sig_algo == ecc_dsa_sa_algo &&
!ssl->specs.static_ecdh)) &&
(args->dCert->extKeyUsage & KEYUSE_DIGITAL_SIG) == 0) {
WOLFSSL_MSG("KeyUse Digital Sig not set");
ret = KEYUSE_SIGNATURE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#if defined(OPENSSL_EXTRA)
/* when compatibility layer is turned on and no verify is
* set then ignore the certificate key extension */
if (args->dCert->extExtKeyUsageSet &&
args->dCert->extExtKeyUsageCrit == 0 &&
ssl->options.verifyNone) {
WOLFSSL_MSG("Not verifying certificate ext key usage");
}
else
#endif
if (args->dCert->extExtKeyUsageSet) {
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if ((args->dCert->extExtKeyUsage &
(EXTKEYUSE_ANY | EXTKEYUSE_SERVER_AUTH)) == 0) {
WOLFSSL_MSG("ExtKeyUse Server Auth not set");
ret = EXTKEYUSE_AUTH_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
else {
if ((args->dCert->extExtKeyUsage &
(EXTKEYUSE_ANY | EXTKEYUSE_CLIENT_AUTH)) == 0) {
WOLFSSL_MSG("ExtKeyUse Client Auth not set");
ret = EXTKEYUSE_AUTH_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
}
#endif /* IGNORE_KEY_EXTENSIONS */
if (args->fatal) {
ssl->error = ret;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
SendAlert(ssl, alert_fatal, bad_certificate);
if (ssl->peerVerifyRet == 0) /* Return first cert error here */
ssl->peerVerifyRet = WOLFSSL_X509_V_ERR_CERT_REJECTED;
#endif
goto exit_ppc;
}
/* Certificate validated and stored. */
ssl->options.havePeerCert = 1;
#if !defined(NO_WOLFSSL_CLIENT) && !defined(NO_RSA)
if (ssl->options.side == WOLFSSL_CLIENT_END &&
ssl->specs.sig_algo == rsa_kea) {
/* CLIENT: No ServerKeyExchange message sent by server. */
ssl->options.peerAuthGood = 1;
}
#endif
#if !defined(NO_WOLFSSL_CLIENT) && defined(HAVE_ECC)
if (ssl->options.side == WOLFSSL_CLIENT_END &&
ssl->specs.static_ecdh) {
/* CLIENT: No ServerKeyExchange message sent by server. */
ssl->options.peerAuthGood = 1;
}
#endif
if (!ssl->options.verifyNone && ssl->buffers.domainName.buffer) {
#ifndef WOLFSSL_ALLOW_NO_CN_IN_SAN
/* Per RFC 5280 section 4.2.1.6, "Whenever such identities
* are to be bound into a certificate, the subject
* alternative name extension MUST be used." */
if (args->dCert->altNames) {
if (CheckForAltNames(args->dCert,
(char*)ssl->buffers.domainName.buffer,
NULL) != 1) {
WOLFSSL_MSG("DomainName match on alt names failed");
/* try to get peer key still */
ret = DOMAIN_NAME_MISMATCH;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
else {
if (MatchDomainName(
args->dCert->subjectCN,
args->dCert->subjectCNLen,
(char*)ssl->buffers.domainName.buffer) == 0) {
WOLFSSL_MSG("DomainName match on common name failed");
ret = DOMAIN_NAME_MISMATCH;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#else /* WOLFSSL_ALL_NO_CN_IN_SAN */
/* Old behavior. */
if (MatchDomainName(args->dCert->subjectCN,
args->dCert->subjectCNLen,
(char*)ssl->buffers.domainName.buffer) == 0) {
WOLFSSL_MSG("DomainName match on common name failed");
if (CheckForAltNames(args->dCert,
(char*)ssl->buffers.domainName.buffer,
NULL) != 1) {
WOLFSSL_MSG(
"DomainName match on alt names failed too");
/* try to get peer key still */
ret = DOMAIN_NAME_MISMATCH;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif /* WOLFSSL_ALL_NO_CN_IN_SAN */
}
/* decode peer key */
switch (args->dCert->keyOID) {
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case RSAPSSk:
#endif
case RSAk:
{
word32 keyIdx = 0;
int keyRet = 0;
if (ssl->peerRsaKey == NULL) {
keyRet = AllocKey(ssl, DYNAMIC_TYPE_RSA,
(void**)&ssl->peerRsaKey);
} else if (ssl->peerRsaKeyPresent) {
keyRet = ReuseKey(ssl, DYNAMIC_TYPE_RSA,
ssl->peerRsaKey);
ssl->peerRsaKeyPresent = 0;
}
if (keyRet != 0 || wc_RsaPublicKeyDecode(
args->dCert->publicKey, &keyIdx, ssl->peerRsaKey,
args->dCert->pubKeySize) != 0) {
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
else {
ssl->peerRsaKeyPresent = 1;
#if defined(WOLFSSL_RENESAS_TSIP_TLS) || \
defined(WOLFSSL_RENESAS_FSPSM_TLS)
/* copy encrypted tsip key index into ssl object */
if (args->dCert->sce_tsip_encRsaKeyIdx) {
if (!ssl->peerSceTsipEncRsaKeyIndex) {
ssl->peerSceTsipEncRsaKeyIndex = (byte*)XMALLOC(
TSIP_TLS_ENCPUBKEY_SZ_BY_CERTVRFY,
ssl->heap, DYNAMIC_TYPE_RSA);
if (!ssl->peerSceTsipEncRsaKeyIndex) {
args->lastErr = MEMORY_E;
goto exit_ppc;
}
}
XMEMCPY(ssl->peerSceTsipEncRsaKeyIndex,
args->dCert->sce_tsip_encRsaKeyIdx,
TSIP_TLS_ENCPUBKEY_SZ_BY_CERTVRFY);
}
#endif
#ifdef HAVE_PK_CALLBACKS
#if defined(HAVE_SECURE_RENEGOTIATION) || \
defined(WOLFSSL_POST_HANDSHAKE_AUTH)
if (ssl->buffers.peerRsaKey.buffer) {
XFREE(ssl->buffers.peerRsaKey.buffer,
ssl->heap, DYNAMIC_TYPE_RSA);
ssl->buffers.peerRsaKey.buffer = NULL;
}
#endif
ssl->buffers.peerRsaKey.buffer =
(byte*)XMALLOC(args->dCert->pubKeySize,
ssl->heap, DYNAMIC_TYPE_RSA);
if (ssl->buffers.peerRsaKey.buffer == NULL) {
ret = MEMORY_ERROR;
}
else {
XMEMCPY(ssl->buffers.peerRsaKey.buffer,
args->dCert->publicKey,
args->dCert->pubKeySize);
ssl->buffers.peerRsaKey.length =
args->dCert->pubKeySize;
}
#endif /* HAVE_PK_CALLBACKS */
}
/* check size of peer RSA key */
if (ret == 0 && ssl->peerRsaKeyPresent &&
!ssl->options.verifyNone &&
wc_RsaEncryptSize(ssl->peerRsaKey)
< ssl->options.minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Peer RSA key is too small");
}
break;
}
#endif /* NO_RSA */
#ifdef HAVE_ECC
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case SM2k:
#endif
case ECDSAk:
{
int keyRet = 0;
word32 idx = 0;
#if defined(WOLFSSL_RENESAS_FSPSM_TLS) || \
defined(WOLFSSL_RENESAS_TSIP_TLS)
/* copy encrypted tsip/sce key index into ssl object */
if (args->dCert->sce_tsip_encRsaKeyIdx) {
if (!ssl->peerSceTsipEncRsaKeyIndex) {
ssl->peerSceTsipEncRsaKeyIndex = (byte*)XMALLOC(
TSIP_TLS_ENCPUBKEY_SZ_BY_CERTVRFY,
ssl->heap, DYNAMIC_TYPE_RSA);
if (!ssl->peerSceTsipEncRsaKeyIndex) {
args->lastErr = MEMORY_E;
ERROR_OUT(MEMORY_ERROR, exit_ppc);
}
}
XMEMCPY(ssl->peerSceTsipEncRsaKeyIndex,
args->dCert->sce_tsip_encRsaKeyIdx,
TSIP_TLS_ENCPUBKEY_SZ_BY_CERTVRFY);
}
#endif
if (ssl->peerEccDsaKey == NULL) {
/* alloc/init on demand */
keyRet = AllocKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccDsaKey);
} else if (ssl->peerEccDsaKeyPresent) {
keyRet = ReuseKey(ssl, DYNAMIC_TYPE_ECC,
ssl->peerEccDsaKey);
ssl->peerEccDsaKeyPresent = 0;
}
if (keyRet != 0 ||
wc_EccPublicKeyDecode(args->dCert->publicKey, &idx,
ssl->peerEccDsaKey,
args->dCert->pubKeySize) != 0) {
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
else {
ssl->peerEccDsaKeyPresent = 1;
#ifdef HAVE_PK_CALLBACKS
if (ssl->buffers.peerEccDsaKey.buffer)
XFREE(ssl->buffers.peerEccDsaKey.buffer,
ssl->heap, DYNAMIC_TYPE_ECC);
ssl->buffers.peerEccDsaKey.buffer =
(byte*)XMALLOC(args->dCert->pubKeySize,
ssl->heap, DYNAMIC_TYPE_ECC);
if (ssl->buffers.peerEccDsaKey.buffer == NULL) {
ERROR_OUT(MEMORY_ERROR, exit_ppc);
}
else {
XMEMCPY(ssl->buffers.peerEccDsaKey.buffer,
args->dCert->publicKey,
args->dCert->pubKeySize);
ssl->buffers.peerEccDsaKey.length =
args->dCert->pubKeySize;
}
#endif /* HAVE_PK_CALLBACKS */
}
/* check size of peer ECC key */
if (ret == 0 && ssl->peerEccDsaKeyPresent &&
!ssl->options.verifyNone &&
wc_ecc_size(ssl->peerEccDsaKey)
< ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Peer ECC key is too small");
}
/* populate curve oid - if missing */
if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->ecdhCurveOID == 0)
ssl->ecdhCurveOID = args->dCert->pkCurveOID;
break;
}
#endif /* HAVE_ECC */
#if defined(HAVE_ED25519) && defined(HAVE_ED25519_KEY_IMPORT)
case ED25519k:
{
int keyRet = 0;
if (ssl->peerEd25519Key == NULL) {
/* alloc/init on demand */
keyRet = AllocKey(ssl, DYNAMIC_TYPE_ED25519,
(void**)&ssl->peerEd25519Key);
} else if (ssl->peerEd25519KeyPresent) {
keyRet = ReuseKey(ssl, DYNAMIC_TYPE_ED25519,
ssl->peerEd25519Key);
ssl->peerEd25519KeyPresent = 0;
}
if (keyRet != 0 ||
wc_ed25519_import_public(args->dCert->publicKey,
args->dCert->pubKeySize,
ssl->peerEd25519Key)
!= 0) {
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
else {
ssl->peerEd25519KeyPresent = 1;
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.peerEd25519Key.buffer =
(byte*)XMALLOC(args->dCert->pubKeySize,
ssl->heap, DYNAMIC_TYPE_ED25519);
if (ssl->buffers.peerEd25519Key.buffer == NULL) {
ERROR_OUT(MEMORY_ERROR, exit_ppc);
}
else {
XMEMCPY(ssl->buffers.peerEd25519Key.buffer,
args->dCert->publicKey,
args->dCert->pubKeySize);
ssl->buffers.peerEd25519Key.length =
args->dCert->pubKeySize;
}
#endif /*HAVE_PK_CALLBACKS */
}
/* check size of peer ECC key */
if (ret == 0 && ssl->peerEd25519KeyPresent &&
!ssl->options.verifyNone &&
ED25519_KEY_SIZE < ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Peer ECC key is too small");
}
/* populate curve oid - if missing */
if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->ecdhCurveOID == 0)
ssl->ecdhCurveOID = ECC_X25519_OID;
break;
}
#endif /* HAVE_ED25519 && HAVE_ED25519_KEY_IMPORT */
#if defined(HAVE_ED448) && defined(HAVE_ED448_KEY_IMPORT)
case ED448k:
{
int keyRet = 0;
if (ssl->peerEd448Key == NULL) {
/* alloc/init on demand */
keyRet = AllocKey(ssl, DYNAMIC_TYPE_ED448,
(void**)&ssl->peerEd448Key);
} else if (ssl->peerEd448KeyPresent) {
keyRet = ReuseKey(ssl, DYNAMIC_TYPE_ED448,
ssl->peerEd448Key);
ssl->peerEd448KeyPresent = 0;
}
if (keyRet != 0 ||
wc_ed448_import_public(args->dCert->publicKey,
args->dCert->pubKeySize,
ssl->peerEd448Key) != 0) {
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
else {
ssl->peerEd448KeyPresent = 1;
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.peerEd448Key.buffer =
(byte*)XMALLOC(args->dCert->pubKeySize,
ssl->heap, DYNAMIC_TYPE_ED448);
if (ssl->buffers.peerEd448Key.buffer == NULL) {
ERROR_OUT(MEMORY_ERROR, exit_ppc);
}
else {
XMEMCPY(ssl->buffers.peerEd448Key.buffer,
args->dCert->publicKey,
args->dCert->pubKeySize);
ssl->buffers.peerEd448Key.length =
args->dCert->pubKeySize;
}
#endif /*HAVE_PK_CALLBACKS */
}
/* check size of peer ECC key */
if (ret == 0 && ssl->peerEd448KeyPresent &&
!ssl->options.verifyNone &&
ED448_KEY_SIZE < ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Peer ECC key is too small");
}
/* populate curve oid - if missing */
if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->ecdhCurveOID == 0)
ssl->ecdhCurveOID = ECC_X448_OID;
break;
}
#endif /* HAVE_ED448 && HAVE_ED448_KEY_IMPORT */
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
case FALCON_LEVEL1k:
case FALCON_LEVEL5k:
{
int keyRet = 0;
if (ssl->peerFalconKey == NULL) {
/* alloc/init on demand */
keyRet = AllocKey(ssl, DYNAMIC_TYPE_FALCON,
(void**)&ssl->peerFalconKey);
} else if (ssl->peerFalconKeyPresent) {
keyRet = ReuseKey(ssl, DYNAMIC_TYPE_FALCON,
ssl->peerFalconKey);
ssl->peerFalconKeyPresent = 0;
}
if (keyRet == 0) {
if (args->dCert->keyOID == FALCON_LEVEL1k) {
keyRet = wc_falcon_set_level(ssl->peerFalconKey,
1);
}
else {
keyRet = wc_falcon_set_level(ssl->peerFalconKey,
5);
}
}
if (keyRet != 0 ||
wc_falcon_import_public(args->dCert->publicKey,
args->dCert->pubKeySize,
ssl->peerFalconKey) != 0) {
ret = PEER_KEY_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
else {
ssl->peerFalconKeyPresent = 1;
}
/* check size of peer Falcon key */
if (ret == 0 && ssl->peerFalconKeyPresent &&
!ssl->options.verifyNone &&
FALCON_MAX_KEY_SIZE <
ssl->options.minFalconKeySz) {
ret = FALCON_KEY_SIZE_E;
WOLFSSL_ERROR_VERBOSE(ret);
WOLFSSL_MSG("Peer Falcon key is too small");
}
break;
}
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
case DILITHIUM_LEVEL2k:
case DILITHIUM_LEVEL3k:
case DILITHIUM_LEVEL5k:
{
int keyRet = 0;
if (ssl->peerDilithiumKey == NULL) {
/* alloc/init on demand */
keyRet = AllocKey(ssl, DYNAMIC_TYPE_DILITHIUM,
(void**)&ssl->peerDilithiumKey);
} else if (ssl->peerDilithiumKeyPresent) {
keyRet = ReuseKey(ssl, DYNAMIC_TYPE_DILITHIUM,
ssl->peerDilithiumKey);
ssl->peerDilithiumKeyPresent = 0;
}
if (keyRet == 0) {
if (args->dCert->keyOID == DILITHIUM_LEVEL2k) {
keyRet = wc_dilithium_set_level(
ssl->peerDilithiumKey, 2);
}
else if (args->dCert->keyOID == DILITHIUM_LEVEL3k) {
keyRet = wc_dilithium_set_level(
ssl->peerDilithiumKey, 3);
}
else if (args->dCert->keyOID == DILITHIUM_LEVEL5k) {
keyRet = wc_dilithium_set_level(
ssl->peerDilithiumKey, 5);
}
}
if (keyRet != 0 ||
wc_dilithium_import_public(args->dCert->publicKey,
args->dCert->pubKeySize,
ssl->peerDilithiumKey)
!= 0) {
ret = PEER_KEY_ERROR;
}
else {
ssl->peerDilithiumKeyPresent = 1;
}
/* check size of peer Dilithium key */
if (ret == 0 && ssl->peerDilithiumKeyPresent &&
!ssl->options.verifyNone &&
DILITHIUM_MAX_KEY_SIZE <
ssl->options.minDilithiumKeySz) {
ret = DILITHIUM_KEY_SIZE_E;
WOLFSSL_MSG("Peer Dilithium key is too small");
}
break;
}
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
default:
break;
}
/* args->dCert free'd in function cleanup after callback */
} /* if (count > 0) */
/* Check for error */
if (args->fatal && ret != 0) {
goto exit_ppc;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_FINALIZE;
} /* case TLS_ASYNC_VERIFY */
FALL_THROUGH;
case TLS_ASYNC_FINALIZE:
{
/* load last error */
if (args->lastErr != 0 && ret == 0) {
ret = args->lastErr;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* limit compliant with OpenSSL verify Depth + 1
* OpenSSL tries to expand the chain one longer than limit until
* reaching an ultimately trusted issuer. Becoming failure if
* we hit the limit, with WOLFSSL_X509_V_ERR_CERT_CHAIN_TOO_LONG
*/
if (args->untrustedDepth > (ssl->options.verifyDepth + 1)) {
if (ssl->peerVerifyRet == 0) /* Return first cert error here */
ssl->peerVerifyRet = WOLFSSL_X509_V_ERR_CERT_CHAIN_TOO_LONG;
ret = MAX_CHAIN_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
#endif
#if defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS)
/* If we can't validate the peer cert chain against the CAs loaded
* into wolfSSL, try to validate against the system certificates
* using Apple's native trust APIs */
if ((ret != 0) && (ssl->ctx->doAppleNativeCertValidationFlag)) {
if (DoAppleNativeCertValidation(args->certs,
args->totalCerts)) {
WOLFSSL_MSG("Apple native cert chain validation SUCCESS");
ret = 0;
}
else {
WOLFSSL_MSG("Apple native cert chain validation FAIL");
}
}
#endif /* defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS) */
/* Do verify callback */
ret = DoVerifyCallback(SSL_CM(ssl), ssl, ret, args);
if (ssl->options.verifyNone &&
(ret == CRL_MISSING || ret == CRL_CERT_REVOKED ||
ret == CRL_CERT_DATE_ERR)) {
WOLFSSL_MSG("Ignoring CRL problem based on verify setting");
ret = ssl->error = 0;
}
if (ret != 0) {
if (!ssl->options.verifyNone) {
DoCertFatalAlert(ssl, ret);
}
ssl->error = ret; /* Report SSL error */
}
if (ret == 0 && ssl->options.side == WOLFSSL_CLIENT_END) {
ssl->options.serverState = SERVER_CERT_COMPLETE;
}
if (IsEncryptionOn(ssl, 0)) {
args->idx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
args->idx += MacSize(ssl);
#endif
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_END;
} /* case TLS_ASYNC_FINALIZE */
FALL_THROUGH;
case TLS_ASYNC_END:
{
/* Set final index */
*inOutIdx = args->idx;
break;
}
default:
ret = INPUT_CASE_ERROR;
break;
} /* switch(ssl->options.asyncState) */
exit_ppc:
WOLFSSL_LEAVE("ProcessPeerCerts", ret);
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
if (ret == WC_PENDING_E || ret == OCSP_WANT_READ) {
/* Mark message as not received so it can process again */
ssl->msgsReceived.got_certificate = 0;
return ret;
}
#endif /* WOLFSSL_ASYNC_CRYPT || WOLFSSL_NONBLOCK_OCSP */
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#elif defined(WOLFSSL_SMALL_STACK)
if (args)
{
FreeProcPeerCertArgs(ssl, args);
}
#else
FreeProcPeerCertArgs(ssl, args);
#endif /* WOLFSSL_ASYNC_CRYPT || WOLFSSL_NONBLOCK_OCSP || WOLFSSL_SMALL_STACK */
#if !defined(WOLFSSL_ASYNC_CRYPT) && defined(WOLFSSL_SMALL_STACK)
XFREE(args, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
FreeKeyExchange(ssl);
return ret;
}
#endif
#ifndef WOLFSSL_NO_TLS12
#if !defined(NO_WOLFSSL_CLIENT) || !defined(WOLFSSL_NO_CLIENT_AUTH)
/* handle processing of certificate (11) */
static int DoCertificate(WOLFSSL* ssl, byte* input, word32* inOutIdx,
word32 size)
{
int ret;
WOLFSSL_START(WC_FUNC_CERTIFICATE_DO);
WOLFSSL_ENTER("DoCertificate");
#ifdef SESSION_CERTS
/* Reset the session cert chain count in case the session resume failed,
* do not reset if we are resuming after an async wait */
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
if (ssl->error != OCSP_WANT_READ && ssl->error != WC_PENDING_E)
#endif
{
ssl->session->chain.count = 0;
#ifdef WOLFSSL_ALT_CERT_CHAINS
ssl->session->altChain.count = 0;
#endif
}
#endif /* SESSION_CERTS */
ret = ProcessPeerCerts(ssl, input, inOutIdx, size);
#ifdef OPENSSL_EXTRA
ssl->options.serverState = SERVER_CERT_COMPLETE;
#endif
WOLFSSL_LEAVE("DoCertificate", ret);
WOLFSSL_END(WC_FUNC_CERTIFICATE_DO);
return ret;
}
/* handle processing of certificate_status (22) */
static int DoCertificateStatus(WOLFSSL* ssl, byte* input, word32* inOutIdx,
word32 size)
{
int ret = 0;
byte status_type;
word32 status_length;
WOLFSSL_START(WC_FUNC_CERTIFICATE_STATUS_DO);
WOLFSSL_ENTER("DoCertificateStatus");
if (size < ENUM_LEN + OPAQUE24_LEN)
return BUFFER_ERROR;
status_type = input[(*inOutIdx)++];
c24to32(input + *inOutIdx, &status_length);
*inOutIdx += OPAQUE24_LEN;
if (size != ENUM_LEN + OPAQUE24_LEN + status_length)
return BUFFER_ERROR;
switch (status_type) {
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
/* WOLFSSL_CSR_OCSP overlaps with WOLFSSL_CSR2_OCSP */
case WOLFSSL_CSR2_OCSP:
ret = ProcessCSR(ssl, input, inOutIdx, status_length);
break;
#endif
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
case WOLFSSL_CSR2_OCSP_MULTI: {
OcspRequest* request;
word32 list_length = status_length;
byte idx = 0;
#ifdef WOLFSSL_SMALL_STACK
CertStatus* status;
OcspEntry* single;
OcspResponse* response;
#else
CertStatus status[1];
OcspEntry single[1];
OcspResponse response[1];
#endif
do {
if (ssl->status_request_v2) {
ssl->status_request_v2 = 0;
break;
}
return BUFFER_ERROR;
} while(0);
#ifdef WOLFSSL_SMALL_STACK
status = (CertStatus*)XMALLOC(sizeof(CertStatus), ssl->heap,
DYNAMIC_TYPE_OCSP_STATUS);
single = (OcspEntry*)XMALLOC(sizeof(OcspEntry), ssl->heap,
DYNAMIC_TYPE_OCSP_ENTRY);
response = (OcspResponse*)XMALLOC(sizeof(OcspResponse), ssl->heap,
DYNAMIC_TYPE_OCSP_REQUEST);
if (status == NULL || single == NULL || response == NULL) {
if (status)
XFREE(status, ssl->heap, DYNAMIC_TYPE_OCSP_STATUS);
if (single)
XFREE(single, ssl->heap, DYNAMIC_TYPE_OCSP_ENTRY);
if (response)
XFREE(response, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
return MEMORY_ERROR;
}
#endif
while (list_length && ret == 0) {
if (OPAQUE24_LEN > list_length) {
ret = BUFFER_ERROR;
break;
}
c24to32(input + *inOutIdx, &status_length);
*inOutIdx += OPAQUE24_LEN;
list_length -= OPAQUE24_LEN;
if (status_length > list_length) {
ret = BUFFER_ERROR;
break;
}
if (status_length) {
InitOcspResponse(response, single, status, input +*inOutIdx,
status_length, ssl->heap);
if ((OcspResponseDecode(response, SSL_CM(ssl), ssl->heap,
0) != 0)
|| (response->responseStatus != OCSP_SUCCESSFUL)
|| (response->single->status->status != CERT_GOOD))
ret = BAD_CERTIFICATE_STATUS_ERROR;
while (ret == 0) {
request = (OcspRequest*)TLSX_CSR2_GetRequest(
ssl->extensions, status_type, idx++);
if (request == NULL)
ret = BAD_CERTIFICATE_STATUS_ERROR;
else if (CompareOcspReqResp(request, response) == 0)
break;
else if (idx == 1) /* server cert must be OK */
ret = BAD_CERTIFICATE_STATUS_ERROR;
}
/* only frees 'single' if single->isDynamic is set */
FreeOcspResponse(response);
*inOutIdx += status_length;
list_length -= status_length;
}
}
ssl->status_request_v2 = 0;
#ifdef WOLFSSL_SMALL_STACK
XFREE(status, NULL, DYNAMIC_TYPE_OCSP_STATUS);
XFREE(single, NULL, DYNAMIC_TYPE_OCSP_ENTRY);
XFREE(response, NULL, DYNAMIC_TYPE_OCSP_REQUEST);
#endif
}
break;
#endif
default:
ret = BUFFER_ERROR;
}
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
SendAlert(ssl, alert_fatal, bad_certificate_status_response);
}
if (IsEncryptionOn(ssl, 0)) {
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
word32 digestSz = MacSize(ssl);
if (*inOutIdx + ssl->keys.padSz + digestSz > size)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz + digestSz;
}
else
#endif
{
if (*inOutIdx + ssl->keys.padSz > size)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz;
}
}
WOLFSSL_LEAVE("DoCertificateStatus", ret);
WOLFSSL_END(WC_FUNC_CERTIFICATE_STATUS_DO);
return ret;
}
#endif
#endif /* !WOLFSSL_NO_TLS12 */
#endif /* !NO_CERTS */
#ifndef WOLFSSL_NO_TLS12
static int DoHelloRequest(WOLFSSL* ssl, const byte* input, word32* inOutIdx,
word32 size, word32 totalSz)
{
(void)input;
WOLFSSL_START(WC_FUNC_HELLO_REQUEST_DO);
WOLFSSL_ENTER("DoHelloRequest");
if (size) /* must be 0 */
return BUFFER_ERROR;
if (IsEncryptionOn(ssl, 0)) {
/* If size == totalSz then we are in DtlsMsgDrain so no need to worry
* about padding */
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
word32 digestSz = MacSize(ssl);
if (size != totalSz &&
*inOutIdx + ssl->keys.padSz + digestSz > totalSz)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz + digestSz;
}
else
#endif
{
/* access beyond input + size should be checked against totalSz */
if (size != totalSz &&
*inOutIdx + ssl->keys.padSz > totalSz)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz;
}
}
if (ssl->options.side == WOLFSSL_SERVER_END) {
SendAlert(ssl, alert_fatal, unexpected_message); /* try */
WOLFSSL_ERROR_VERBOSE(FATAL_ERROR);
return FATAL_ERROR;
}
#ifdef HAVE_SECURE_RENEGOTIATION
else if (ssl->secure_renegotiation && ssl->secure_renegotiation->enabled) {
ssl->secure_renegotiation->startScr = 1;
WOLFSSL_LEAVE("DoHelloRequest", 0);
WOLFSSL_END(WC_FUNC_HELLO_REQUEST_DO);
return 0;
}
#endif
else {
return SendAlert(ssl, alert_warning, no_renegotiation);
}
}
int DoFinished(WOLFSSL* ssl, const byte* input, word32* inOutIdx, word32 size,
word32 totalSz, int sniff)
{
word32 finishedSz = (ssl->options.tls ? TLS_FINISHED_SZ : FINISHED_SZ);
WOLFSSL_START(WC_FUNC_FINISHED_DO);
WOLFSSL_ENTER("DoFinished");
if (finishedSz != size)
return BUFFER_ERROR;
/* check against totalSz
* If size == totalSz then we are in DtlsMsgDrain so no need to worry about
* padding */
if (size != totalSz) {
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
if (*inOutIdx + size + ssl->keys.padSz + MacSize(ssl) > totalSz)
return BUFFER_E;
}
else
#endif
{
if (*inOutIdx + size + ssl->keys.padSz > totalSz)
return BUFFER_E;
}
}
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn) AddPacketName(ssl, "Finished");
if (ssl->toInfoOn) AddLateName("Finished", &ssl->timeoutInfo);
#endif
if (sniff == NO_SNIFF) {
if (XMEMCMP(input + *inOutIdx, &ssl->hsHashes->verifyHashes,size) != 0){
WOLFSSL_MSG("Verify finished error on hashes");
WOLFSSL_ERROR_VERBOSE(VERIFY_FINISHED_ERROR);
return VERIFY_FINISHED_ERROR;
}
}
#ifdef HAVE_SECURE_RENEGOTIATION
if (ssl->secure_renegotiation) {
/* save peer's state */
if (ssl->options.side == WOLFSSL_CLIENT_END)
XMEMCPY(ssl->secure_renegotiation->server_verify_data,
input + *inOutIdx, TLS_FINISHED_SZ);
else
XMEMCPY(ssl->secure_renegotiation->client_verify_data,
input + *inOutIdx, TLS_FINISHED_SZ);
ssl->secure_renegotiation->verifySet = 1;
}
#endif
#ifdef WOLFSSL_HAVE_TLS_UNIQUE
if (ssl->options.side == WOLFSSL_CLIENT_END) {
XMEMCPY(ssl->serverFinished,
input + *inOutIdx, TLS_FINISHED_SZ);
ssl->serverFinished_len = TLS_FINISHED_SZ;
}
else {
XMEMCPY(ssl->clientFinished,
input + *inOutIdx, TLS_FINISHED_SZ);
ssl->clientFinished_len = TLS_FINISHED_SZ;
}
#endif
/* force input exhaustion at ProcessReply consuming padSz */
*inOutIdx += size + ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
*inOutIdx += MacSize(ssl);
#endif
if (ssl->options.side == WOLFSSL_CLIENT_END) {
ssl->options.serverState = SERVER_FINISHED_COMPLETE;
#ifdef OPENSSL_EXTRA
ssl->cbmode = SSL_CB_MODE_WRITE;
ssl->options.clientState = CLIENT_FINISHED_COMPLETE;
#endif
if (!ssl->options.resuming) {
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_CONNECT_LOOP, WOLFSSL_SUCCESS);
}
#endif
ssl->options.handShakeState = HANDSHAKE_DONE;
ssl->options.handShakeDone = 1;
#ifdef HAVE_SECURE_RENEGOTIATION
ssl->options.resumed = ssl->options.resuming;
#endif
}
}
else {
ssl->options.clientState = CLIENT_FINISHED_COMPLETE;
#ifdef OPENSSL_EXTRA
ssl->cbmode = SSL_CB_MODE_READ;
ssl->options.serverState = SERVER_FINISHED_COMPLETE;
#endif
if (ssl->options.resuming) {
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_ACCEPT_LOOP, WOLFSSL_SUCCESS);
}
#endif
ssl->options.handShakeState = HANDSHAKE_DONE;
ssl->options.handShakeDone = 1;
#ifdef HAVE_SECURE_RENEGOTIATION
ssl->options.resumed = ssl->options.resuming;
#endif
}
}
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
if ((!ssl->options.resuming && ssl->options.side == WOLFSSL_CLIENT_END) ||
(ssl->options.resuming && ssl->options.side == WOLFSSL_SERVER_END)){
DtlsMsgPoolReset(ssl);
ssl->keys.dtls_handshake_number = 0;
ssl->keys.dtls_expected_peer_handshake_number = 0;
}
}
#endif
WOLFSSL_LEAVE("DoFinished", 0);
WOLFSSL_END(WC_FUNC_FINISHED_DO);
return 0;
}
/* Make sure no duplicates, no fast forward, or other problems; 0 on success */
static int SanityCheckMsgReceived(WOLFSSL* ssl, byte type)
{
/* verify not a duplicate, mark received, check state */
switch (type) {
#ifndef NO_WOLFSSL_CLIENT
case hello_request:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("HelloRequest received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_hello_request) {
WOLFSSL_MSG("Duplicate HelloRequest received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_hello_request = 1;
break;
#endif
#ifndef NO_WOLFSSL_SERVER
case client_hello:
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
WOLFSSL_MSG("ClientHello received by client");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_client_hello) {
WOLFSSL_MSG("Duplicate ClientHello received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_client_hello = 1;
break;
#endif
#ifndef NO_WOLFSSL_CLIENT
case server_hello:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("ServerHello received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_server_hello) {
WOLFSSL_MSG("Duplicate ServerHello received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_server_hello = 1;
break;
#endif
#ifndef NO_WOLFSSL_CLIENT
case hello_verify_request:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("HelloVerifyRequest received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_hello_verify_request) {
WOLFSSL_MSG("Duplicate HelloVerifyRequest received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
if (ssl->msgsReceived.got_hello_retry_request) {
WOLFSSL_MSG("Received HelloVerifyRequest after a "
"HelloRetryRequest");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
ssl->msgsReceived.got_hello_verify_request = 1;
break;
#endif
#ifndef NO_WOLFSSL_CLIENT
case session_ticket:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("SessionTicket received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_session_ticket) {
WOLFSSL_MSG("Duplicate SessionTicket received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_session_ticket = 1;
break;
#endif
case certificate:
if (ssl->msgsReceived.got_certificate) {
WOLFSSL_MSG("Duplicate Certificate received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_certificate = 1;
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if ( ssl->msgsReceived.got_server_hello == 0) {
WOLFSSL_MSG("No ServerHello before Cert");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
#endif
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
if ( ssl->msgsReceived.got_client_hello == 0) {
WOLFSSL_MSG("No ClientHello before Cert");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
#endif
break;
#ifndef NO_WOLFSSL_CLIENT
case certificate_status:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("CertificateStatus received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_certificate_status) {
WOLFSSL_MSG("Duplicate CertificateStatus received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_certificate_status = 1;
if (ssl->msgsReceived.got_certificate == 0) {
WOLFSSL_MSG("No Certificate before CertificateStatus");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
if (ssl->msgsReceived.got_server_key_exchange != 0) {
WOLFSSL_MSG("CertificateStatus after ServerKeyExchange");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
#endif
#ifndef NO_WOLFSSL_CLIENT
case server_key_exchange:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("ServerKeyExchange received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_server_key_exchange) {
WOLFSSL_MSG("Duplicate ServerKeyExchange received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_server_key_exchange = 1;
if (ssl->msgsReceived.got_server_hello == 0) {
WOLFSSL_MSG("No ServerHello before ServerKeyExchange");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) || \
defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
if (ssl->msgsReceived.got_certificate_status == 0) {
int csrRet = 0;
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
if (csrRet == 0 && ssl->status_request) {
WOLFSSL_MSG("No CertificateStatus before ServerKeyExchange");
csrRet = TLSX_CSR_ForceRequest(ssl);
}
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
if (csrRet == 0 && ssl->status_request_v2) {
WOLFSSL_MSG("No CertificateStatus before ServerKeyExchange");
csrRet = TLSX_CSR2_ForceRequest(ssl);
}
#endif
if (csrRet != 0) {
/* Error out if OCSP lookups are enabled and failed or if
* the user requires stapling. */
if (SSL_CM(ssl)->ocspEnabled || SSL_CM(ssl)->ocspMustStaple)
return csrRet;
}
/* Check that a status request extension was seen as the
* CertificateStatus wasn't when an OCSP staple is required.
*/
if (
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
!ssl->status_request &&
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
!ssl->status_request_v2 &&
#endif
SSL_CM(ssl)->ocspMustStaple) {
WOLFSSL_ERROR_VERBOSE(OCSP_CERT_UNKNOWN);
return OCSP_CERT_UNKNOWN;
}
}
#endif
break;
#endif
#ifndef NO_WOLFSSL_CLIENT
case certificate_request:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("CertificateRequest received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_certificate_request) {
WOLFSSL_MSG("Duplicate CertificateRequest received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_certificate_request = 1;
break;
#endif
#ifndef NO_WOLFSSL_CLIENT
case server_hello_done:
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
WOLFSSL_MSG("ServerHelloDone received by server");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_server_hello_done) {
WOLFSSL_MSG("Duplicate ServerHelloDone received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_server_hello_done = 1;
if (ssl->msgsReceived.got_certificate == 0) {
if (ssl->specs.kea == psk_kea ||
ssl->specs.kea == dhe_psk_kea ||
ssl->specs.kea == ecdhe_psk_kea ||
ssl->options.usingAnon_cipher) {
WOLFSSL_MSG("No Cert required");
}
else {
WOLFSSL_MSG("No Certificate before ServerHelloDone");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
if (ssl->msgsReceived.got_server_key_exchange == 0) {
int pskNoServerHint = 0; /* not required in this case */
#ifndef NO_PSK
if (ssl->specs.kea == psk_kea &&
ssl->arrays != NULL &&
ssl->arrays->server_hint[0] == 0)
pskNoServerHint = 1;
#endif
if (ssl->specs.static_ecdh == 1 ||
ssl->specs.kea == rsa_kea ||
pskNoServerHint) {
WOLFSSL_MSG("No KeyExchange required");
}
else {
WOLFSSL_MSG("No ServerKeyExchange before ServerDone");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
break;
#endif
#ifndef NO_WOLFSSL_SERVER
case certificate_verify:
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
WOLFSSL_MSG("CertificateVerify received by client");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_certificate_verify) {
WOLFSSL_MSG("Duplicate CertificateVerify received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_certificate_verify = 1;
if ( ssl->msgsReceived.got_certificate == 0) {
WOLFSSL_MSG("No Cert before CertVerify");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
#endif
#ifndef NO_WOLFSSL_SERVER
case client_key_exchange:
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
WOLFSSL_MSG("ClientKeyExchange received by client");
WOLFSSL_ERROR_VERBOSE(SIDE_ERROR);
return SIDE_ERROR;
}
#endif
if (ssl->msgsReceived.got_client_key_exchange) {
WOLFSSL_MSG("Duplicate ClientKeyExchange received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
ssl->msgsReceived.got_client_key_exchange = 1;
if (ssl->msgsReceived.got_client_hello == 0) {
WOLFSSL_MSG("No ClientHello before ClientKeyExchange");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
break;
#endif
case finished:
if (ssl->msgsReceived.got_finished) {
WOLFSSL_MSG("Duplicate Finished received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
if (ssl->keys.curEpoch == 0) {
WOLFSSL_MSG("Finished received with epoch 0");
WOLFSSL_ERROR_VERBOSE(SEQUENCE_ERROR);
return SEQUENCE_ERROR;
}
}
#endif
ssl->msgsReceived.got_finished = 1;
if (ssl->msgsReceived.got_change_cipher == 0) {
WOLFSSL_MSG("Finished received before ChangeCipher");
WOLFSSL_ERROR_VERBOSE(NO_CHANGE_CIPHER_E);
return NO_CHANGE_CIPHER_E;
}
break;
case change_cipher_hs:
if (ssl->msgsReceived.got_change_cipher) {
WOLFSSL_MSG("Duplicate ChangeCipher received");
WOLFSSL_ERROR_VERBOSE(DUPLICATE_MSG_E);
return DUPLICATE_MSG_E;
}
/* DTLS is going to ignore the CCS message if the client key
* exchange message wasn't received yet. */
if (!ssl->options.dtls)
ssl->msgsReceived.got_change_cipher = 1;
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
if (!ssl->options.resuming) {
if (ssl->msgsReceived.got_server_hello_done == 0) {
WOLFSSL_MSG("No ServerHelloDone before ChangeCipher");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
else {
if (ssl->msgsReceived.got_server_hello == 0) {
WOLFSSL_MSG("No ServerHello before ChangeCipher on "
"Resume");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
#ifdef HAVE_SESSION_TICKET
if (ssl->expect_session_ticket) {
WOLFSSL_MSG("Expected session ticket missing");
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
#endif
WOLFSSL_ERROR_VERBOSE(SESSION_TICKET_EXPECT_E);
return SESSION_TICKET_EXPECT_E;
}
#endif
}
#endif
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
if (!ssl->options.resuming &&
ssl->msgsReceived.got_client_key_exchange == 0) {
WOLFSSL_MSG("No ClientKeyExchange before ChangeCipher");
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
#ifndef NO_CERTS
if (ssl->options.verifyPeer &&
ssl->options.havePeerCert) {
if (!ssl->options.havePeerVerify ||
!ssl->msgsReceived.got_certificate_verify) {
WOLFSSL_MSG("client didn't send cert verify");
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
#endif
WOLFSSL_ERROR_VERBOSE(NO_PEER_VERIFY);
return NO_PEER_VERIFY;
}
}
#endif
}
#endif
if (ssl->options.dtls)
ssl->msgsReceived.got_change_cipher = 1;
break;
default:
WOLFSSL_MSG("Unknown message type");
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
return 0;
}
int DoHandShakeMsgType(WOLFSSL* ssl, byte* input, word32* inOutIdx,
byte type, word32 size, word32 totalSz)
{
int ret = 0;
word32 expectedIdx;
WOLFSSL_ENTER("DoHandShakeMsgType");
#ifdef WOLFSSL_TLS13
if (type == hello_retry_request) {
return DoTls13HandShakeMsgType(ssl, input, inOutIdx, type, size,
totalSz);
}
#endif
/* make sure can read the message */
if (*inOutIdx + size > totalSz) {
WOLFSSL_MSG("Incomplete Data");
WOLFSSL_ERROR_VERBOSE(INCOMPLETE_DATA);
return INCOMPLETE_DATA;
}
expectedIdx = *inOutIdx + size +
(ssl->keys.encryptionOn ? ssl->keys.padSz : 0);
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead && ssl->keys.encryptionOn)
expectedIdx += MacSize(ssl);
#endif
#if !defined(NO_WOLFSSL_SERVER) && \
defined(HAVE_SECURE_RENEGOTIATION) && \
defined(HAVE_SERVER_RENEGOTIATION_INFO)
if (ssl->options.handShakeDone && type == client_hello &&
ssl->secure_renegotiation &&
ssl->secure_renegotiation->enabled)
{
WOLFSSL_MSG("Reset handshake state");
XMEMSET(&ssl->msgsReceived, 0, sizeof(MsgsReceived));
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE;
ssl->options.handShakeState = NULL_STATE;
ssl->secure_renegotiation->cache_status = SCR_CACHE_NEEDED;
ret = InitHandshakeHashes(ssl);
if (ret != 0)
return ret;
}
#endif
/* sanity check msg received */
if ( (ret = SanityCheckMsgReceived(ssl, type)) != 0) {
WOLFSSL_MSG("Sanity Check on handshake message type received failed");
return ret;
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
/* add name later, add the handshake header part back on and record layer
* header */
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, 0, handshake, input + *inOutIdx -
HANDSHAKE_HEADER_SZ, size + HANDSHAKE_HEADER_SZ, READ_PROTO,
RECORD_HEADER_SZ, ssl->heap);
if (ret != 0)
return ret;
#ifdef WOLFSSL_CALLBACKS
AddLateRecordHeader(&ssl->curRL, &ssl->timeoutInfo);
#endif
}
#endif
if (ssl->options.handShakeState == HANDSHAKE_DONE && type != hello_request){
WOLFSSL_MSG("HandShake message after handshake complete");
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->options.dtls == 0 &&
ssl->options.serverState == NULL_STATE && type != server_hello &&
type != hello_request) {
WOLFSSL_MSG("First server message not server hello or "
"hello request");
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->options.dtls &&
type == server_hello_done &&
ssl->options.serverState < SERVER_HELLO_COMPLETE) {
WOLFSSL_MSG("Server hello done received before server hello in DTLS");
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
if (ssl->options.side == WOLFSSL_SERVER_END &&
ssl->options.clientState == NULL_STATE && type != client_hello) {
WOLFSSL_MSG("First client message not client hello");
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
/* above checks handshake state */
/* hello_request not hashed */
if (type != hello_request
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->error != WC_PENDING_E
#endif
#ifdef WOLFSSL_NONBLOCK_OCSP
&& ssl->error != OCSP_WANT_READ
#endif
) {
ret = HashInput(ssl, input + *inOutIdx, size);
if (ret != 0) {
WOLFSSL_MSG("Incomplete handshake hashes");
return ret;
}
}
if (ssl->options.side == WOLFSSL_CLIENT_END) {
switch (type) {
case certificate:
case server_key_exchange:
case certificate_request:
case server_hello_done:
if (ssl->options.resuming) {
/* https://www.rfc-editor.org/rfc/rfc5077.html#section-3.4
* Alternatively, the client MAY include an empty Session ID
* in the ClientHello. In this case, the client ignores the
* Session ID sent in the ServerHello and determines if the
* server is resuming a session by the subsequent handshake
* messages.
*/
#ifndef WOLFSSL_WPAS
if (ssl->session->sessionIDSz != 0) {
/* Fatal error. Only try to send an alert. RFC 5246 does not
* allow for reverting back to a full handshake after the
* server has indicated the intention to do a resumption. */
(void)SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
#endif
/* This can occur when ssl->sessionSecretCb is set. EAP-FAST
* (RFC 4851) allows for detecting server session resumption
* based on the msg received after the ServerHello. */
WOLFSSL_MSG("Not resuming as thought");
ssl->options.resuming = 0;
/* No longer resuming, reset peer authentication state. */
ssl->options.peerAuthGood = 0;
}
}
}
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL){
ssl->cbmode = SSL_CB_MODE_READ;
ssl->cbtype = type;
ssl->CBIS(ssl, SSL_CB_ACCEPT_LOOP, WOLFSSL_SUCCESS);
}
#endif
switch (type) {
case hello_request:
WOLFSSL_MSG("processing hello request");
ret = DoHelloRequest(ssl, input, inOutIdx, size, totalSz);
break;
#ifndef NO_WOLFSSL_CLIENT
case hello_verify_request:
WOLFSSL_MSG("processing hello verify request");
ret = DoHelloVerifyRequest(ssl, input,inOutIdx, size);
if (IsEncryptionOn(ssl, 0)) {
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
word32 digestSz = MacSize(ssl);
if (*inOutIdx + ssl->keys.padSz + digestSz > totalSz)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz + digestSz;
}
else
#endif
{
/* access beyond input + size should be checked against totalSz
*/
if (*inOutIdx + ssl->keys.padSz > totalSz)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz;
}
}
break;
case server_hello:
WOLFSSL_MSG("processing server hello");
ret = DoServerHello(ssl, input, inOutIdx, size);
#if !defined(WOLFSSL_NO_CLIENT_AUTH) && \
((defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)) || \
(defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)) || \
(defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)))
if (ssl->options.resuming || !IsAtLeastTLSv1_2(ssl) ||
IsAtLeastTLSv1_3(ssl->version)) {
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
if (ret != WC_PENDING_E && ret != OCSP_WANT_READ)
#endif
{
ssl->options.cacheMessages = 0;
if ((ssl->hsHashes != NULL) && (ssl->hsHashes->messages != NULL)) {
ForceZero(ssl->hsHashes->messages, ssl->hsHashes->length);
XFREE(ssl->hsHashes->messages, ssl->heap,
DYNAMIC_TYPE_HASHES);
ssl->hsHashes->messages = NULL;
}
}
}
#endif
break;
#ifndef NO_CERTS
case certificate_request:
WOLFSSL_MSG("processing certificate request");
ret = DoCertificateRequest(ssl, input, inOutIdx, size);
break;
#endif
case server_key_exchange:
WOLFSSL_MSG("processing server key exchange");
ret = DoServerKeyExchange(ssl, input, inOutIdx, size);
break;
#ifdef HAVE_SESSION_TICKET
case session_ticket:
WOLFSSL_MSG("processing session ticket");
ret = DoSessionTicket(ssl, input, inOutIdx, size);
break;
#endif /* HAVE_SESSION_TICKET */
#endif
#if !defined(NO_CERTS) && (!defined(NO_WOLFSSL_CLIENT) || \
!defined(WOLFSSL_NO_CLIENT_AUTH))
case certificate:
WOLFSSL_MSG("processing certificate");
ret = DoCertificate(ssl, input, inOutIdx, size);
break;
case certificate_status:
WOLFSSL_MSG("processing certificate status");
ret = DoCertificateStatus(ssl, input, inOutIdx, size);
break;
#endif
case server_hello_done:
WOLFSSL_MSG("processing server hello done");
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn)
AddPacketName(ssl, "ServerHelloDone");
if (ssl->toInfoOn)
AddLateName("ServerHelloDone", &ssl->timeoutInfo);
#endif
ssl->options.serverState = SERVER_HELLODONE_COMPLETE;
if (IsEncryptionOn(ssl, 0)) {
*inOutIdx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
*inOutIdx += MacSize(ssl);
#endif
}
break;
case finished:
WOLFSSL_MSG("processing finished");
ret = DoFinished(ssl, input, inOutIdx, size, totalSz, NO_SNIFF);
break;
#ifndef NO_WOLFSSL_SERVER
case client_hello:
WOLFSSL_MSG("processing client hello");
ret = DoClientHello(ssl, input, inOutIdx, size);
#if !defined(WOLFSSL_NO_CLIENT_AUTH) && \
((defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)) || \
(defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)) || \
(defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)))
if (ssl->options.resuming || !ssl->options.verifyPeer || \
!IsAtLeastTLSv1_2(ssl) || IsAtLeastTLSv1_3(ssl->version)) {
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
if (ret != WC_PENDING_E && ret != OCSP_WANT_READ)
#endif
{
ssl->options.cacheMessages = 0;
if ((ssl->hsHashes != NULL) && (ssl->hsHashes->messages != NULL)) {
ForceZero(ssl->hsHashes->messages, ssl->hsHashes->length);
XFREE(ssl->hsHashes->messages, ssl->heap, DYNAMIC_TYPE_HASHES);
ssl->hsHashes->messages = NULL;
}
}
}
#endif
/* If size == totalSz then we are in DtlsMsgDrain so no need to worry
* about padding */
if (IsEncryptionOn(ssl, 0)) {
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
word32 digestSz = MacSize(ssl);
if (size != totalSz &&
*inOutIdx + ssl->keys.padSz + digestSz > totalSz)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz + digestSz;
}
else
#endif
{
/* access beyond input + size should be checked against totalSz
*/
if (size != totalSz &&
*inOutIdx + ssl->keys.padSz > totalSz)
return BUFFER_E;
*inOutIdx += ssl->keys.padSz;
}
}
break;
case client_key_exchange:
WOLFSSL_MSG("processing client key exchange");
ret = DoClientKeyExchange(ssl, input, inOutIdx, size);
break;
#if (!defined(NO_RSA) || defined(HAVE_ECC) || defined(HAVE_ED25519) || \
defined(HAVE_ED448)) && !defined(WOLFSSL_NO_CLIENT_AUTH)
case certificate_verify:
WOLFSSL_MSG("processing certificate verify");
ret = DoCertificateVerify(ssl, input, inOutIdx, size);
break;
#endif /* (!NO_RSA || ECC || ED25519 || ED448) && !WOLFSSL_NO_CLIENT_AUTH */
#endif /* !NO_WOLFSSL_SERVER */
default:
WOLFSSL_MSG("Unknown handshake message type");
ret = UNKNOWN_HANDSHAKE_TYPE;
break;
}
if (ret == 0 && expectedIdx != *inOutIdx) {
WOLFSSL_MSG("Extra data in handshake message");
if (!ssl->options.dtls)
SendAlert(ssl, alert_fatal, decode_error);
ret = DECODE_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP)
/* if async, offset index so this msg will be processed again */
if ((ret == WC_PENDING_E || ret == OCSP_WANT_READ) && *inOutIdx > 0) {
*inOutIdx -= HANDSHAKE_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
*inOutIdx -= DTLS_HANDSHAKE_EXTRA;
}
#endif
}
/* make sure async error is cleared */
if (ret == 0 && (ssl->error == WC_PENDING_E || ssl->error == OCSP_WANT_READ)) {
ssl->error = 0;
}
#endif /* WOLFSSL_ASYNC_CRYPT || WOLFSSL_NONBLOCK_OCSP */
#ifdef WOLFSSL_DTLS
if (ret == 0) {
if (type == client_hello) {
/* Advance expected number only if cookie exchange complete */
if (ssl->msgsReceived.got_client_hello)
ssl->keys.dtls_expected_peer_handshake_number =
ssl->keys.dtls_peer_handshake_number + 1;
}
else if (type != finished) {
ssl->keys.dtls_expected_peer_handshake_number++;
}
}
#endif
WOLFSSL_LEAVE("DoHandShakeMsgType()", ret);
return ret;
}
static int DoHandShakeMsg(WOLFSSL* ssl, byte* input, word32* inOutIdx,
word32 totalSz)
{
int ret = 0;
word32 inputLength;
WOLFSSL_ENTER("DoHandShakeMsg");
if (ssl->arrays == NULL) {
byte type;
word32 size;
if (GetHandShakeHeader(ssl,input,inOutIdx,&type, &size, totalSz) != 0) {
WOLFSSL_ERROR_VERBOSE(PARSE_ERROR);
return PARSE_ERROR;
}
ret = EarlySanityCheckMsgReceived(ssl, type, size);
if (ret != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
if (size > MAX_HANDSHAKE_SZ) {
WOLFSSL_MSG("Handshake message too large");
WOLFSSL_ERROR_VERBOSE(HANDSHAKE_SIZE_ERROR);
return HANDSHAKE_SIZE_ERROR;
}
return DoHandShakeMsgType(ssl, input, inOutIdx, type, size, totalSz);
}
inputLength = ssl->buffers.inputBuffer.length - *inOutIdx;
/* If there is a pending fragmented handshake message,
* pending message size will be non-zero. */
if (ssl->arrays->pendingMsgSz == 0) {
byte type;
word32 size;
if (GetHandShakeHeader(ssl, input, inOutIdx, &type, &size,
totalSz) != 0) {
WOLFSSL_ERROR_VERBOSE(PARSE_ERROR);
return PARSE_ERROR;
}
ret = EarlySanityCheckMsgReceived(ssl, type,
min(inputLength - HANDSHAKE_HEADER_SZ, size));
if (ret != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
/* Cap the maximum size of a handshake message to something reasonable.
* By default is the maximum size of a certificate message assuming
* nine 2048-bit RSA certificates in the chain. */
if (size > MAX_HANDSHAKE_SZ) {
WOLFSSL_MSG("Handshake message too large");
WOLFSSL_ERROR_VERBOSE(HANDSHAKE_SIZE_ERROR);
return HANDSHAKE_SIZE_ERROR;
}
/* size is the size of the certificate message payload */
if (inputLength - HANDSHAKE_HEADER_SZ < size) {
ssl->arrays->pendingMsgType = type;
ssl->arrays->pendingMsgSz = size + HANDSHAKE_HEADER_SZ;
ssl->arrays->pendingMsg = (byte*)XMALLOC(size + HANDSHAKE_HEADER_SZ,
ssl->heap,
DYNAMIC_TYPE_ARRAYS);
if (ssl->arrays->pendingMsg == NULL)
return MEMORY_E;
XMEMCPY(ssl->arrays->pendingMsg,
input + *inOutIdx - HANDSHAKE_HEADER_SZ,
inputLength);
ssl->arrays->pendingMsgOffset = inputLength;
*inOutIdx += inputLength - HANDSHAKE_HEADER_SZ;
return 0;
}
ret = DoHandShakeMsgType(ssl, input, inOutIdx, type, size, totalSz);
}
else {
word32 pendSz =
ssl->arrays->pendingMsgSz - ssl->arrays->pendingMsgOffset;
/* Catch the case where there may be the remainder of a fragmented
* handshake message and the next handshake message in the same
* record. */
if (inputLength > pendSz)
inputLength = pendSz;
ret = EarlySanityCheckMsgReceived(ssl, ssl->arrays->pendingMsgType,
inputLength);
if (ret != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->error != WC_PENDING_E)
#endif
{
/* for async this copy was already done, do not replace, since
* contents may have been changed for inline operations */
XMEMCPY(ssl->arrays->pendingMsg + ssl->arrays->pendingMsgOffset,
input + *inOutIdx, inputLength);
}
ssl->arrays->pendingMsgOffset += inputLength;
*inOutIdx += inputLength;
if (ssl->arrays->pendingMsgOffset == ssl->arrays->pendingMsgSz)
{
word32 idx = HANDSHAKE_HEADER_SZ;
ret = DoHandShakeMsgType(ssl,
ssl->arrays->pendingMsg,
&idx, ssl->arrays->pendingMsgType,
ssl->arrays->pendingMsgSz - idx,
ssl->arrays->pendingMsgSz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
/* setup to process fragment again */
ssl->arrays->pendingMsgOffset -= inputLength;
*inOutIdx -= inputLength;
}
else
#endif
{
XFREE(ssl->arrays->pendingMsg, ssl->heap, DYNAMIC_TYPE_ARRAYS);
ssl->arrays->pendingMsg = NULL;
ssl->arrays->pendingMsgSz = 0;
}
}
}
WOLFSSL_LEAVE("DoHandShakeMsg()", ret);
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef WOLFSSL_EXTRA_ALERTS
int SendFatalAlertOnly(WOLFSSL *ssl, int error)
{
int why;
/* already sent a more specific fatal alert */
if (ssl->alert_history.last_tx.level == alert_fatal)
return 0;
switch (error) {
/* not fatal errors */
case WANT_WRITE:
case WANT_READ:
case ZERO_RETURN:
#ifdef WOLFSSL_NONBLOCK_OCSP
case OCSP_WANT_READ:
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
case WC_PENDING_E:
#endif
return 0;
/* peer already disconnected and ssl is possibly in bad state
* don't try to send an alert */
case SOCKET_ERROR_E:
return error;
case BUFFER_ERROR:
case ASN_PARSE_E:
case COMPRESSION_ERROR:
why = decode_error;
break;
case MATCH_SUITE_ERROR:
why = illegal_parameter;
break;
case VERIFY_FINISHED_ERROR:
case SIG_VERIFY_E:
why = decrypt_error;
break;
case DUPLICATE_MSG_E:
case NO_CHANGE_CIPHER_E:
case OUT_OF_ORDER_E:
why = unexpected_message;
break;
case ECC_OUT_OF_RANGE_E:
why = bad_record_mac;
break;
case VERSION_ERROR:
default:
why = handshake_failure;
break;
}
return SendAlert(ssl, alert_fatal, why);
}
#else
int SendFatalAlertOnly(WOLFSSL *ssl, int error)
{
(void)ssl;
(void)error;
/* no op */
return 0;
}
#endif /* WOLFSSL_EXTRA_ALERTS */
#ifdef WOLFSSL_DTLS
static int _DtlsCheckWindow(WOLFSSL* ssl)
{
word32* window;
word16 cur_hi, next_hi;
word32 cur_lo, next_lo, diff;
int curLT;
WOLFSSL_DTLS_PEERSEQ* peerSeq = NULL;
if (!ssl->options.haveMcast)
peerSeq = ssl->keys.peerSeq;
else {
#ifdef WOLFSSL_MULTICAST
WOLFSSL_DTLS_PEERSEQ* p;
int i;
for (i = 0, p = ssl->keys.peerSeq;
i < WOLFSSL_DTLS_PEERSEQ_SZ;
i++, p++) {
if (p->peerId == ssl->keys.curPeerId) {
peerSeq = p;
break;
}
}
#endif
}
if (peerSeq == NULL) {
WOLFSSL_MSG("Could not find peer sequence");
return 0;
}
if (ssl->keys.curEpoch == peerSeq->nextEpoch) {
next_hi = peerSeq->nextSeq_hi;
next_lo = peerSeq->nextSeq_lo;
window = peerSeq->window;
}
else if (ssl->keys.curEpoch == peerSeq->nextEpoch - 1) {
next_hi = peerSeq->prevSeq_hi;
next_lo = peerSeq->prevSeq_lo;
window = peerSeq->prevWindow;
}
else {
return 0;
}
cur_hi = ssl->keys.curSeq_hi;
cur_lo = ssl->keys.curSeq_lo;
/* If the difference between next and cur is > 2^32, way outside window. */
if ((cur_hi > next_hi + 1) || (next_hi > cur_hi + 1)) {
WOLFSSL_MSG("Current record from way too far in the future.");
return 0;
}
if (cur_hi == next_hi) {
curLT = cur_lo < next_lo;
diff = curLT ? next_lo - cur_lo : cur_lo - next_lo;
}
else {
curLT = cur_hi < next_hi;
diff = curLT ? cur_lo - next_lo : next_lo - cur_lo;
}
/* Check to see that the next value is greater than the number of messages
* trackable in the window, and that the difference between the next
* expected sequence number and the received sequence number is inside the
* window. */
if ((next_hi || next_lo > DTLS_SEQ_BITS) &&
curLT && (diff > DTLS_SEQ_BITS)) {
WOLFSSL_MSG("Current record sequence number from the past.");
return 0;
}
#ifdef WOLFSSL_DTLS_DISALLOW_FUTURE
else if (!curLT && (diff > DTLS_SEQ_BITS)) {
WOLFSSL_MSG("Rejecting message too far into the future.");
return 0;
}
#endif
else if (curLT) {
word32 idx;
word32 newDiff;
if (diff == 0) {
WOLFSSL_MSG("DTLS sanity check failed");
return 0;
}
diff--;
idx = diff / DTLS_WORD_BITS;
newDiff = diff % DTLS_WORD_BITS;
/* verify idx is valid for window array */
if (idx >= WOLFSSL_DTLS_WINDOW_WORDS) {
WOLFSSL_MSG("Invalid DTLS windows index");
return 0;
}
if (window[idx] & (1 << newDiff)) {
WOLFSSL_MSG("Current record sequence number already received.");
return 0;
}
}
return 1;
}
#ifdef WOLFSSL_DTLS13
static WC_INLINE int Dtls13CheckWindow(WOLFSSL* ssl)
{
w64wrapper nextSeq, seq;
w64wrapper diff64;
word32 *window;
int wordOffset;
int wordIndex;
word32 diff;
WOLFSSL_ENTER("Dtls13CheckWindow");
if (ssl->dtls13DecryptEpoch == NULL) {
WOLFSSL_MSG("Can't find decrypting epoch");
return 0;
}
nextSeq = ssl->dtls13DecryptEpoch->nextPeerSeqNumber;
window = ssl->dtls13DecryptEpoch->window;
seq = ssl->keys.curSeq;
if (w64GTE(seq, nextSeq))
return 1;
/* seq < nextSeq, nextSeq - seq */
diff64 = w64Sub(nextSeq, seq);
/* diff >= DTLS_SEQ_BITS, outside of the window */
if (w64GT(diff64, w64From32(0, DTLS_SEQ_BITS)))
return 0;
/* we are assuming DTLS_SEQ_BITS <= 2**32 */
diff = w64GetLow32(diff64);
/* zero based index */
diff--;
wordIndex = ((int)diff) / DTLS_WORD_BITS;
wordOffset = ((int)diff) % DTLS_WORD_BITS;
if (window[wordIndex] & (1 << wordOffset))
return 0;
return 1;
}
#endif /* WOLFSSL_DTLS13 */
#ifdef WOLFSSL_MULTICAST
static WC_INLINE word32 UpdateHighwaterMark(word32 cur, word32 first,
word32 second, word32 high)
{
word32 newCur = 0;
if (cur < first)
newCur = first;
else if (cur < second)
newCur = second;
else if (cur < high)
newCur = high;
return newCur;
}
#endif /* WOLFSSL_MULTICAST */
/* diff is the difference between the message sequence and the
* expected sequence number. 0 is special where it is an overflow. */
static void _DtlsUpdateWindowGTSeq(word32 diff, word32* window)
{
word32 oldWindow[WOLFSSL_DTLS_WINDOW_WORDS];
if (diff == 0 || diff >= DTLS_SEQ_BITS)
XMEMSET(window, 0, DTLS_SEQ_SZ);
else {
word32 i;
word32 temp = 0;
word32 idx = diff / DTLS_WORD_BITS;
diff %= DTLS_WORD_BITS;
XMEMCPY(oldWindow, window, sizeof(oldWindow));
for (i = 0; i < WOLFSSL_DTLS_WINDOW_WORDS; i++) {
if (i < idx)
window[i] = 0;
else {
temp |= (oldWindow[i-idx] << diff);
window[i] = temp;
if (diff > 0)
temp = oldWindow[i-idx] >> (DTLS_WORD_BITS - diff);
else
temp = 0;
}
}
}
window[0] |= 1;
}
int wolfSSL_DtlsUpdateWindow(word16 cur_hi, word32 cur_lo,
word16* next_hi, word32* next_lo, word32 *window)
{
word32 diff;
int curLT;
if (cur_hi == *next_hi) {
curLT = cur_lo < *next_lo;
diff = curLT ? *next_lo - cur_lo : cur_lo - *next_lo;
}
else {
if (cur_hi > *next_hi + 1) {
/* reset window */
_DtlsUpdateWindowGTSeq(0, window);
*next_lo = cur_lo + 1;
if (*next_lo == 0)
*next_hi = cur_hi + 1;
else
*next_hi = cur_hi;
return 1;
}
else if (*next_hi > cur_hi + 1) {
return 1;
}
else {
curLT = cur_hi < *next_hi;
if (curLT) {
if (*next_lo < DTLS_SEQ_BITS &&
cur_lo >= (((word32)0xFFFFFFFF) - DTLS_SEQ_BITS)) {
/* diff here can still result in a difference that can not
* be stored in the window. The index is checked against
* WOLFSSL_DTLS_WINDOW_WORDS later. */
diff = *next_lo + ((word32)0xFFFFFFFF - cur_lo) + 1;
}
else {
/* Too far back to update */
return 1;
}
}
else {
if (*next_lo >= (((word32)0xFFFFFFFF) - DTLS_SEQ_BITS) &&
cur_lo < DTLS_SEQ_BITS) {
/* diff here can still result in a difference that can not
* be stored in the window. The index is checked against
* WOLFSSL_DTLS_WINDOW_WORDS later. */
diff = cur_lo - *next_lo;
}
else {
_DtlsUpdateWindowGTSeq(0, window);
*next_lo = cur_lo + 1;
if (*next_lo == 0)
*next_hi = cur_hi + 1;
else
*next_hi = cur_hi;
return 1;
}
}
}
}
if (curLT) {
word32 idx;
diff--;
idx = diff / DTLS_WORD_BITS;
diff %= DTLS_WORD_BITS;
if (idx < WOLFSSL_DTLS_WINDOW_WORDS)
window[idx] |= (1U << diff);
}
else {
_DtlsUpdateWindowGTSeq(diff + 1, window);
*next_lo = cur_lo + 1;
if (*next_lo == 0)
*next_hi = cur_hi + 1;
else
*next_hi = cur_hi;
}
return 1;
}
int DtlsUpdateWindow(WOLFSSL* ssl)
{
WOLFSSL_DTLS_PEERSEQ* peerSeq = ssl->keys.peerSeq;
word16 *next_hi;
word32 *next_lo;
word32* window;
#ifdef WOLFSSL_MULTICAST
word32 cur_lo = ssl->keys.curSeq_lo;
if (ssl->options.haveMcast) {
WOLFSSL_DTLS_PEERSEQ* p;
int i;
peerSeq = NULL;
for (i = 0, p = ssl->keys.peerSeq;
i < WOLFSSL_DTLS_PEERSEQ_SZ;
i++, p++) {
if (p->peerId == ssl->keys.curPeerId) {
peerSeq = p;
break;
}
}
if (peerSeq == NULL) {
WOLFSSL_MSG("Couldn't find that peer ID to update window.");
return 0;
}
if (p->highwaterMark && cur_lo >= p->highwaterMark) {
int cbError = 0;
if (ssl->ctx->mcastHwCb)
cbError = ssl->ctx->mcastHwCb(p->peerId,
ssl->ctx->mcastMaxSeq,
cur_lo, ssl->mcastHwCbCtx);
if (cbError) {
WOLFSSL_MSG("Multicast highwater callback returned an error.");
return MCAST_HIGHWATER_CB_E;
}
p->highwaterMark = UpdateHighwaterMark(cur_lo,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
}
#endif
if (ssl->keys.curEpoch == peerSeq->nextEpoch) {
next_hi = &peerSeq->nextSeq_hi;
next_lo = &peerSeq->nextSeq_lo;
window = peerSeq->window;
}
else {
next_hi = &peerSeq->prevSeq_hi;
next_lo = &peerSeq->prevSeq_lo;
window = peerSeq->prevWindow;
}
return wolfSSL_DtlsUpdateWindow(ssl->keys.curSeq_hi, ssl->keys.curSeq_lo,
next_hi, next_lo, window);
}
#ifdef WOLFSSL_DTLS13
/* Update DTLS 1.3 window
* Return
* 0 on successful update
* <0 on error
*/
static int Dtls13UpdateWindow(WOLFSSL* ssl)
{
w64wrapper nextSeq, seq;
w64wrapper diff64;
word32 *window;
int wordOffset;
int wordIndex;
word32 diff;
Dtls13Epoch* e = ssl->dtls13DecryptEpoch;
WOLFSSL_ENTER("Dtls13UpdateWindow");
if (ssl->dtls13DecryptEpoch == NULL) {
WOLFSSL_MSG("Can't find decrypting Epoch");
return BAD_STATE_E;
}
if (!w64Equal(ssl->keys.curEpoch64, ssl->dtls13DecryptEpoch->epochNumber)) {
/* ssl->dtls13DecryptEpoch has been updated since we received the msg */
e = Dtls13GetEpoch(ssl, ssl->keys.curEpoch64);
if (e == NULL) {
WOLFSSL_MSG("Can't find decrypting Epoch");
return BAD_STATE_E;
}
}
nextSeq = e->nextPeerSeqNumber;
window = e->window;
seq = ssl->keys.curSeq;
/* seq < nextSeq */
if (w64LT(seq, nextSeq)) {
diff64 = w64Sub(nextSeq, seq);
/* zero based index */
w64Decrement(&diff64);
/* FIXME: check that diff64 < DTLS_WORDS_BITS */
diff = w64GetLow32(diff64);
wordIndex = ((int)diff) / DTLS_WORD_BITS;
wordOffset = ((int)diff) % DTLS_WORD_BITS;
if (wordIndex >= WOLFSSL_DTLS_WINDOW_WORDS) {
WOLFSSL_MSG("Invalid sequence number to Dtls13UpdateWindow");
return BAD_STATE_E;
}
window[wordIndex] |= (1 << wordOffset);
return 0;
}
/* seq >= nextSeq, seq - nextSeq */
diff64 = w64Sub(seq, nextSeq);
/* as we are considering nextSeq inside the window, we should add + 1 */
w64Increment(&diff64);
_DtlsUpdateWindowGTSeq(w64GetLow32(diff64), window);
w64Increment(&seq);
e->nextPeerSeqNumber = seq;
return 0;
}
int Dtls13UpdateWindowRecordRecvd(WOLFSSL* ssl)
{
int ret = Dtls13UpdateWindow(ssl);
if (ret != 0)
return ret;
return Dtls13RecordRecvd(ssl);
}
#endif /* WOLFSSL_DTLS13 */
int DtlsMsgDrain(WOLFSSL* ssl)
{
DtlsMsg* item = ssl->dtls_rx_msg_list;
int ret = 0;
WOLFSSL_ENTER("DtlsMsgDrain");
/* While there is an item in the store list, and it is the expected
* message, and it is complete, and there hasn't been an error in the
* last message... */
while (item != NULL &&
ssl->keys.dtls_expected_peer_handshake_number == item->seq &&
item->ready && ret == 0) {
word32 idx = 0;
#ifndef WOLFSSL_DISABLE_EARLY_SANITY_CHECKS
ret = MsgCheckEncryption(ssl, item->type, item->encrypted);
if (ret != 0) {
SendAlert(ssl, alert_fatal, unexpected_message);
break;
}
#endif
#ifdef WOLFSSL_NO_TLS12
ret = DoTls13HandShakeMsgType(ssl, item->fullMsg, &idx, item->type,
item->sz, item->sz);
#else
ret = DoHandShakeMsgType(ssl, item->fullMsg, &idx, item->type,
item->sz, item->sz);
#endif
if (ret == 0) {
DtlsTxMsgListClean(ssl);
}
else if (!IsAtLeastTLSv1_3(ssl->version)) {
if (SendFatalAlertOnly(ssl, ret) == SOCKET_ERROR_E) {
ret = SOCKET_ERROR_E;
}
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
break;
}
#endif
ssl->dtls_rx_msg_list = item->next;
DtlsMsgDelete(item, ssl->heap);
item = ssl->dtls_rx_msg_list;
ssl->dtls_rx_msg_list_sz--;
}
WOLFSSL_LEAVE("DtlsMsgDrain()", ret);
return ret;
}
static int DoDtlsHandShakeMsg(WOLFSSL* ssl, byte* input, word32* inOutIdx,
word32 totalSz)
{
byte type;
word32 size;
word32 fragOffset, fragSz;
int ret = 0;
int ignoreFinished = 0;
WOLFSSL_ENTER("DoDtlsHandShakeMsg");
/* parse header */
if (GetDtlsHandShakeHeader(ssl, input, inOutIdx, &type,
&size, &fragOffset, &fragSz, totalSz) != 0) {
WOLFSSL_ERROR(PARSE_ERROR);
return PARSE_ERROR;
}
ret = EarlySanityCheckMsgReceived(ssl, type, fragSz);
if (ret != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
/* Cap the maximum size of a handshake message to something reasonable.
* By default is the maximum size of a certificate message assuming
* nine 2048-bit RSA certificates in the chain. */
if (size > MAX_HANDSHAKE_SZ) {
WOLFSSL_MSG("Handshake message too large");
return HANDSHAKE_SIZE_ERROR;
}
/* check that we have complete fragment */
if (*inOutIdx + fragSz > totalSz) {
WOLFSSL_ERROR(INCOMPLETE_DATA);
return INCOMPLETE_DATA;
}
/* check that the fragment is contained in the message */
if (fragOffset + fragSz > size) {
WOLFSSL_ERROR(LENGTH_ERROR);
return LENGTH_ERROR;
}
if (type == finished && ssl->keys.dtls_peer_handshake_number >=
ssl->keys.dtls_expected_peer_handshake_number &&
ssl->keys.curEpoch == ssl->keys.dtls_epoch) {
/* finished msg should be ignore from the current epoch
* if it comes from a previous handshake */
if (ssl->options.side == WOLFSSL_CLIENT_END) {
ignoreFinished = ssl->options.connectState < FINISHED_DONE;
}
else {
ignoreFinished = ssl->options.acceptState < ACCEPT_FINISHED_DONE;
}
}
#if !defined(NO_WOLFSSL_SERVER)
if (ssl->options.side == WOLFSSL_SERVER_END &&
ssl->options.acceptState < ACCEPT_FIRST_REPLY_DONE &&
type != client_hello) {
WOLFSSL_MSG("Ignoring other messages before we verify a ClientHello");
*inOutIdx = totalSz;
return 0;
}
#endif
/* Check the handshake sequence number first. If out of order,
* add the current message to the list. If the message is in order,
* but it is a fragment, add the current message to the list, then
* check the head of the list to see if it is complete, if so, pop
* it out as the current message. If the message is complete and in
* order, process it. Check the head of the list to see if it is in
* order, if so, process it. (Repeat until list exhausted.) If the
* head is out of order, return for more processing.
*/
if (ssl->keys.dtls_peer_handshake_number >
ssl->keys.dtls_expected_peer_handshake_number &&
/* Only client_hello shouldn't be ignored if the handshake
* num is greater */
(type == client_hello ||
ssl->options.handShakeState != HANDSHAKE_DONE) &&
!ignoreFinished) {
/* Current message is out of order. It will get stored in the list.
* Storing also takes care of defragmentation. If the messages is a
* client hello, we need to process this out of order; the server
* is not supposed to keep state, but the second client hello will
* have a different handshake sequence number than is expected, and
* the server shouldn't be expecting any particular handshake sequence
* number. (If the cookie changes multiple times in quick succession,
* the client could be sending multiple new client hello messages
* with newer and newer cookies.) */
if (type != client_hello) {
WOLFSSL_MSG("Current message is out of order");
if (ssl->dtls_rx_msg_list_sz >= DTLS_POOL_SZ) {
WOLFSSL_MSG("Reached rx msg limit error");
return DTLS_TOO_MANY_FRAGMENTS_E;
}
DtlsMsgStore(ssl, ssl->keys.curEpoch,
ssl->keys.dtls_peer_handshake_number,
input + *inOutIdx, size, type,
fragOffset, fragSz, ssl->heap);
*inOutIdx += fragSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead && ssl->keys.curEpoch != 0) {
word32 digestSz = MacSize(ssl);
if (*inOutIdx + ssl->keys.padSz + digestSz > totalSz) {
WOLFSSL_ERROR(BUFFER_E);
return BUFFER_E;
}
*inOutIdx += digestSz;
}
else
#endif
{
if (*inOutIdx + ssl->keys.padSz > totalSz) {
WOLFSSL_ERROR(BUFFER_E);
return BUFFER_E;
}
}
*inOutIdx += ssl->keys.padSz;
ret = 0;
#ifndef WOLFSSL_DTLS_RESEND_ONLY_TIMEOUT
/* If we receive an out of order last flight msg then retransmit */
if (type == server_hello_done || type == finished) {
ret = DtlsMsgPoolSend(ssl, 0);
}
#endif
}
else {
if (fragSz < size) {
/* a fragmented ClientHello, very probably forged or
erroneous. Even if the packet is valid, we don't want to save
state while processing a ClientHello to avoid DoS attacks */
WOLFSSL_MSG("Ignoring datagram with fragmented ClientHello");
*inOutIdx = totalSz;
}
else {
#ifdef WOLFSSL_NO_TLS12
ret = DoTls13HandShakeMsgType(ssl, input, inOutIdx, type, size,
totalSz);
#else
ret = DoHandShakeMsgType(ssl, input, inOutIdx, type, size,
totalSz);
#endif
}
}
}
else if (ssl->keys.dtls_peer_handshake_number <
ssl->keys.dtls_expected_peer_handshake_number ||
/* ignore all handshake messages if we are done with the
* handshake */
(ssl->keys.dtls_peer_handshake_number >
ssl->keys.dtls_expected_peer_handshake_number &&
ssl->options.handShakeState == HANDSHAKE_DONE) ||
ignoreFinished) {
/* Already saw this message and processed it. It can be ignored. */
WOLFSSL_MSG("Already saw this message and processed it");
*inOutIdx += fragSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead && ssl->keys.curEpoch != 0) {
word32 digestSz = MacSize(ssl);
if (*inOutIdx + ssl->keys.padSz + digestSz > totalSz) {
WOLFSSL_ERROR(BUFFER_E);
return BUFFER_E;
}
*inOutIdx += digestSz;
}
else
#endif
{
if (*inOutIdx + ssl->keys.padSz > totalSz) {
WOLFSSL_ERROR(BUFFER_E);
return BUFFER_E;
}
}
#ifndef WOLFSSL_DTLS_RESEND_ONLY_TIMEOUT
if (IsDtlsNotSctpMode(ssl) &&
VerifyForDtlsMsgPoolSend(ssl, type, fragOffset)) {
ret = DtlsMsgPoolSend(ssl, 0);
}
#endif
*inOutIdx += ssl->keys.padSz;
}
else if (fragSz < size) {
/* Since this branch is in order, but fragmented, dtls_rx_msg_list will
* be pointing to the message with this fragment in it. Check it to see
* if it is completed. */
WOLFSSL_MSG("Branch is in order, but fragmented");
if (type == client_hello) {
WOLFSSL_MSG("Ignoring datagram with fragmented ClientHello");
*inOutIdx = totalSz;
return 0;
}
if (ssl->dtls_rx_msg_list_sz >= DTLS_POOL_SZ) {
WOLFSSL_MSG("Reached rx msg limit error");
WOLFSSL_ERROR(DTLS_TOO_MANY_FRAGMENTS_E);
return DTLS_TOO_MANY_FRAGMENTS_E;
}
DtlsMsgStore(ssl, ssl->keys.curEpoch,
ssl->keys.dtls_peer_handshake_number,
input + *inOutIdx, size, type,
fragOffset, fragSz, ssl->heap);
*inOutIdx += fragSz;
*inOutIdx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead && ssl->keys.curEpoch != 0) {
word32 digestSz = MacSize(ssl);
if (*inOutIdx + digestSz > totalSz) {
WOLFSSL_ERROR(BUFFER_E);
return BUFFER_E;
}
*inOutIdx += digestSz;
}
#endif
ret = 0;
if (ssl->dtls_rx_msg_list != NULL && ssl->dtls_rx_msg_list->ready)
ret = DtlsMsgDrain(ssl);
}
else {
/* This branch is in order next, and a complete message. On success
* clean the tx list. */
WOLFSSL_MSG("Branch is in order and a complete message");
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->devId != INVALID_DEVID) {
word32 idx = *inOutIdx;
if (ssl->dtls_rx_msg_list_sz >= DTLS_POOL_SZ) {
WOLFSSL_ERROR(BUFFER_ERROR);
return BUFFER_ERROR;
}
if (idx + fragSz + ssl->keys.padSz > totalSz)
return BUFFER_E;
*inOutIdx = idx + fragSz + ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead && ssl->keys.curEpoch != 0) {
word32 digestSz = MacSize(ssl);
if (*inOutIdx + digestSz > totalSz)
return BUFFER_E;
*inOutIdx += digestSz;
}
#endif
/* In async mode always store the message and process it with
* DtlsMsgDrain because in case of a WC_PENDING_E it will be
* easier this way. */
if (ssl->dtls_rx_msg_list_sz >= DTLS_POOL_SZ) {
WOLFSSL_MSG("Reached rx msg limit error");
return DTLS_TOO_MANY_FRAGMENTS_E;
}
DtlsMsgStore(ssl, ssl->keys.curEpoch,
ssl->keys.dtls_peer_handshake_number,
input + idx, size, type,
fragOffset, fragSz, ssl->heap);
ret = DtlsMsgDrain(ssl);
}
else
#endif
{
#ifdef WOLFSSL_NO_TLS12
ret = DoTls13HandShakeMsgType(ssl, input, inOutIdx, type, size,
totalSz);
#else
ret = DoHandShakeMsgType(ssl, input, inOutIdx, type, size, totalSz);
#endif
if (ret == 0) {
DtlsTxMsgListClean(ssl);
if (ssl->dtls_rx_msg_list != NULL) {
ret = DtlsMsgDrain(ssl);
}
}
}
}
WOLFSSL_LEAVE("DoDtlsHandShakeMsg()", ret);
return ret;
}
#endif /* WOLFSSL_DTLS13 */
#ifndef WOLFSSL_NO_TLS12
#ifdef HAVE_AEAD
#if (!defined(NO_PUBLIC_GCM_SET_IV) && \
((defined(HAVE_FIPS) || defined(HAVE_SELFTEST)) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2)))) || \
(defined(HAVE_POLY1305) && defined(HAVE_CHACHA))
static WC_INLINE void AeadIncrementExpIV(WOLFSSL* ssl)
{
int i;
for (i = AEAD_MAX_EXP_SZ-1; i >= 0; i--) {
if (++ssl->keys.aead_exp_IV[i]) return;
}
}
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) && !defined(NO_CHAPOL_AEAD)
/* Used for the older version of creating AEAD tags with Poly1305 */
static int Poly1305TagOld(WOLFSSL* ssl, byte* additional, const byte* out,
byte* cipher, word16 sz, byte* tag)
{
int ret = 0;
int msglen = (sz - ssl->specs.aead_mac_size);
word32 keySz = 32;
byte padding[8]; /* used to temporarily store lengths */
#ifdef CHACHA_AEAD_TEST
printf("Using old version of poly1305 input.\n");
#endif
if (msglen < 0)
return INPUT_CASE_ERROR;
if ((ret = wc_Poly1305SetKey(ssl->auth.poly1305, cipher, keySz)) != 0)
return ret;
if ((ret = wc_Poly1305Update(ssl->auth.poly1305, additional,
AEAD_AUTH_DATA_SZ)) != 0)
return ret;
/* length of additional input plus padding */
XMEMSET(padding, 0, sizeof(padding));
padding[0] = AEAD_AUTH_DATA_SZ;
if ((ret = wc_Poly1305Update(ssl->auth.poly1305, padding,
sizeof(padding))) != 0)
return ret;
/* add cipher info and then its length */
XMEMSET(padding, 0, sizeof(padding));
if ((ret = wc_Poly1305Update(ssl->auth.poly1305, out, msglen)) != 0)
return ret;
/* 32 bit size of cipher to 64 bit endian */
padding[0] = msglen & 0xff;
padding[1] = (msglen >> 8) & 0xff;
padding[2] = ((word32)msglen >> 16) & 0xff;
padding[3] = ((word32)msglen >> 24) & 0xff;
if ((ret = wc_Poly1305Update(ssl->auth.poly1305, padding, sizeof(padding)))
!= 0)
return ret;
/* generate tag */
if ((ret = wc_Poly1305Final(ssl->auth.poly1305, tag)) != 0)
return ret;
return ret;
}
/* When the flag oldPoly is not set this follows RFC7905. When oldPoly is set
* the implementation follows an older draft for creating the nonce and MAC.
* The flag oldPoly gets set automatically depending on what cipher suite was
* negotiated in the handshake. This is able to be done because the IDs for the
* cipher suites was updated in RFC7905 giving unique values for the older
* draft in comparison to the more recent RFC.
*
* ssl WOLFSSL structure to get cipher and TLS state from
* out output buffer to hold encrypted data
* input data to encrypt
* sz size of input
*
* Return 0 on success negative values in error case
*/
int ChachaAEADEncrypt(WOLFSSL* ssl, byte* out, const byte* input,
word16 sz)
{
const byte* additionalSrc = input - RECORD_HEADER_SZ;
int ret = 0;
word32 msgLen = (sz - ssl->specs.aead_mac_size);
byte tag[POLY1305_AUTH_SZ];
byte add[AEAD_AUTH_DATA_SZ];
byte nonce[CHACHA20_NONCE_SZ];
byte poly[CHACHA20_256_KEY_SIZE]; /* generated key for poly1305 */
#ifdef CHACHA_AEAD_TEST
int i;
#endif
Keys* keys = &ssl->keys;
XMEMSET(tag, 0, sizeof(tag));
XMEMSET(nonce, 0, sizeof(nonce));
XMEMSET(poly, 0, sizeof(poly));
XMEMSET(add, 0, sizeof(add));
#if defined(WOLFSSL_DTLS) && defined(HAVE_SECURE_RENEGOTIATION)
/*
* For epochs 2+:
* * use ssl->secure_renegotiation when encrypting the current epoch as it
* has the current epoch cipher material
* * use PREV_ORDER if encrypting the epoch not in
* ssl->secure_renegotiation
*/
/* opaque SEQ number stored for AD */
if (ssl->options.dtls && DtlsSCRKeysSet(ssl)) {
if (ssl->keys.dtls_epoch ==
ssl->secure_renegotiation->tmp_keys.dtls_epoch) {
keys = &ssl->secure_renegotiation->tmp_keys;
WriteSEQ(ssl, CUR_ORDER, add);
}
else
WriteSEQ(ssl, PREV_ORDER, add);
}
else
#endif
WriteSEQ(ssl, CUR_ORDER, add);
if (ssl->options.oldPoly != 0) {
/* get nonce. SEQ should not be incremented again here */
XMEMCPY(nonce + CHACHA20_OLD_OFFSET, add, OPAQUE32_LEN * 2);
}
/* Store the type, version. Unfortunately, they are in
* the input buffer ahead of the plaintext. */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
additionalSrc -= DTLS_HANDSHAKE_EXTRA;
}
#endif
/* add TLS message size to additional data */
add[AEAD_AUTH_DATA_SZ - 2] = (msgLen >> 8) & 0xff;
add[AEAD_AUTH_DATA_SZ - 1] = msgLen & 0xff;
XMEMCPY(add + AEAD_TYPE_OFFSET, additionalSrc, 3);
#ifdef CHACHA_AEAD_TEST
printf("Encrypt Additional : ");
for (i = 0; i < AEAD_AUTH_DATA_SZ; i++) {
printf("%02x", add[i]);
}
printf("\n\n");
printf("input before encryption :\n");
for (i = 0; i < sz; i++) {
printf("%02x", input[i]);
if ((i + 1) % 16 == 0)
printf("\n");
}
printf("\n");
#endif
if (ssl->options.oldPoly == 0) {
/* nonce is formed by 4 0x00 byte padded to the left followed by 8 byte
* record sequence number XORed with client_write_IV/server_write_IV */
XMEMCPY(nonce, keys->aead_enc_imp_IV, CHACHA20_IMP_IV_SZ);
nonce[4] ^= add[0];
nonce[5] ^= add[1];
nonce[6] ^= add[2];
nonce[7] ^= add[3];
nonce[8] ^= add[4];
nonce[9] ^= add[5];
nonce[10] ^= add[6];
nonce[11] ^= add[7];
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("ChachaAEADEncrypt nonce", nonce, CHACHA20_NONCE_SZ);
#endif
/* set the nonce for chacha and get poly1305 key */
if ((ret = wc_Chacha_SetIV(ssl->encrypt.chacha, nonce, 0)) != 0) {
ForceZero(nonce, CHACHA20_NONCE_SZ);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
#endif
return ret;
}
/* create Poly1305 key using chacha20 keystream */
if ((ret = wc_Chacha_Process(ssl->encrypt.chacha, poly,
poly, sizeof(poly))) != 0) {
ForceZero(nonce, CHACHA20_NONCE_SZ);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
#endif
return ret;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("ChachaAEADEncrypt poly", poly, CHACHA20_256_KEY_SIZE);
#endif
/* set the counter after getting poly1305 key */
if ((ret = wc_Chacha_SetIV(ssl->encrypt.chacha, nonce, 1)) != 0) {
ForceZero(nonce, CHACHA20_NONCE_SZ);
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
ForceZero(nonce, CHACHA20_NONCE_SZ); /* done with nonce, clear it */
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
#endif
/* encrypt the plain text */
if ((ret = wc_Chacha_Process(ssl->encrypt.chacha, out,
input, msgLen)) != 0) {
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
/* get the poly1305 tag using either old padding scheme or more recent */
if (ssl->options.oldPoly != 0) {
if ((ret = Poly1305TagOld(ssl, add, (const byte* )out,
poly, sz, tag)) != 0) {
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
}
else {
if ((ret = wc_Poly1305SetKey(ssl->auth.poly1305, poly,
sizeof(poly))) != 0) {
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
if ((ret = wc_Poly1305_MAC(ssl->auth.poly1305, add,
sizeof(add), out, msgLen, tag, sizeof(tag))) != 0) {
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
}
ForceZero(poly, sizeof(poly)); /* done with poly1305 key, clear it */
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
/* append tag to ciphertext */
XMEMCPY(out + msgLen, tag, sizeof(tag));
AeadIncrementExpIV(ssl);
#ifdef CHACHA_AEAD_TEST
printf("mac tag :\n");
for (i = 0; i < 16; i++) {
printf("%02x", tag[i]);
if ((i + 1) % 16 == 0)
printf("\n");
}
printf("\n\noutput after encrypt :\n");
for (i = 0; i < sz; i++) {
printf("%02x", out[i]);
if ((i + 1) % 16 == 0)
printf("\n");
}
printf("\n");
#endif
return ret;
}
/* When the flag oldPoly is not set this follows RFC7905. When oldPoly is set
* the implementation follows an older draft for creating the nonce and MAC.
* The flag oldPoly gets set automatically depending on what cipher suite was
* negotiated in the handshake. This is able to be done because the IDs for the
* cipher suites was updated in RFC7905 giving unique values for the older
* draft in comparison to the more recent RFC.
*
* ssl WOLFSSL structure to get cipher and TLS state from
* plain output buffer to hold decrypted data
* input data to decrypt
* sz size of input
*
* Return 0 on success negative values in error case
*/
int ChachaAEADDecrypt(WOLFSSL* ssl, byte* plain, const byte* input,
word16 sz)
{
byte add[AEAD_AUTH_DATA_SZ];
byte nonce[CHACHA20_NONCE_SZ];
byte tag[POLY1305_AUTH_SZ];
byte poly[CHACHA20_256_KEY_SIZE]; /* generated key for mac */
int ret = 0;
int msgLen = (sz - ssl->specs.aead_mac_size);
Keys* keys = &ssl->keys;
#ifdef CHACHA_AEAD_TEST
int i;
printf("input before decrypt :\n");
for (i = 0; i < sz; i++) {
printf("%02x", input[i]);
if ((i + 1) % 16 == 0)
printf("\n");
}
printf("\n");
#endif
XMEMSET(tag, 0, sizeof(tag));
XMEMSET(poly, 0, sizeof(poly));
XMEMSET(nonce, 0, sizeof(nonce));
XMEMSET(add, 0, sizeof(add));
#if defined(WOLFSSL_DTLS) && defined(HAVE_SECURE_RENEGOTIATION)
/*
* For epochs 2+:
* * use ssl->secure_renegotiation when decrypting the latest epoch as it
* has the latest epoch cipher material
*/
if (ssl->options.dtls && DtlsSCRKeysSet(ssl) &&
ssl->keys.curEpoch == ssl->secure_renegotiation->tmp_keys.dtls_epoch)
keys = &ssl->secure_renegotiation->tmp_keys;
#endif
/* sequence number field is 64-bits */
WriteSEQ(ssl, PEER_ORDER, add);
if (ssl->options.oldPoly != 0) {
/* get nonce, SEQ should not be incremented again here */
XMEMCPY(nonce + CHACHA20_OLD_OFFSET, add, OPAQUE32_LEN * 2);
}
/* get AD info */
/* Store the type, version. */
add[AEAD_TYPE_OFFSET] = ssl->curRL.type;
add[AEAD_VMAJ_OFFSET] = ssl->curRL.pvMajor;
add[AEAD_VMIN_OFFSET] = ssl->curRL.pvMinor;
/* add TLS message size to additional data */
add[AEAD_AUTH_DATA_SZ - 2] = (msgLen >> 8) & 0xff;
add[AEAD_AUTH_DATA_SZ - 1] = msgLen & 0xff;
#ifdef CHACHA_AEAD_TEST
printf("Decrypt Additional : ");
for (i = 0; i < AEAD_AUTH_DATA_SZ; i++) {
printf("%02x", add[i]);
}
printf("\n\n");
#endif
if (ssl->options.oldPoly == 0) {
/* nonce is formed by 4 0x00 byte padded to the left followed by 8 byte
* record sequence number XORed with client_write_IV/server_write_IV */
XMEMCPY(nonce, keys->aead_dec_imp_IV, CHACHA20_IMP_IV_SZ);
nonce[4] ^= add[0];
nonce[5] ^= add[1];
nonce[6] ^= add[2];
nonce[7] ^= add[3];
nonce[8] ^= add[4];
nonce[9] ^= add[5];
nonce[10] ^= add[6];
nonce[11] ^= add[7];
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("ChachaAEADEncrypt nonce", nonce, CHACHA20_NONCE_SZ);
#endif
/* set nonce and get poly1305 key */
if ((ret = wc_Chacha_SetIV(ssl->decrypt.chacha, nonce, 0)) != 0) {
ForceZero(nonce, CHACHA20_NONCE_SZ);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
#endif
return ret;
}
/* use chacha20 keystream to get poly1305 key for tag */
if ((ret = wc_Chacha_Process(ssl->decrypt.chacha, poly,
poly, sizeof(poly))) != 0) {
ForceZero(nonce, CHACHA20_NONCE_SZ);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
#endif
return ret;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("ChachaAEADEncrypt poly", poly, CHACHA20_256_KEY_SIZE);
#endif
/* set counter after getting poly1305 key */
if ((ret = wc_Chacha_SetIV(ssl->decrypt.chacha, nonce, 1)) != 0) {
ForceZero(nonce, CHACHA20_NONCE_SZ);
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
ForceZero(nonce, CHACHA20_NONCE_SZ); /* done with nonce, clear it */
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(nonce, CHACHA20_NONCE_SZ);
#endif
/* get the tag using Poly1305 */
if (ssl->options.oldPoly != 0) {
if ((ret = Poly1305TagOld(ssl, add, input, poly, sz, tag)) != 0) {
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
}
else {
if ((ret = wc_Poly1305SetKey(ssl->auth.poly1305, poly,
sizeof(poly))) != 0) {
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
if ((ret = wc_Poly1305_MAC(ssl->auth.poly1305, add,
sizeof(add), input, msgLen, tag, sizeof(tag))) != 0) {
ForceZero(poly, sizeof(poly));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
return ret;
}
}
ForceZero(poly, sizeof(poly)); /* done with poly1305 key, clear it */
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(poly, CHACHA20_256_KEY_SIZE);
#endif
/* check tag sent along with packet */
if (ConstantCompare(input + msgLen, tag, ssl->specs.aead_mac_size) != 0) {
WOLFSSL_MSG("MAC did not match");
if (!ssl->options.dtls)
SendAlert(ssl, alert_fatal, bad_record_mac);
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
/* if the tag was good decrypt message */
if ((ret = wc_Chacha_Process(ssl->decrypt.chacha, plain,
input, msgLen)) != 0)
return ret;
#ifdef CHACHA_AEAD_TEST
printf("plain after decrypt :\n");
for (i = 0; i < sz; i++) {
printf("%02x", plain[i]);
if ((i + 1) % 16 == 0)
printf("\n");
}
printf("\n");
#endif
return ret;
}
#endif /* HAVE_CHACHA && HAVE_POLY1305 && !NO_CHAPOL_AEAD*/
#endif /* HAVE_AEAD */
#if defined(BUILD_AESGCM) || defined(HAVE_AESCCM)
#if !defined(NO_GCM_ENCRYPT_EXTRA) && \
((!defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)) || \
(defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)))
/* The following type is used to share code between AES-GCM and AES-CCM. */
typedef int (*AesAuthEncryptFunc)(Aes* aes, byte* out,
const byte* in, word32 sz,
byte* iv, word32 ivSz,
byte* authTag, word32 authTagSz,
const byte* authIn, word32 authInSz);
#define AES_AUTH_ENCRYPT_FUNC AesAuthEncryptFunc
#define AES_GCM_ENCRYPT wc_AesGcmEncrypt_ex
#define AES_CCM_ENCRYPT wc_AesCcmEncrypt_ex
#else
#define AES_AUTH_ENCRYPT_FUNC wc_AesAuthEncryptFunc
#define AES_GCM_ENCRYPT wc_AesGcmEncrypt
#define AES_CCM_ENCRYPT wc_AesCcmEncrypt
#endif
#endif
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
/* The following type is used to share code between SM4-GCM and SM4-CCM. */
typedef int (*Sm4AuthEncryptFunc)(wc_Sm4* sm4, byte* out, const byte* in,
word32 sz, const byte* nonce, word32 nonceSz, byte* tag, word32 tagSz,
const byte* aad, word32 aadSz);
typedef int (*Sm4AuthDecryptFunc)(wc_Sm4* sm4, byte* out, const byte* in,
word32 sz, const byte* nonce, word32 nonceSz, const byte* tag, word32 tagSz,
const byte* aad, word32 aadSz);
#define SM4_AUTH_ENCRYPT_FUNC Sm4AuthEncryptFunc
#define SM4_AUTH_DECRYPT_FUNC Sm4AuthDecryptFunc
#define SM4_GCM_ENCRYPT_FUNC wc_Sm4GcmEncrypt
#define SM4_CCM_ENCRYPT_FUNC wc_Sm4CcmEncrypt
#define SM4_GCM_DECRYPT_FUNC wc_Sm4GcmDecrypt
#define SM4_CCM_DECRYPT_FUNC wc_Sm4CcmDecrypt
#endif
static WC_INLINE int EncryptDo(WOLFSSL* ssl, byte* out, const byte* input,
word16 sz, int asyncOkay)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_CRYPT
WC_ASYNC_DEV* asyncDev = NULL;
word32 event_flags = WC_ASYNC_FLAG_CALL_AGAIN;
#else
(void)asyncOkay;
#endif
(void)out;
(void)input;
(void)sz;
if (input == NULL) {
return BAD_FUNC_ARG;
}
switch (ssl->specs.bulk_cipher_algorithm) {
#ifdef BUILD_ARC4
case wolfssl_rc4:
wc_Arc4Process(ssl->encrypt.arc4, out, input, sz);
break;
#endif
#ifdef BUILD_DES3
case wolfssl_triple_des:
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
asyncDev = &ssl->encrypt.des3->asyncDev;
ret = wolfSSL_AsyncInit(ssl, asyncDev, event_flags);
if (ret != 0)
break;
#endif
ret = wc_Des3_CbcEncrypt(ssl->encrypt.des3, out, input, sz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E && asyncOkay) {
ret = wolfSSL_AsyncPush(ssl, asyncDev);
}
#endif
break;
#endif
#if defined(BUILD_AES) && defined(HAVE_AES_CBC)
case wolfssl_aes:
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
asyncDev = &ssl->encrypt.aes->asyncDev;
ret = wolfSSL_AsyncInit(ssl, asyncDev, event_flags);
if (ret != 0)
break;
#endif
ret = wc_AesCbcEncrypt(ssl->encrypt.aes, out, input, sz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E && asyncOkay) {
ret = wolfSSL_AsyncPush(ssl, asyncDev);
}
#endif
break;
#endif
#if defined(BUILD_AESGCM) || defined(HAVE_AESCCM)
case wolfssl_aes_gcm:
case wolfssl_aes_ccm:/* GCM AEAD macros use same size as CCM */
{
AES_AUTH_ENCRYPT_FUNC aes_auth_fn;
const byte* additionalSrc;
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
asyncDev = &ssl->encrypt.aes->asyncDev;
ret = wolfSSL_AsyncInit(ssl, asyncDev, event_flags);
if (ret != 0)
break;
#endif
#if defined(BUILD_AESGCM) && defined(HAVE_AESCCM)
aes_auth_fn = (ssl->specs.bulk_cipher_algorithm == wolfssl_aes_gcm)
? AES_GCM_ENCRYPT : AES_CCM_ENCRYPT;
#elif defined(BUILD_AESGCM)
aes_auth_fn = AES_GCM_ENCRYPT;
#else
aes_auth_fn = AES_CCM_ENCRYPT;
#endif
additionalSrc = input - 5;
XMEMSET(ssl->encrypt.additional, 0, AEAD_AUTH_DATA_SZ);
/* sequence number field is 64-bits */
WriteSEQ(ssl, CUR_ORDER, ssl->encrypt.additional);
/* Store the type, version. Unfortunately, they are in
* the input buffer ahead of the plaintext. */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
additionalSrc -= DTLS_HANDSHAKE_EXTRA;
}
#endif
XMEMCPY(ssl->encrypt.additional + AEAD_TYPE_OFFSET,
additionalSrc, 3);
/* Store the length of the plain text minus the explicit
* IV length minus the authentication tag size. */
c16toa(sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->encrypt.additional + AEAD_LEN_OFFSET);
#if !defined(NO_PUBLIC_GCM_SET_IV) && \
((defined(HAVE_FIPS) || defined(HAVE_SELFTEST)) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2)))
XMEMCPY(ssl->encrypt.nonce,
ssl->keys.aead_enc_imp_IV, AESGCM_IMP_IV_SZ);
XMEMCPY(ssl->encrypt.nonce + AESGCM_IMP_IV_SZ,
ssl->keys.aead_exp_IV, AESGCM_EXP_IV_SZ);
#endif
#ifdef HAVE_PK_CALLBACKS
ret = NOT_COMPILED_IN;
if (ssl->ctx && ssl->ctx->PerformTlsRecordProcessingCb) {
ret = ssl->ctx->PerformTlsRecordProcessingCb(ssl, 1,
out + AESGCM_EXP_IV_SZ, input + AESGCM_EXP_IV_SZ,
sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->encrypt.nonce, AESGCM_NONCE_SZ,
out + sz - ssl->specs.aead_mac_size,
ssl->specs.aead_mac_size,
ssl->encrypt.additional, AEAD_AUTH_DATA_SZ);
}
if (ret == NOT_COMPILED_IN)
#endif /* HAVE_PK_CALLBACKS */
{
ret = aes_auth_fn(ssl->encrypt.aes,
out + AESGCM_EXP_IV_SZ, input + AESGCM_EXP_IV_SZ,
sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->encrypt.nonce, AESGCM_NONCE_SZ,
out + sz - ssl->specs.aead_mac_size,
ssl->specs.aead_mac_size,
ssl->encrypt.additional, AEAD_AUTH_DATA_SZ);
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E && asyncOkay) {
ret = wolfSSL_AsyncPush(ssl, asyncDev);
}
#endif
#if !defined(NO_PUBLIC_GCM_SET_IV) && \
((!defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)) || \
(defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)))
XMEMCPY(out,
ssl->encrypt.nonce + AESGCM_IMP_IV_SZ, AESGCM_EXP_IV_SZ);
#endif
}
break;
#endif /* BUILD_AESGCM || HAVE_AESCCM */
#ifdef HAVE_ARIA
case wolfssl_aria_gcm:
{
const byte* additionalSrc = input - RECORD_HEADER_SZ;
byte *outBuf = NULL;
XMEMSET(ssl->encrypt.additional, 0, AEAD_AUTH_DATA_SZ);
/* sequence number field is 64-bits */
WriteSEQ(ssl, CUR_ORDER, ssl->encrypt.additional);
/* Store the type, version. Unfortunately, they are in
* the input buffer ahead of the plaintext. */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
additionalSrc -= DTLS_HANDSHAKE_EXTRA;
}
#endif
XMEMCPY(ssl->encrypt.additional + AEAD_TYPE_OFFSET,
additionalSrc, 3);
/* Store the length of the plain text minus the explicit
* IV length minus the authentication tag size. */
c16toa(sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->encrypt.additional + AEAD_LEN_OFFSET);
XMEMCPY(ssl->encrypt.nonce,
ssl->keys.aead_enc_imp_IV, AESGCM_IMP_IV_SZ);
XMEMCPY(ssl->encrypt.nonce + AESGCM_IMP_IV_SZ,
ssl->keys.aead_exp_IV, AESGCM_EXP_IV_SZ);
outBuf = (byte*)XMALLOC(sz - AESGCM_EXP_IV_SZ, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (outBuf == NULL) {
ret = MEMORY_ERROR;
break;
}
ret = wc_AriaEncrypt(ssl->encrypt.aria, outBuf,
(byte*) input + AESGCM_EXP_IV_SZ,
sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->encrypt.nonce, AESGCM_NONCE_SZ,
ssl->encrypt.additional, AEAD_AUTH_DATA_SZ,
out + sz - ssl->specs.aead_mac_size,
ssl->specs.aead_mac_size
);
if (ret != 0)
break;
XMEMCPY(out,
ssl->encrypt.nonce + AESGCM_IMP_IV_SZ, AESGCM_EXP_IV_SZ);
XMEMCPY(out + AESGCM_EXP_IV_SZ,outBuf,sz - AESGCM_EXP_IV_SZ);
XFREE(outBuf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
break;
}
#endif
#ifdef HAVE_CAMELLIA
case wolfssl_camellia:
ret = wc_CamelliaCbcEncrypt(ssl->encrypt.cam, out, input, sz);
break;
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) && \
!defined(NO_CHAPOL_AEAD)
case wolfssl_chacha:
ret = ChachaAEADEncrypt(ssl, out, input, sz);
break;
#endif
#ifdef WOLFSSL_SM4_CBC
case wolfssl_sm4_cbc:
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
asyncDev = &ssl->encrypt.sm4->asyncDev;
ret = wolfSSL_AsyncInit(ssl, asyncDev, event_flags);
if (ret != 0)
break;
#endif
ret = wc_Sm4CbcEncrypt(ssl->encrypt.sm4, out, input, sz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E && asyncOkay) {
ret = wolfSSL_AsyncPush(ssl, asyncDev);
}
#endif
break;
#endif
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
case wolfssl_sm4_gcm:
case wolfssl_sm4_ccm:/* GCM AEAD macros use same size as CCM */
{
SM4_AUTH_ENCRYPT_FUNC sm4_auth_fn;
const byte* additionalSrc;
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
asyncDev = &ssl->encrypt.sm4->asyncDev;
ret = wolfSSL_AsyncInit(ssl, asyncDev, event_flags);
if (ret != 0)
break;
#endif
#if defined(WOLFSSL_SM4_GCM) && defined(WOLFSSL_SM4_CCM)
sm4_auth_fn = (ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_gcm)
? SM4_GCM_ENCRYPT_FUNC : SM4_CCM_ENCRYPT_FUNC;
#elif defined(WOLFSSL_SM4_GCM)
sm4_auth_fn = SM4_GCM_ENCRYPT_FUNC;
#else
sm4_auth_fn = SM4_CCM_ENCRYPT_FUNC;
#endif
additionalSrc = input - 5;
XMEMSET(ssl->encrypt.additional, 0, AEAD_AUTH_DATA_SZ);
/* sequence number field is 64-bits */
WriteSEQ(ssl, CUR_ORDER, ssl->encrypt.additional);
/* Store the type, version. Unfortunately, they are in
* the input buffer ahead of the plaintext. */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
additionalSrc -= DTLS_HANDSHAKE_EXTRA;
}
#endif
XMEMCPY(ssl->encrypt.additional + AEAD_TYPE_OFFSET,
additionalSrc, 3);
/* Store the length of the plain text minus the explicit
* IV length minus the authentication tag size. */
c16toa(sz - GCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->encrypt.additional + AEAD_LEN_OFFSET);
XMEMCPY(ssl->encrypt.nonce,
ssl->keys.aead_enc_imp_IV, GCM_IMP_IV_SZ);
XMEMCPY(ssl->encrypt.nonce + GCM_IMP_IV_SZ,
ssl->keys.aead_exp_IV, GCM_EXP_IV_SZ);
ret = sm4_auth_fn(ssl->encrypt.sm4,
out + GCM_EXP_IV_SZ, input + GCM_EXP_IV_SZ,
sz - GCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->encrypt.nonce, GCM_NONCE_SZ,
out + sz - ssl->specs.aead_mac_size,
ssl->specs.aead_mac_size,
ssl->encrypt.additional, AEAD_AUTH_DATA_SZ);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E && asyncOkay) {
ret = wolfSSL_AsyncPush(ssl, asyncDev);
}
#endif
#if !defined(NO_PUBLIC_GCM_SET_IV) && \
((!defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)) || \
(defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)))
XMEMCPY(out,
ssl->encrypt.nonce + GCM_IMP_IV_SZ, GCM_EXP_IV_SZ);
#endif
}
break;
#endif /* WOLFSSL_SM4_GCM || WOLFSSL_SM4_CCM */
#ifdef HAVE_NULL_CIPHER
case wolfssl_cipher_null:
if (input != out) {
XMEMMOVE(out, input, sz);
}
break;
#endif
default:
WOLFSSL_MSG("wolfSSL Encrypt programming error");
ret = ENCRYPT_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
#ifdef WOLFSSL_ASYNC_CRYPT
/* if async is not okay, then block */
if (ret == WC_PENDING_E && !asyncOkay) {
ret = wc_AsyncWait(ret, asyncDev, event_flags);
}
#endif
return ret;
}
static WC_INLINE int Encrypt(WOLFSSL* ssl, byte* out, const byte* input,
word16 sz, int asyncOkay)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->error == WC_PENDING_E) {
ssl->error = 0; /* clear async */
}
#endif
switch (ssl->encrypt.state) {
case CIPHER_STATE_BEGIN:
{
if (ssl->encrypt.setup == 0) {
WOLFSSL_MSG("Encrypt ciphers not setup");
WOLFSSL_ERROR_VERBOSE(ENCRYPT_ERROR);
return ENCRYPT_ERROR;
}
#ifdef WOLFSSL_CIPHER_TEXT_CHECK
if (ssl->specs.bulk_cipher_algorithm != wolfssl_cipher_null) {
XMEMCPY(ssl->encrypt.sanityCheck, input,
min(sz, sizeof(ssl->encrypt.sanityCheck)));
}
#endif
#ifdef HAVE_FUZZER
if (ssl->fuzzerCb)
ssl->fuzzerCb(ssl, input, sz, FUZZ_ENCRYPT, ssl->fuzzerCtx);
#endif
#if defined(BUILD_AESGCM) || defined(HAVE_AESCCM) || defined(HAVE_ARIA)
/* make sure AES GCM/CCM memory is allocated */
/* free for these happens in FreeCiphers */
if (ssl->specs.bulk_cipher_algorithm == wolfssl_aes_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_aes_gcm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_aria_gcm) {
/* make sure auth iv and auth are allocated */
if (ssl->encrypt.additional == NULL)
ssl->encrypt.additional = (byte*)XMALLOC(AEAD_AUTH_DATA_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
if (ssl->encrypt.nonce == NULL) {
ssl->encrypt.nonce = (byte*)XMALLOC(AESGCM_NONCE_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
#ifdef WOLFSSL_CHECK_MEM_ZERO
if (ssl->encrypt.nonce != NULL) {
wc_MemZero_Add("Encrypt nonce", ssl->encrypt.nonce,
AESGCM_NONCE_SZ);
}
#endif
}
if (ssl->encrypt.additional == NULL ||
ssl->encrypt.nonce == NULL) {
return MEMORY_E;
}
}
#endif /* BUILD_AESGCM || HAVE_AESCCM || HAVE_ARIA */
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
/* make sure SM4 GCM/CCM memory is allocated */
/* free for these happens in FreeCiphers */
if (ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_gcm) {
/* make sure auth iv and auth are allocated */
if (ssl->encrypt.additional == NULL)
ssl->encrypt.additional = (byte*)XMALLOC(AEAD_AUTH_DATA_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
if (ssl->encrypt.nonce == NULL) {
ssl->encrypt.nonce = (byte*)XMALLOC(GCM_NONCE_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
#ifdef WOLFSSL_CHECK_MEM_ZERO
if (ssl->encrypt.nonce != NULL) {
wc_MemZero_Add("Encrypt nonce", ssl->encrypt.nonce,
GCM_NONCE_SZ);
}
#endif
}
if (ssl->encrypt.additional == NULL ||
ssl->encrypt.nonce == NULL) {
return MEMORY_E;
}
}
#endif /* WOLFSSL_SM4_GCM || WOLFSSL_SM4_CCM */
/* Advance state and proceed */
ssl->encrypt.state = CIPHER_STATE_DO;
}
FALL_THROUGH;
case CIPHER_STATE_DO:
{
ret = EncryptDo(ssl, out, input, sz, asyncOkay);
/* Advance state */
ssl->encrypt.state = CIPHER_STATE_END;
#ifdef WOLFSSL_ASYNC_CRYPT
/* If pending, then leave and return will resume below */
if (ret == WC_PENDING_E) {
return ret;
}
#endif
}
FALL_THROUGH;
case CIPHER_STATE_END:
{
#ifdef WOLFSSL_CIPHER_TEXT_CHECK
if (ssl->specs.bulk_cipher_algorithm != wolfssl_cipher_null &&
XMEMCMP(out, ssl->encrypt.sanityCheck,
min(sz, sizeof(ssl->encrypt.sanityCheck))) == 0) {
WOLFSSL_MSG("Encrypt sanity check failed! Glitch?");
WOLFSSL_ERROR_VERBOSE(ENCRYPT_ERROR);
return ENCRYPT_ERROR;
}
ForceZero(ssl->encrypt.sanityCheck,
sizeof(ssl->encrypt.sanityCheck));
#endif
#if defined(BUILD_AESGCM) || defined(HAVE_AESCCM) || defined(HAVE_ARIA)
if (ssl->specs.bulk_cipher_algorithm == wolfssl_aes_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_aes_gcm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_aria_gcm)
{
/* finalize authentication cipher */
#if !defined(NO_PUBLIC_GCM_SET_IV) && \
((defined(HAVE_FIPS) || defined(HAVE_SELFTEST)) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2)))
AeadIncrementExpIV(ssl);
#endif
if (ssl->encrypt.nonce)
ForceZero(ssl->encrypt.nonce, AESGCM_NONCE_SZ);
}
#endif /* BUILD_AESGCM || HAVE_AESCCM || HAVE_ARIA */
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
if (ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_gcm)
{
/* finalize authentication cipher */
AeadIncrementExpIV(ssl);
if (ssl->encrypt.nonce)
ForceZero(ssl->encrypt.nonce, GCM_NONCE_SZ);
}
#endif /* WOLFSSL_SM4_GCM || WOLFSSL_SM4_CCM */
#ifdef WOLFSSL_CHECK_MEM_ZERO
if ((ssl->specs.bulk_cipher_algorithm != wolfssl_cipher_null) &&
(out != input) && (ret == 0)) {
wc_MemZero_Add("TLS Encrypt plaintext", input, sz);
}
#endif
break;
}
default:
break;
}
/* Reset state */
ssl->encrypt.state = CIPHER_STATE_BEGIN;
return ret;
}
static WC_INLINE int DecryptDo(WOLFSSL* ssl, byte* plain, const byte* input,
word16 sz)
{
int ret = 0;
(void)plain;
(void)input;
(void)sz;
switch (ssl->specs.bulk_cipher_algorithm)
{
#ifdef BUILD_ARC4
case wolfssl_rc4:
wc_Arc4Process(ssl->decrypt.arc4, plain, input, sz);
break;
#endif
#ifdef BUILD_DES3
case wolfssl_triple_des:
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &ssl->decrypt.des3->asyncDev,
WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
break;
#endif
ret = wc_Des3_CbcDecrypt(ssl->decrypt.des3, plain, input, sz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &ssl->decrypt.des3->asyncDev);
}
#endif
break;
#endif
#if defined(BUILD_AES) && defined(HAVE_AES_CBC)
case wolfssl_aes:
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &ssl->decrypt.aes->asyncDev,
WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
break;
#endif
ret = wc_AesCbcDecrypt(ssl->decrypt.aes, plain, input, sz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &ssl->decrypt.aes->asyncDev);
}
#endif
break;
#endif
#if defined(BUILD_AESGCM) || defined(HAVE_AESCCM)
case wolfssl_aes_gcm:
case wolfssl_aes_ccm: /* GCM AEAD macros use same size as CCM */
{
wc_AesAuthDecryptFunc aes_auth_fn;
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &ssl->decrypt.aes->asyncDev,
WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
break;
#endif
#if defined(BUILD_AESGCM) && defined(HAVE_AESCCM)
aes_auth_fn = (ssl->specs.bulk_cipher_algorithm == wolfssl_aes_gcm)
? wc_AesGcmDecrypt : wc_AesCcmDecrypt;
#elif defined(BUILD_AESGCM)
aes_auth_fn = wc_AesGcmDecrypt;
#else
aes_auth_fn = wc_AesCcmDecrypt;
#endif
XMEMSET(ssl->decrypt.additional, 0, AEAD_AUTH_DATA_SZ);
/* sequence number field is 64-bits */
WriteSEQ(ssl, PEER_ORDER, ssl->decrypt.additional);
ssl->decrypt.additional[AEAD_TYPE_OFFSET] = ssl->curRL.type;
ssl->decrypt.additional[AEAD_VMAJ_OFFSET] = ssl->curRL.pvMajor;
ssl->decrypt.additional[AEAD_VMIN_OFFSET] = ssl->curRL.pvMinor;
c16toa(sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->decrypt.additional + AEAD_LEN_OFFSET);
#if defined(WOLFSSL_DTLS) && defined(HAVE_SECURE_RENEGOTIATION)
if (ssl->options.dtls && IsDtlsMsgSCRKeys(ssl))
XMEMCPY(ssl->decrypt.nonce,
ssl->secure_renegotiation->tmp_keys.aead_dec_imp_IV,
AESGCM_IMP_IV_SZ);
else
#endif
XMEMCPY(ssl->decrypt.nonce, ssl->keys.aead_dec_imp_IV,
AESGCM_IMP_IV_SZ);
XMEMCPY(ssl->decrypt.nonce + AESGCM_IMP_IV_SZ, input,
AESGCM_EXP_IV_SZ);
#ifdef HAVE_PK_CALLBACKS
ret = NOT_COMPILED_IN;
if (ssl->ctx && ssl->ctx->PerformTlsRecordProcessingCb) {
ret = ssl->ctx->PerformTlsRecordProcessingCb(ssl, 0,
plain + AESGCM_EXP_IV_SZ,
input + AESGCM_EXP_IV_SZ,
sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->decrypt.nonce, AESGCM_NONCE_SZ,
(byte *)(input + sz - ssl->specs.aead_mac_size),
ssl->specs.aead_mac_size,
ssl->decrypt.additional, AEAD_AUTH_DATA_SZ);
}
if (ret == NOT_COMPILED_IN)
#endif /* HAVE_PK_CALLBACKS */
{
if ((ret = aes_auth_fn(ssl->decrypt.aes,
plain + AESGCM_EXP_IV_SZ,
input + AESGCM_EXP_IV_SZ,
sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->decrypt.nonce, AESGCM_NONCE_SZ,
input + sz - ssl->specs.aead_mac_size,
ssl->specs.aead_mac_size,
ssl->decrypt.additional, AEAD_AUTH_DATA_SZ)) < 0) {
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl,
&ssl->decrypt.aes->asyncDev);
}
#endif
}
}
}
break;
#endif /* BUILD_AESGCM || HAVE_AESCCM */
#ifdef HAVE_ARIA
case wolfssl_aria_gcm:
{
byte *outBuf = NULL;
XMEMSET(ssl->decrypt.additional, 0, AEAD_AUTH_DATA_SZ);
/* sequence number field is 64-bits */
WriteSEQ(ssl, PEER_ORDER, ssl->decrypt.additional);
ssl->decrypt.additional[AEAD_TYPE_OFFSET] = ssl->curRL.type;
ssl->decrypt.additional[AEAD_VMAJ_OFFSET] = ssl->curRL.pvMajor;
ssl->decrypt.additional[AEAD_VMIN_OFFSET] = ssl->curRL.pvMinor;
c16toa(sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->decrypt.additional + AEAD_LEN_OFFSET);
#if defined(WOLFSSL_DTLS) && defined(HAVE_SECURE_RENEGOTIATION)
if (ssl->options.dtls && IsDtlsMsgSCRKeys(ssl))
XMEMCPY(ssl->decrypt.nonce,
ssl->secure_renegotiation->tmp_keys.aead_dec_imp_IV,
AESGCM_IMP_IV_SZ);
else
#endif
XMEMCPY(ssl->decrypt.nonce, ssl->keys.aead_dec_imp_IV,
AESGCM_IMP_IV_SZ);
XMEMCPY(ssl->decrypt.nonce + AESGCM_IMP_IV_SZ, input,
AESGCM_EXP_IV_SZ);
outBuf = (byte*)XMALLOC(sz - AESGCM_EXP_IV_SZ, ssl->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (outBuf == NULL) {
ret = MEMORY_ERROR;
break;
}
ret = wc_AriaDecrypt(ssl->decrypt.aria, outBuf,
(byte *)input + AESGCM_EXP_IV_SZ,
sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->decrypt.nonce, AESGCM_NONCE_SZ,
ssl->decrypt.additional, AEAD_AUTH_DATA_SZ,
(byte *)input + sz - ssl->specs.aead_mac_size,
ssl->specs.aead_mac_size
);
if (ret != 0)
break;
XMEMCPY(plain + AESGCM_EXP_IV_SZ,
outBuf,
sz - AESGCM_EXP_IV_SZ - ssl->specs.aead_mac_size);
XFREE(outBuf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
break;
}
#endif /* HAVE_ARIA */
#ifdef HAVE_CAMELLIA
case wolfssl_camellia:
ret = wc_CamelliaCbcDecrypt(ssl->decrypt.cam, plain, input, sz);
break;
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) && \
!defined(NO_CHAPOL_AEAD)
case wolfssl_chacha:
ret = ChachaAEADDecrypt(ssl, plain, input, sz);
break;
#endif
#ifdef WOLFSSL_SM4_CBC
case wolfssl_sm4_cbc:
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &ssl->decrypt.aes->asyncDev,
WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
break;
#endif
ret = wc_Sm4CbcDecrypt(ssl->decrypt.sm4, plain, input, sz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl, &ssl->decrypt.aes->asyncDev);
}
#endif
break;
#endif
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
case wolfssl_sm4_gcm:
case wolfssl_sm4_ccm: /* GCM AEAD macros use same size as CCM */
{
SM4_AUTH_DECRYPT_FUNC sm4_auth_fn;
#ifdef WOLFSSL_ASYNC_CRYPT
/* initialize event */
ret = wolfSSL_AsyncInit(ssl, &ssl->decrypt.sm4->asyncDev,
WC_ASYNC_FLAG_CALL_AGAIN);
if (ret != 0)
break;
#endif
#if defined(WOLFSSL_SM4_GCM) && defined(WOLFSSL_SM4_CCM)
sm4_auth_fn = (ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_gcm)
? SM4_GCM_DECRYPT_FUNC : SM4_CCM_DECRYPT_FUNC;
#elif defined(WOLFSSL_SM4_GCM)
sm4_auth_fn = SM4_GCM_DECRYPT_FUNC;
#else
sm4_auth_fn = SM4_CCM_DECRYPT_FUNC;
#endif
XMEMSET(ssl->decrypt.additional, 0, AEAD_AUTH_DATA_SZ);
/* sequence number field is 64-bits */
WriteSEQ(ssl, PEER_ORDER, ssl->decrypt.additional);
ssl->decrypt.additional[AEAD_TYPE_OFFSET] = ssl->curRL.type;
ssl->decrypt.additional[AEAD_VMAJ_OFFSET] = ssl->curRL.pvMajor;
ssl->decrypt.additional[AEAD_VMIN_OFFSET] = ssl->curRL.pvMinor;
c16toa(sz - GCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->decrypt.additional + AEAD_LEN_OFFSET);
#if defined(WOLFSSL_DTLS) && defined(HAVE_SECURE_RENEGOTIATION)
if (ssl->options.dtls && IsDtlsMsgSCRKeys(ssl))
XMEMCPY(ssl->decrypt.nonce,
ssl->secure_renegotiation->tmp_keys.aead_dec_imp_IV,
GCM_IMP_IV_SZ);
else
#endif
XMEMCPY(ssl->decrypt.nonce, ssl->keys.aead_dec_imp_IV,
GCM_IMP_IV_SZ);
XMEMCPY(ssl->decrypt.nonce + GCM_IMP_IV_SZ, input, GCM_EXP_IV_SZ);
if ((ret = sm4_auth_fn(ssl->decrypt.sm4,
plain + GCM_EXP_IV_SZ,
input + GCM_EXP_IV_SZ,
sz - GCM_EXP_IV_SZ - ssl->specs.aead_mac_size,
ssl->decrypt.nonce, GCM_NONCE_SZ,
input + sz - ssl->specs.aead_mac_size,
ssl->specs.aead_mac_size,
ssl->decrypt.additional, AEAD_AUTH_DATA_SZ)) < 0) {
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
ret = wolfSSL_AsyncPush(ssl,
&ssl->decrypt.sm4->asyncDev);
}
#endif
}
}
break;
#endif /* WOLFSSL_SM4_GCM || WOLFSSL_SM4_CCM */
#ifdef HAVE_NULL_CIPHER
case wolfssl_cipher_null:
if (input != plain) {
XMEMMOVE(plain, input, sz);
}
break;
#endif
default:
WOLFSSL_MSG("wolfSSL Decrypt programming error");
WOLFSSL_ERROR_VERBOSE(DECRYPT_ERROR);
ret = DECRYPT_ERROR;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
if ((ssl->specs.bulk_cipher_algorithm != wolfssl_cipher_null) &&
(ret == 0)) {
wc_MemZero_Add("Decrypted data", plain, sz);
}
#endif
return ret;
}
static int DecryptTls(WOLFSSL* ssl, byte* plain, const byte* input, word16 sz)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfSSL_AsyncPop(ssl, &ssl->decrypt.state);
if (ret != WC_NO_PENDING_E) {
/* check for still pending */
if (ret == WC_PENDING_E)
return ret;
ssl->error = 0; /* clear async */
/* let failures through so CIPHER_STATE_END logic is run */
}
else
#endif
{
/* Reset state */
ret = 0;
ssl->decrypt.state = CIPHER_STATE_BEGIN;
}
switch (ssl->decrypt.state) {
case CIPHER_STATE_BEGIN:
{
if (ssl->decrypt.setup == 0) {
WOLFSSL_MSG("Decrypt ciphers not setup");
WOLFSSL_ERROR_VERBOSE(DECRYPT_ERROR);
return DECRYPT_ERROR;
}
#if defined(BUILD_AESGCM) || defined(HAVE_AESCCM) || defined(HAVE_ARIA)
/* make sure AES GCM/CCM memory is allocated */
/* free for these happens in FreeCiphers */
if (ssl->specs.bulk_cipher_algorithm == wolfssl_aes_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_aes_gcm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_aria_gcm) {
/* make sure auth iv and auth are allocated */
if (ssl->decrypt.additional == NULL)
ssl->decrypt.additional = (byte*)XMALLOC(AEAD_AUTH_DATA_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
if (ssl->decrypt.nonce == NULL) {
ssl->decrypt.nonce = (byte*)XMALLOC(AESGCM_NONCE_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
#ifdef WOLFSSL_CHECK_MEM_ZERO
if (ssl->decrypt.nonce != NULL) {
wc_MemZero_Add("DecryptTls nonce", ssl->decrypt.nonce,
AESGCM_NONCE_SZ);
}
#endif
}
if (ssl->decrypt.additional == NULL ||
ssl->decrypt.nonce == NULL) {
return MEMORY_E;
}
}
#endif /* BUILD_AESGCM || HAVE_AESCCM || HAVE_ARIA */
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
/* make sure SM4 GCM/CCM memory is allocated */
/* free for these happens in FreeCiphers */
if (ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_gcm) {
/* make sure auth iv and auth are allocated */
if (ssl->decrypt.additional == NULL)
ssl->decrypt.additional = (byte*)XMALLOC(AEAD_AUTH_DATA_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
if (ssl->decrypt.nonce == NULL) {
ssl->decrypt.nonce = (byte*)XMALLOC(GCM_NONCE_SZ,
ssl->heap, DYNAMIC_TYPE_CIPHER);
#ifdef WOLFSSL_CHECK_MEM_ZERO
if (ssl->decrypt.nonce != NULL) {
wc_MemZero_Add("DecryptTls nonce", ssl->decrypt.nonce,
GCM_NONCE_SZ);
}
#endif
}
if (ssl->decrypt.additional == NULL ||
ssl->decrypt.nonce == NULL) {
return MEMORY_E;
}
}
#endif /* WOLFSSL_SM4_GCM || WOLFSSL_SM4_CCM */
/* Advance state and proceed */
ssl->decrypt.state = CIPHER_STATE_DO;
}
FALL_THROUGH;
case CIPHER_STATE_DO:
{
#if defined(WOLFSSL_DTLS) && defined(HAVE_SECURE_RENEGOTIATION)
if (ssl->options.dtls && DtlsSCRKeysSet(ssl)) {
/* For epochs >1 the current cipher parameters are located in
* ssl->secure_renegotiation->tmp_keys. Previous cipher
* parameters and for epoch 1 use ssl->keys */
if (ssl->keys.curEpoch ==
ssl->secure_renegotiation->tmp_keys.dtls_epoch) {
if (ssl->decrypt.src != SCR) {
ssl->secure_renegotiation->cache_status =
SCR_CACHE_NEEDED;
if ((ret = SetKeysSide(ssl, DECRYPT_SIDE_ONLY)) != 0)
break;
}
}
else {
if (ssl->decrypt.src != KEYS) {
ssl->secure_renegotiation->cache_status =
SCR_CACHE_NULL;
if ((ret = SetKeysSide(ssl, DECRYPT_SIDE_ONLY)) != 0)
break;
}
}
}
#endif
ret = DecryptDo(ssl, plain, input, sz);
/* Advance state */
ssl->decrypt.state = CIPHER_STATE_END;
#ifdef WOLFSSL_ASYNC_CRYPT
/* If pending, leave and return below */
if (ret == WC_PENDING_E) {
return ret;
}
#endif
}
FALL_THROUGH;
case CIPHER_STATE_END:
{
#if defined(BUILD_AESGCM) || defined(HAVE_AESCCM) || defined(HAVE_ARIA)
/* make sure AES GCM/CCM nonce is cleared */
if (ssl->specs.bulk_cipher_algorithm == wolfssl_aes_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_aes_gcm) {
if (ssl->decrypt.nonce)
ForceZero(ssl->decrypt.nonce, AESGCM_NONCE_SZ);
if (ret < 0) {
ret = VERIFY_MAC_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif /* BUILD_AESGCM || HAVE_AESCCM || HAVE_ARIA */
#if defined(WOLFSSL_SM4_GCM) || defined(WOLFSSL_SM4_CCM)
/* make sure SM4 GCM/CCM nonce is cleared */
if (ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_ccm ||
ssl->specs.bulk_cipher_algorithm == wolfssl_sm4_gcm) {
if (ssl->decrypt.nonce)
ForceZero(ssl->decrypt.nonce, GCM_NONCE_SZ);
if (ret < 0) {
ret = VERIFY_MAC_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
#endif /* BUILD_AESGCM || HAVE_AESCCM */
break;
}
default:
break;
}
/* Reset state */
ssl->decrypt.state = CIPHER_STATE_BEGIN;
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 */
/* Check conditions for a cipher to have an explicit IV.
*
* ssl The SSL/TLS object.
* returns 1 if the cipher in use has an explicit IV and 0 otherwise.
*/
static WC_INLINE int CipherHasExpIV(WOLFSSL *ssl)
{
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return 0;
#endif
return (ssl->specs.cipher_type == aead) &&
(ssl->specs.bulk_cipher_algorithm != wolfssl_chacha);
}
/* check cipher text size for sanity */
static int SanityCheckCipherText(WOLFSSL* ssl, word32 encryptSz)
{
#ifdef HAVE_TRUNCATED_HMAC
word32 minLength = ssl->truncated_hmac ? (byte)TRUNCATED_HMAC_SZ
: ssl->specs.hash_size;
#else
word32 minLength = ssl->specs.hash_size; /* covers stream */
#endif
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type == block) {
#ifdef HAVE_ENCRYPT_THEN_MAC
if (ssl->options.startedETMRead) {
if ((encryptSz - MacSize(ssl)) % ssl->specs.block_size) {
WOLFSSL_MSG("Block ciphertext not block size");
WOLFSSL_ERROR_VERBOSE(SANITY_CIPHER_E);
return SANITY_CIPHER_E;
}
}
else
#endif
if (encryptSz % ssl->specs.block_size) {
WOLFSSL_MSG("Block ciphertext not block size");
WOLFSSL_ERROR_VERBOSE(SANITY_CIPHER_E);
return SANITY_CIPHER_E;
}
minLength++; /* pad byte */
if (ssl->specs.block_size > minLength)
minLength = ssl->specs.block_size;
if (ssl->options.tls1_1)
minLength += ssl->specs.block_size; /* explicit IV */
}
else
#endif
if (ssl->specs.cipher_type == aead) {
minLength = ssl->specs.aead_mac_size; /* authTag size */
if (CipherHasExpIV(ssl))
minLength += AESGCM_EXP_IV_SZ; /* explicit IV */
}
if (encryptSz < minLength) {
WOLFSSL_MSG("Ciphertext not minimum size");
WOLFSSL_ERROR_VERBOSE(SANITY_CIPHER_E);
return SANITY_CIPHER_E;
}
return 0;
}
#ifndef WOLFSSL_AEAD_ONLY
#ifdef WOLSSL_OLD_TIMINGPADVERIFY
#define COMPRESS_LOWER 64
#define COMPRESS_UPPER 55
#define COMPRESS_CONSTANT 13
#ifndef NO_OLD_TLS
static WC_INLINE void Md5Rounds(int rounds, const byte* data, int sz)
{
wc_Md5 md5;
int i;
wc_InitMd5(&md5); /* no error check on purpose, dummy round */
for (i = 0; i < rounds; i++)
wc_Md5Update(&md5, data, sz);
wc_Md5Free(&md5); /* in case needed to release resources */
}
/* do a dummy sha round */
static WC_INLINE void ShaRounds(int rounds, const byte* data, int sz)
{
wc_Sha sha;
int i;
wc_InitSha(&sha); /* no error check on purpose, dummy round */
for (i = 0; i < rounds; i++)
wc_ShaUpdate(&sha, data, sz);
wc_ShaFree(&sha); /* in case needed to release resources */
}
#endif
#ifndef NO_SHA256
static WC_INLINE void Sha256Rounds(int rounds, const byte* data, int sz)
{
wc_Sha256 sha256;
int i;
wc_InitSha256(&sha256); /* no error check on purpose, dummy round */
for (i = 0; i < rounds; i++) {
wc_Sha256Update(&sha256, data, sz);
/* no error check on purpose, dummy round */
}
wc_Sha256Free(&sha256); /* in case needed to release resources */
}
#endif
#ifdef WOLFSSL_SHA384
static WC_INLINE void Sha384Rounds(int rounds, const byte* data, int sz)
{
wc_Sha384 sha384;
int i;
wc_InitSha384(&sha384); /* no error check on purpose, dummy round */
for (i = 0; i < rounds; i++) {
wc_Sha384Update(&sha384, data, sz);
/* no error check on purpose, dummy round */
}
wc_Sha384Free(&sha384); /* in case needed to release resources */
}
#endif
#ifdef WOLFSSL_SHA512
static WC_INLINE void Sha512Rounds(int rounds, const byte* data, int sz)
{
wc_Sha512 sha512;
int i;
wc_InitSha512(&sha512); /* no error check on purpose, dummy round */
for (i = 0; i < rounds; i++) {
wc_Sha512Update(&sha512, data, sz);
/* no error check on purpose, dummy round */
}
wc_Sha512Free(&sha512); /* in case needed to release resources */
}
#endif
#ifdef WOLFSSL_RIPEMD
static WC_INLINE void RmdRounds(int rounds, const byte* data, int sz)
{
RipeMd ripemd;
int i;
wc_InitRipeMd(&ripemd);
for (i = 0; i < rounds; i++)
wc_RipeMdUpdate(&ripemd, data, sz);
}
#endif
/* Do dummy rounds */
static WC_INLINE void DoRounds(int type, int rounds, const byte* data, int sz)
{
(void)rounds;
(void)data;
(void)sz;
switch (type) {
case no_mac :
break;
#ifndef NO_OLD_TLS
#ifndef NO_MD5
case md5_mac :
Md5Rounds(rounds, data, sz);
break;
#endif
#ifndef NO_SHA
case sha_mac :
ShaRounds(rounds, data, sz);
break;
#endif
#endif
#ifndef NO_SHA256
case sha256_mac :
Sha256Rounds(rounds, data, sz);
break;
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac :
Sha384Rounds(rounds, data, sz);
break;
#endif
#ifdef WOLFSSL_SHA512
case sha512_mac :
Sha512Rounds(rounds, data, sz);
break;
#endif
#ifdef WOLFSSL_RIPEMD
case rmd_mac :
RmdRounds(rounds, data, sz);
break;
#endif
default:
WOLFSSL_MSG("Bad round type");
break;
}
}
/* do number of compression rounds on dummy data */
static WC_INLINE void CompressRounds(WOLFSSL* ssl, int rounds, const byte* dummy)
{
if (rounds)
DoRounds(ssl->specs.mac_algorithm, rounds, dummy, COMPRESS_LOWER);
}
/* check all length bytes for the pad value, return 0 on success */
static int PadCheck(const byte* a, byte pad, int length)
{
int i;
int compareSum = 0;
for (i = 0; i < length; i++) {
compareSum |= a[i] ^ pad;
}
return compareSum;
}
/* get compression extra rounds */
static WC_INLINE int GetRounds(int pLen, int padLen, int t)
{
int roundL1 = 1; /* round up flags */
int roundL2 = 1;
int L1 = COMPRESS_CONSTANT + pLen - t;
int L2 = COMPRESS_CONSTANT + pLen - padLen - 1 - t;
L1 -= COMPRESS_UPPER;
L2 -= COMPRESS_UPPER;
if ( (L1 % COMPRESS_LOWER) == 0)
roundL1 = 0;
if ( (L2 % COMPRESS_LOWER) == 0)
roundL2 = 0;
L1 /= COMPRESS_LOWER;
L2 /= COMPRESS_LOWER;
L1 += roundL1;
L2 += roundL2;
return L1 - L2;
}
/* timing resistant pad/verify check, return 0 on success */
int TimingPadVerify(WOLFSSL* ssl, const byte* input, int padLen, int t,
int pLen, int content)
{
byte verify[WC_MAX_DIGEST_SIZE];
byte dmy[sizeof(WOLFSSL) >= MAX_PAD_SIZE ? 1 : MAX_PAD_SIZE] = {0};
byte* dummy = sizeof(dmy) < MAX_PAD_SIZE ? (byte*) ssl : dmy;
int ret = 0;
(void)dmy;
if ( (t + padLen + 1) > pLen) {
WOLFSSL_MSG("Plain Len not long enough for pad/mac");
PadCheck(dummy, (byte)padLen, MAX_PAD_SIZE);
/* still compare */
ssl->hmac(ssl, verify, input, pLen - t, -1, content, 1, PEER_ORDER);
ConstantCompare(verify, input + pLen - t, t);
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
if (PadCheck(input + pLen - (padLen + 1), (byte)padLen, padLen + 1) != 0) {
WOLFSSL_MSG("PadCheck failed");
PadCheck(dummy, (byte)padLen, MAX_PAD_SIZE - padLen - 1);
/* still compare */
ssl->hmac(ssl, verify, input, pLen - t, -1, content, 1, PEER_ORDER);
ConstantCompare(verify, input + pLen - t, t);
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
PadCheck(dummy, (byte)padLen, MAX_PAD_SIZE - padLen - 1);
ret = ssl->hmac(ssl, verify, input, pLen - padLen - 1 - t, -1, content,
1, PEER_ORDER);
CompressRounds(ssl, GetRounds(pLen, padLen, t), dummy);
if (ConstantCompare(verify, input + (pLen - padLen - 1 - t), t) != 0) {
WOLFSSL_MSG("Verify MAC compare failed");
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
/* treat any failure as verify MAC error */
if (ret != 0) {
ret = VERIFY_MAC_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#else
#if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_AEAD_ONLY)
/* check all length bytes for the pad value, return 0 on success */
static int PadCheck(const byte* a, byte pad, int length)
{
int i;
int compareSum = 0;
for (i = 0; i < length; i++) {
compareSum |= a[i] ^ pad;
}
return compareSum;
}
/* Mask the padding bytes with the expected values.
* Constant time implementation - does maximum pad size possible.
*
* data Message data.
* sz Size of the message including MAC and padding and padding length.
* macSz Size of the MAC.
* returns 0 on success, otherwise failure.
*/
static byte MaskPadding(const byte* data, int sz, int macSz)
{
int i;
int checkSz = sz - 1;
byte paddingSz = data[sz - 1];
byte good = ctMaskGT(paddingSz, sz - 1 - macSz);
if (checkSz > TLS_MAX_PAD_SZ)
checkSz = TLS_MAX_PAD_SZ;
for (i = 0; i < checkSz; i++) {
byte mask = ctMaskLTE(i, paddingSz);
good |= mask & (data[sz - 1 - i] ^ paddingSz);
}
return good;
}
/* Mask the MAC in the message with the MAC calculated.
* Constant time implementation - starts looking for MAC where maximum padding
* size has it.
*
* data Message data.
* sz Size of the message including MAC and padding and padding length.
* macSz Size of the MAC data.
* expMac Expected MAC value.
* returns 0 on success, otherwise failure.
*/
static byte MaskMac(const byte* data, int sz, int macSz, byte* expMac)
{
int i, j;
unsigned char mac[WC_MAX_DIGEST_SIZE];
int scanStart = sz - 1 - TLS_MAX_PAD_SZ - macSz;
int macEnd = sz - 1 - data[sz - 1];
int macStart = macEnd - macSz;
int r = 0;
unsigned char started, notEnded;
unsigned char good = 0;
scanStart &= ctMaskIntGTE(scanStart, 0);
macStart &= ctMaskIntGTE(macStart, 0);
/* Div on Intel has different speeds depending on value.
* Use a bitwise AND or mod a specific value (converted to mul). */
if ((macSz & (macSz - 1)) == 0)
r = (macSz - (scanStart - macStart)) & (macSz - 1);
#ifndef NO_SHA
else if (macSz == WC_SHA_DIGEST_SIZE)
r = (macSz - (scanStart - macStart)) % WC_SHA_DIGEST_SIZE;
#endif
#ifdef WOLFSSL_SHA384
else if (macSz == WC_SHA384_DIGEST_SIZE)
r = (macSz - (scanStart - macStart)) % WC_SHA384_DIGEST_SIZE;
#endif
XMEMSET(mac, 0, macSz);
for (i = scanStart; i < sz; i += macSz) {
for (j = 0; j < macSz && j + i < sz; j++) {
started = ctMaskGTE(i + j, macStart);
notEnded = ctMaskLT(i + j, macEnd);
mac[j] |= started & notEnded & data[i + j];
}
}
if ((macSz & (macSz - 1)) == 0) {
for (i = 0; i < macSz; i++)
good |= expMac[i] ^ mac[(i + r) & (macSz - 1)];
}
#ifndef NO_SHA
else if (macSz == WC_SHA_DIGEST_SIZE) {
for (i = 0; i < macSz; i++)
good |= expMac[i] ^ mac[(i + r) % WC_SHA_DIGEST_SIZE];
}
#endif
#ifdef WOLFSSL_SHA384
else if (macSz == WC_SHA384_DIGEST_SIZE) {
for (i = 0; i < macSz; i++)
good |= expMac[i] ^ mac[(i + r) % WC_SHA384_DIGEST_SIZE];
}
#endif
return good;
}
/* timing resistant pad/verify check, return 0 on success */
int TimingPadVerify(WOLFSSL* ssl, const byte* input, int padLen, int macSz,
int pLen, int content)
{
byte verify[WC_MAX_DIGEST_SIZE];
byte good;
int ret = 0;
good = MaskPadding(input, pLen, macSz);
/* 4th argument has potential to underflow, ssl->hmac function should
* either increment the size by (macSz + padLen + 1) before use or check on
* the size to make sure is valid. */
ret = ssl->hmac(ssl, verify, input, pLen - macSz - padLen - 1, padLen,
content, 1, PEER_ORDER);
good |= MaskMac(input, pLen, ssl->specs.hash_size, verify);
/* Non-zero on failure. */
good = (byte)~(word32)good;
good &= good >> 4;
good &= good >> 2;
good &= good >> 1;
/* Make ret negative on masking failure. */
ret -= 1 - good;
/* Treat any failure as verify MAC error. */
if (ret != 0) {
ret = VERIFY_MAC_ERROR;
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 && !WOLFSSL_AEAD_ONLY */
#endif /* WOLSSL_OLD_TIMINGPADVERIFY */
#endif /* WOLFSSL_AEAD_ONLY */
int DoApplicationData(WOLFSSL* ssl, byte* input, word32* inOutIdx, int sniff)
{
word32 msgSz = WOLFSSL_IS_QUIC(ssl)? ssl->curSize : ssl->keys.encryptSz;
word32 idx = *inOutIdx;
int dataSz;
int ivExtra = 0;
byte* rawData = input + idx; /* keep current for hmac */
#ifdef HAVE_LIBZ
byte decomp[MAX_RECORD_SIZE + MAX_COMP_EXTRA];
#endif
#ifdef WOLFSSL_EARLY_DATA
if (ssl->options.tls1_3 && ssl->options.handShakeDone == 0) {
int process = 0;
if (ssl->options.side == WOLFSSL_SERVER_END) {
if ((ssl->earlyData != no_early_data) &&
(ssl->options.clientState == CLIENT_HELLO_COMPLETE)) {
process = 1;
}
if (!process) {
WOLFSSL_MSG("Ignoring EarlyData!");
*inOutIdx += ssl->curSize;
if (*inOutIdx > ssl->buffers.inputBuffer.length)
return BUFFER_E;
return 0;
}
}
if (!process) {
WOLFSSL_MSG("Received App data before a handshake completed");
if (sniff == NO_SNIFF) {
SendAlert(ssl, alert_fatal, unexpected_message);
}
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
}
else
#endif
if (ssl->options.handShakeDone == 0) {
WOLFSSL_MSG("Received App data before a handshake completed");
if (sniff == NO_SNIFF) {
SendAlert(ssl, alert_fatal, unexpected_message);
}
WOLFSSL_ERROR_VERBOSE(OUT_OF_ORDER_E);
return OUT_OF_ORDER_E;
}
#if defined(WOLFSSL_DTLS13) && !defined(WOLFSSL_TLS13_IGNORE_AEAD_LIMITS)
/* Check if we want to invalidate old epochs. If
* ssl->dtls13InvalidateBefore is set then we want to mark all old
* epochs as encrypt only. This is done when we detect too many failed
* decryptions. We do this here to confirm that the peer has updated its
* keys and we can stop using the old keys. */
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
if (!w64IsZero(ssl->dtls13InvalidateBefore) &&
w64Equal(ssl->keys.curEpoch64, ssl->dtls13InvalidateBefore)) {
Dtls13SetOlderEpochSide(ssl, ssl->dtls13InvalidateBefore,
ENCRYPT_SIDE_ONLY);
w64Zero(&ssl->dtls13InvalidateBefore);
}
}
#endif
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type == block) {
if (ssl->options.tls1_1)
ivExtra = ssl->specs.block_size;
}
else
#endif
if (ssl->specs.cipher_type == aead) {
if (CipherHasExpIV(ssl))
ivExtra = AESGCM_EXP_IV_SZ;
}
dataSz = msgSz - ivExtra - ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
dataSz -= MacSize(ssl);
#endif
if (dataSz < 0) {
WOLFSSL_MSG("App data buffer error, malicious input?");
if (sniff == NO_SNIFF) {
SendAlert(ssl, alert_fatal, unexpected_message);
}
WOLFSSL_ERROR_VERBOSE(BUFFER_ERROR);
return BUFFER_ERROR;
}
#ifdef WOLFSSL_EARLY_DATA
if (ssl->options.side == WOLFSSL_SERVER_END &&
ssl->earlyData > early_data_ext) {
if (ssl->earlyDataSz + dataSz > ssl->options.maxEarlyDataSz) {
if (sniff == NO_SNIFF) {
SendAlert(ssl, alert_fatal, unexpected_message);
}
return WOLFSSL_FATAL_ERROR;
}
ssl->earlyDataSz += dataSz;
}
#endif
/* read data */
if (dataSz) {
int rawSz = dataSz; /* keep raw size for idx adjustment */
#ifdef HAVE_LIBZ
if (ssl->options.usingCompression) {
dataSz = myDeCompress(ssl, rawData, dataSz, decomp, sizeof(decomp));
if (dataSz < 0) return dataSz;
}
#endif
idx += rawSz;
ssl->buffers.clearOutputBuffer.buffer = rawData;
ssl->buffers.clearOutputBuffer.length = dataSz;
}
idx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
idx += MacSize(ssl);
#endif
#ifdef HAVE_LIBZ
/* decompress could be bigger, overwrite after verify */
if (ssl->options.usingCompression)
XMEMMOVE(rawData, decomp, dataSz);
#endif
*inOutIdx = idx;
#ifdef WOLFSSL_DTLS13
if (ssl->options.connectState == WAIT_FINISHED_ACK) {
/* DTLS 1.3 is waiting for an ACK but we can still return app data. */
return APP_DATA_READY;
}
#endif
#ifdef HAVE_SECURE_RENEGOTIATION
if (IsSCR(ssl)) {
/* If we are in a secure renegotiation then APP DATA is treated
* differently */
return APP_DATA_READY;
}
#endif
return 0;
}
const char* AlertTypeToString(int type)
{
switch (type) {
case close_notify:
{
static const char close_notify_str[] =
"close_notify";
return close_notify_str;
}
case unexpected_message:
{
static const char unexpected_message_str[] =
"unexpected_message";
return unexpected_message_str;
}
case bad_record_mac:
{
static const char bad_record_mac_str[] =
"bad_record_mac";
return bad_record_mac_str;
}
case record_overflow:
{
static const char record_overflow_str[] =
"record_overflow";
return record_overflow_str;
}
case decompression_failure:
{
static const char decompression_failure_str[] =
"decompression_failure";
return decompression_failure_str;
}
case handshake_failure:
{
static const char handshake_failure_str[] =
"handshake_failure";
return handshake_failure_str;
}
case no_certificate:
{
static const char no_certificate_str[] =
"no_certificate";
return no_certificate_str;
}
case bad_certificate:
{
static const char bad_certificate_str[] =
"bad_certificate";
return bad_certificate_str;
}
case unsupported_certificate:
{
static const char unsupported_certificate_str[] =
"unsupported_certificate";
return unsupported_certificate_str;
}
case certificate_revoked:
{
static const char certificate_revoked_str[] =
"certificate_revoked";
return certificate_revoked_str;
}
case certificate_expired:
{
static const char certificate_expired_str[] =
"certificate_expired";
return certificate_expired_str;
}
case certificate_unknown:
{
static const char certificate_unknown_str[] =
"certificate_unknown";
return certificate_unknown_str;
}
case illegal_parameter:
{
static const char illegal_parameter_str[] =
"illegal_parameter";
return illegal_parameter_str;
}
case unknown_ca:
{
static const char unknown_ca_str[] =
"unknown_ca";
return unknown_ca_str;
}
case access_denied:
{
static const char access_denied_str[] =
"access_denied";
return access_denied_str;
}
case decode_error:
{
static const char decode_error_str[] =
"decode_error";
return decode_error_str;
}
case decrypt_error:
{
static const char decrypt_error_str[] =
"decrypt_error";
return decrypt_error_str;
}
case wolfssl_alert_protocol_version:
{
static const char protocol_version_str[] =
"protocol_version";
return protocol_version_str;
}
case insufficient_security:
{
static const char insufficient_security_str[] =
"insufficient_security";
return insufficient_security_str;
}
case internal_error:
{
static const char internal_error_str[] =
"internal_error";
return internal_error_str;
}
case user_canceled:
{
static const char user_canceled_str[] =
"user_canceled";
return user_canceled_str;
}
case no_renegotiation:
{
static const char no_renegotiation_str[] =
"no_renegotiation";
return no_renegotiation_str;
}
case unrecognized_name:
{
static const char unrecognized_name_str[] =
"unrecognized_name";
return unrecognized_name_str;
}
case bad_certificate_status_response:
{
static const char bad_certificate_status_response_str[] =
"bad_certificate_status_response";
return bad_certificate_status_response_str;
}
case no_application_protocol:
{
static const char no_application_protocol_str[] =
"no_application_protocol";
return no_application_protocol_str;
}
default:
WOLFSSL_MSG("Unknown Alert");
return NULL;
}
}
static void LogAlert(int type)
{
#ifdef DEBUG_WOLFSSL
const char* typeStr;
typeStr = AlertTypeToString(type);
if (typeStr != NULL) {
char buff[60];
XSNPRINTF(buff, sizeof(buff), "Alert type: %s", typeStr);
WOLFSSL_MSG(buff);
}
#else
(void)type;
#endif /* DEBUG_WOLFSSL */
}
/* process alert, return level */
static int DoAlert(WOLFSSL* ssl, byte* input, word32* inOutIdx, int* type)
{
byte level;
byte code;
word32 dataSz = (word32)ssl->curSize;
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "Alert");
if (ssl->toInfoOn) {
/* add record header back on to info + alert bytes level/code */
int ret = AddPacketInfo(ssl, "Alert", alert, input + *inOutIdx,
ALERT_SIZE, READ_PROTO, RECORD_HEADER_SZ, ssl->heap);
if (ret != 0)
return ret;
#ifdef WOLFSSL_CALLBACKS
AddLateRecordHeader(&ssl->curRL, &ssl->timeoutInfo);
#endif
}
#endif
if (IsEncryptionOn(ssl, 0)) {
int ivExtra = 0;
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type == block) {
if (ssl->options.tls1_1)
ivExtra = ssl->specs.block_size;
}
else
#endif
if (ssl->specs.cipher_type == aead) {
if (CipherHasExpIV(ssl))
ivExtra = AESGCM_EXP_IV_SZ;
}
dataSz -= ivExtra;
dataSz -= ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
dataSz -= MacSize(ssl);
#endif
}
/* make sure can read the message */
if (dataSz != ALERT_SIZE) {
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, unexpected_message);
#endif
return BUFFER_E;
}
level = input[(*inOutIdx)++];
code = input[(*inOutIdx)++];
ssl->alert_history.last_rx.code = code;
ssl->alert_history.last_rx.level = level;
*type = code;
if (level == alert_fatal) {
ssl->options.isClosed = 1; /* Don't send close_notify */
}
if (++ssl->options.alertCount >= WOLFSSL_ALERT_COUNT_MAX) {
WOLFSSL_MSG("Alert count exceeded");
#ifdef WOLFSSL_EXTRA_ALERTS
if (level != alert_warning || code != close_notify)
SendAlert(ssl, alert_fatal, unexpected_message);
#endif
WOLFSSL_ERROR_VERBOSE(ALERT_COUNT_E);
return ALERT_COUNT_E;
}
LogAlert(*type);
if (*type == close_notify) {
ssl->options.closeNotify = 1;
}
else {
/*
* A close_notify alert doesn't mean there's been an error, so we only
* add other types of alerts to the error queue
*/
WOLFSSL_ERROR(*type);
}
if (IsEncryptionOn(ssl, 0)) {
*inOutIdx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
*inOutIdx += MacSize(ssl);
#endif
}
return level;
}
static int GetInputData(WOLFSSL *ssl, word32 size)
{
int inSz;
int maxLength;
int usedLength;
int dtlsExtra = 0;
/* check max input length */
usedLength = ssl->buffers.inputBuffer.length - ssl->buffers.inputBuffer.idx;
maxLength = ssl->buffers.inputBuffer.bufferSize - usedLength;
inSz = (int)(size - usedLength); /* from last partial read */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls && IsDtlsNotSctpMode(ssl)) {
/* Add DTLS_MTU_ADDITIONAL_READ_BUFFER bytes so that we can operate with
* slight difference in set MTU size on each peer */
#ifdef WOLFSSL_DTLS_MTU
inSz = (word32)ssl->dtlsMtuSz + DTLS_MTU_ADDITIONAL_READ_BUFFER;
#else
inSz = MAX_MTU + DTLS_MTU_ADDITIONAL_READ_BUFFER;
#endif
if (size < (word32)inSz)
dtlsExtra = (int)(inSz - size);
}
#endif
/* check that no lengths or size values are negative */
if (usedLength < 0 || maxLength < 0 || inSz <= 0) {
return BUFFER_ERROR;
}
if (inSz > maxLength) {
if (GrowInputBuffer(ssl, size + dtlsExtra, usedLength) < 0)
return MEMORY_E;
}
/* Put buffer data at start if not there */
if (usedLength > 0 && ssl->buffers.inputBuffer.idx != 0)
XMEMMOVE(ssl->buffers.inputBuffer.buffer,
ssl->buffers.inputBuffer.buffer + ssl->buffers.inputBuffer.idx,
usedLength);
/* remove processed data */
ssl->buffers.inputBuffer.idx = 0;
ssl->buffers.inputBuffer.length = usedLength;
/* read data from network */
do {
int in = wolfSSLReceive(ssl,
ssl->buffers.inputBuffer.buffer +
ssl->buffers.inputBuffer.length,
inSz);
if (in == WANT_READ)
return WANT_READ;
if (in < 0) {
WOLFSSL_ERROR_VERBOSE(SOCKET_ERROR_E);
return SOCKET_ERROR_E;
}
if (in > inSz) {
WOLFSSL_ERROR_VERBOSE(RECV_OVERFLOW_E);
return RECV_OVERFLOW_E;
}
ssl->buffers.inputBuffer.length += in;
inSz -= in;
} while (ssl->buffers.inputBuffer.length < size);
#ifdef WOLFSSL_DEBUG_TLS
if (ssl->buffers.inputBuffer.idx == 0) {
WOLFSSL_MSG("Data received");
WOLFSSL_BUFFER(ssl->buffers.inputBuffer.buffer,
ssl->buffers.inputBuffer.length);
}
#endif
return 0;
}
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
static WC_INLINE int VerifyMacEnc(WOLFSSL* ssl, const byte* input, word32 msgSz,
int content)
{
int ret;
#ifdef HAVE_TRUNCATED_HMAC
word32 digestSz = ssl->truncated_hmac ? (byte)TRUNCATED_HMAC_SZ
: ssl->specs.hash_size;
#else
word32 digestSz = ssl->specs.hash_size;
#endif
byte verify[WC_MAX_DIGEST_SIZE];
WOLFSSL_MSG("Verify MAC of Encrypted Data");
if (msgSz < digestSz) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
ret = ssl->hmac(ssl, verify, input, msgSz - digestSz, -1, content, 1, PEER_ORDER);
ret |= ConstantCompare(verify, input + msgSz - digestSz, digestSz);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
return 0;
}
#endif
static WC_INLINE int VerifyMac(WOLFSSL* ssl, const byte* input, word32 msgSz,
int content, word32* padSz)
{
#if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_AEAD_ONLY)
int ret;
word32 pad = 0;
word32 padByte = 0;
#ifdef HAVE_TRUNCATED_HMAC
word32 digestSz = ssl->truncated_hmac ? (byte)TRUNCATED_HMAC_SZ
: ssl->specs.hash_size;
#else
word32 digestSz = ssl->specs.hash_size;
#endif
byte verify[WC_MAX_DIGEST_SIZE];
if (ssl->specs.cipher_type == block) {
int ivExtra = 0;
if (ssl->options.tls1_1)
ivExtra = ssl->specs.block_size;
pad = *(input + msgSz - ivExtra - 1);
padByte = 1;
if (ssl->options.tls) {
#if !defined(NO_CERTS) && defined(HAVE_PK_CALLBACKS)
ret = PROTOCOLCB_UNAVAILABLE;
if(ssl->ctx->VerifyMacCb) {
void* ctx = wolfSSL_GetVerifyMacCtx(ssl);
ret = ssl->ctx->VerifyMacCb(ssl, input,
(msgSz - ivExtra) - digestSz - pad - 1,
digestSz, content, ctx);
if (ret != 0 && ret != PROTOCOLCB_UNAVAILABLE) {
return ret;
}
}
if (!ssl->ctx->VerifyMacCb || ret == PROTOCOLCB_UNAVAILABLE)
#endif
ret = TimingPadVerify(ssl, input, pad, digestSz, msgSz - ivExtra,
content);
if (ret != 0)
return ret;
}
else { /* sslv3, some implementations have bad padding, but don't
* allow bad read */
int badPadLen = 0;
byte dmy[sizeof(WOLFSSL) >= MAX_PAD_SIZE ? 1 : MAX_PAD_SIZE];
byte* dummy = sizeof(dmy) < MAX_PAD_SIZE ? (byte*) ssl : dmy;
XMEMSET(dmy, 0, sizeof(dmy));
if (pad > (msgSz - digestSz - 1)) {
WOLFSSL_MSG("Plain Len not long enough for pad/mac");
pad = 0; /* no bad read */
badPadLen = 1;
}
(void)PadCheck(dummy, (byte)pad, MAX_PAD_SIZE); /* timing only */
ret = ssl->hmac(ssl, verify, input, msgSz - digestSz - pad - 1,
pad, content, 1, PEER_ORDER);
if (ConstantCompare(verify, input + msgSz - digestSz - pad - 1,
digestSz) != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
if (ret != 0 || badPadLen) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
}
}
else if (ssl->specs.cipher_type == stream) {
ret = ssl->hmac(ssl, verify, input, msgSz - digestSz, -1, content, 1,
PEER_ORDER);
if (ConstantCompare(verify, input + msgSz - digestSz, digestSz) != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
}
#endif /* !WOLFSSL_NO_TLS12 && !WOLFSSL_AEAD_ONLY */
if (ssl->specs.cipher_type == aead) {
*padSz = ssl->specs.aead_mac_size;
}
#if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_AEAD_ONLY)
else {
*padSz = digestSz + pad + padByte;
}
#endif /* !WOLFSSL_NO_TLS12 && !WOLFSSL_AEAD_ONLY */
(void)input;
(void)msgSz;
(void)content;
return 0;
}
#ifdef WOLFSSL_DTLS
static int HandleDTLSDecryptFailed(WOLFSSL* ssl)
{
int ret = 0;
#ifdef WOLFSSL_DTLS_DROP_STATS
ssl->macDropCount++;
#endif
#if defined(WOLFSSL_DTLS13) && !defined(WOLFSSL_TLS13_IGNORE_AEAD_LIMITS)
/* Handle AEAD limits specified by the RFC for failed decryption */
if (IsAtLeastTLSv1_3(ssl->version))
ret = Dtls13CheckAEADFailLimit(ssl);
#endif
(void)ssl;
WOLFSSL_MSG("DTLS: Ignoring failed decryption");
return ret;
}
static int DtlsShouldDrop(WOLFSSL* ssl, int retcode)
{
if (ssl->options.handShakeDone && !IsEncryptionOn(ssl, 0) &&
!ssl->options.dtlsHsRetain) {
WOLFSSL_MSG("Silently dropping plaintext DTLS message "
"on established connection when we have nothing to send.");
return 1;
}
if ((ssl->options.handShakeDone && retcode != 0)
|| retcode == SEQUENCE_ERROR || retcode == DTLS_CID_ERROR) {
WOLFSSL_MSG_EX("Silently dropping DTLS message: %d", retcode);
return 1;
}
#ifdef WOLFSSL_DTLS13
if (IsAtLeastTLSv1_3(ssl->version) && !w64IsZero(ssl->dtls13Epoch)
&& w64IsZero(ssl->keys.curEpoch64) && ssl->curRL.type != ack) {
WOLFSSL_MSG("Silently dropping plaintext DTLS message "
"during encrypted handshake.");
return 1;
}
#endif /* WOLFSSL_DTLS13 */
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END
&& ssl->curRL.type != handshake && !IsSCR(ssl)) {
if (!ssl->options.dtlsStateful) {
WOLFSSL_MSG("Drop non-handshake record when not stateful");
return 1;
}
}
#endif /* NO_WOLFSSL_SERVER */
return 0;
}
#endif /* WOLFSSL_DTLS */
int ProcessReply(WOLFSSL* ssl)
{
return ProcessReplyEx(ssl, 0);
}
/* Process input requests. Return 0 is done, 1 is call again to complete, and
negative number is error. If allowSocketErr is set, SOCKET_ERROR_E in
ssl->error will be whitelisted. This is useful when the connection has been
closed and the endpoint wants to check for an alert sent by the other end. */
int ProcessReplyEx(WOLFSSL* ssl, int allowSocketErr)
{
int ret = 0, type = internal_error, readSz;
int atomicUser = 0;
#if defined(WOLFSSL_DTLS)
int used;
#endif
#ifdef ATOMIC_USER
if (ssl->ctx->DecryptVerifyCb)
atomicUser = 1;
#endif
if (ssl->error != 0 && ssl->error != WANT_READ && ssl->error != WANT_WRITE
#if defined(HAVE_SECURE_RENEGOTIATION) || defined(WOLFSSL_DTLS13)
&& ssl->error != APP_DATA_READY
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->error != WC_PENDING_E
#endif
#ifdef WOLFSSL_NONBLOCK_OCSP
&& ssl->error != OCSP_WANT_READ
#endif
&& (allowSocketErr != 1 || ssl->error != SOCKET_ERROR_E)
) {
WOLFSSL_MSG("ProcessReply retry in error state, not allowed");
return ssl->error;
}
/* If checking alert on error (allowSocketErr == 1) do not try and
* process alerts for async or ocsp non blocking */
#if defined(WOLFSSL_CHECK_ALERT_ON_ERR) && \
(defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLFSSL_NONBLOCK_OCSP))
if (allowSocketErr == 1 && \
(ssl->error == WC_PENDING_E || ssl->error == OCSP_WANT_READ)) {
return ssl->error;
}
#endif
#if defined(WOLFSSL_DTLS) && defined(WOLFSSL_ASYNC_CRYPT)
/* process any pending DTLS messages - this flow can happen with async */
if (ssl->dtls_rx_msg_list != NULL) {
word32 pendingMsg = ssl->dtls_rx_msg_list_sz;
if(IsAtLeastTLSv1_3(ssl->version)) {
#ifdef WOLFSSL_DTLS13
ret = Dtls13ProcessBufferedMessages(ssl);
#else
ret = NOT_COMPILED_IN;
#endif /* WOLFSSL_DTLS13 */
}
else {
ret = DtlsMsgDrain(ssl);
}
if (ret != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
/* we processed some messages, return so connect/accept can make
progress */
if (ssl->dtls_rx_msg_list_sz != pendingMsg)
return ret;
}
#endif
ret = RetrySendAlert(ssl);
if (ret != 0)
return ret;
for (;;) {
switch (ssl->options.processReply) {
/* in the WOLFSSL_SERVER case, get the first byte for detecting
* old client hello */
case doProcessInit:
readSz = RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
readSz = DTLS_RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS13
if (ssl->options.tls1_3) {
/* dtls1.3 unified header can be as little as 2 bytes */
readSz = DTLS_UNIFIED_HEADER_MIN_SZ;
}
#endif /* WOLFSSL_DTLS13 */
}
#endif
/* get header or return error */
if (!ssl->options.dtls) {
if ((ret = GetInputData(ssl, readSz)) < 0)
return ret;
} else {
#ifdef WOLFSSL_DTLS
/* read ahead may already have header */
used = ssl->buffers.inputBuffer.length -
ssl->buffers.inputBuffer.idx;
if (used < readSz) {
if ((ret = GetInputData(ssl, readSz)) < 0)
return ret;
}
#endif
}
#ifdef OLD_HELLO_ALLOWED
/* see if sending SSLv2 client hello */
if ( ssl->options.side == WOLFSSL_SERVER_END &&
ssl->options.clientState == NULL_STATE &&
ssl->buffers.inputBuffer.buffer[ssl->buffers.inputBuffer.idx]
!= handshake) {
byte b0, b1;
ssl->options.processReply = runProcessOldClientHello;
/* sanity checks before getting size at front */
if (ssl->buffers.inputBuffer.buffer[
ssl->buffers.inputBuffer.idx + OPAQUE16_LEN] != OLD_HELLO_ID) {
WOLFSSL_MSG("Not a valid old client hello");
WOLFSSL_ERROR_VERBOSE(PARSE_ERROR);
return PARSE_ERROR;
}
if (ssl->buffers.inputBuffer.buffer[
ssl->buffers.inputBuffer.idx + OPAQUE24_LEN] != SSLv3_MAJOR &&
ssl->buffers.inputBuffer.buffer[
ssl->buffers.inputBuffer.idx + OPAQUE24_LEN] != DTLS_MAJOR) {
WOLFSSL_MSG("Not a valid version in old client hello");
WOLFSSL_ERROR_VERBOSE(PARSE_ERROR);
return PARSE_ERROR;
}
/* how many bytes need ProcessOldClientHello */
b0 =
ssl->buffers.inputBuffer.buffer[ssl->buffers.inputBuffer.idx++];
b1 =
ssl->buffers.inputBuffer.buffer[ssl->buffers.inputBuffer.idx++];
ssl->curSize = (word16)(((b0 & 0x7f) << 8) | b1);
}
else {
ssl->options.processReply = getRecordLayerHeader;
continue;
}
FALL_THROUGH;
/* in the WOLFSSL_SERVER case, run the old client hello */
case runProcessOldClientHello:
/* get sz bytes or return error */
if (!ssl->options.dtls) {
if ((ret = GetInputData(ssl, ssl->curSize)) < 0)
return ret;
} else {
#ifdef WOLFSSL_DTLS
/* read ahead may already have */
used = ssl->buffers.inputBuffer.length -
ssl->buffers.inputBuffer.idx;
if (used < ssl->curSize)
if ((ret = GetInputData(ssl, ssl->curSize - used)) < 0)
return ret;
#endif /* WOLFSSL_DTLS */
}
ret = ProcessOldClientHello(ssl, ssl->buffers.inputBuffer.buffer,
&ssl->buffers.inputBuffer.idx,
ssl->buffers.inputBuffer.length -
ssl->buffers.inputBuffer.idx,
ssl->curSize);
if (ret < 0)
return ret;
else if (ssl->buffers.inputBuffer.idx ==
ssl->buffers.inputBuffer.length) {
ssl->options.processReply = doProcessInit;
return 0;
}
#endif /* OLD_HELLO_ALLOWED */
FALL_THROUGH;
/* get the record layer header */
case getRecordLayerHeader:
/* DTLSv1.3 record numbers in the header are encrypted, and AAD
* uses the unencrypted form. Because of this we need to modify the
* header, decrypting the numbers inside
* DtlsParseUnifiedRecordLayer(). This violates the const attribute
* of the buffer parameter of GetRecordHeader() used here. */
ret = GetRecordHeader(ssl, &ssl->buffers.inputBuffer.idx,
&ssl->curRL, &ssl->curSize);
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls && DtlsShouldDrop(ssl, ret)) {
ssl->options.processReply = doProcessInit;
ssl->buffers.inputBuffer.length = 0;
ssl->buffers.inputBuffer.idx = 0;
#ifdef WOLFSSL_DTLS_DROP_STATS
ssl->replayDropCount++;
#endif /* WOLFSSL_DTLS_DROP_STATS */
#ifdef WOLFSSL_DTLS13
/* return to send ACKS and shortcut rtx timer */
if (IsAtLeastTLSv1_3(ssl->version)
&& ssl->dtls13Rtx.sendAcks)
return 0;
#endif /* WOLFSSL_DTLS13 */
continue;
}
#endif
if (ret != 0) {
switch (ret) {
case VERSION_ERROR:
/* send alert per RFC5246 Appendix E. Backward
* Compatibility */
if (ssl->options.side == WOLFSSL_CLIENT_END)
SendAlert(ssl, alert_fatal,
wolfssl_alert_protocol_version);
break;
#ifdef HAVE_MAX_FRAGMENT
case LENGTH_ERROR:
SendAlert(ssl, alert_fatal, record_overflow);
break;
#endif /* HAVE_MAX_FRAGMENT */
default:
break;
}
return ret;
}
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version) && IsEncryptionOn(ssl, 0) &&
ssl->curRL.type != application_data &&
ssl->curRL.type != change_cipher_spec) {
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR_VERBOSE(PARSE_ERROR);
return PARSE_ERROR;
}
#endif
ssl->options.processReply = getData;
FALL_THROUGH;
/* retrieve record layer data */
case getData:
/* get sz bytes or return error */
if (!ssl->options.dtls) {
if ((ret = GetInputData(ssl, ssl->curSize)) < 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret != WANT_READ)
SendAlert(ssl, alert_fatal, bad_record_mac);
#endif
return ret;
}
}
else {
#ifdef WOLFSSL_DTLS
/* read ahead may already have */
used = ssl->buffers.inputBuffer.length -
ssl->buffers.inputBuffer.idx;
if (used < ssl->curSize)
if ((ret = GetInputData(ssl, ssl->curSize)) < 0)
return ret;
#endif
}
if (IsEncryptionOn(ssl, 0)) {
#if defined(WOLFSSL_TLS13) || defined(WOLFSSL_EXTRA_ALERTS)
int tooLong = 0;
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
tooLong = ssl->curSize > MAX_TLS13_ENC_SZ;
tooLong |= ssl->curSize - ssl->specs.aead_mac_size >
MAX_TLS13_PLAIN_SZ;
}
#endif
#ifdef WOLFSSL_EXTRA_ALERTS
if (!IsAtLeastTLSv1_3(ssl->version))
tooLong = ssl->curSize > MAX_TLS_CIPHER_SZ;
#endif
#if defined(WOLFSSL_TLS13) || defined(WOLFSSL_EXTRA_ALERTS)
if (tooLong) {
WOLFSSL_MSG("Encrypted data too long");
SendAlert(ssl, alert_fatal, record_overflow);
return BUFFER_ERROR;
}
#endif
}
ssl->keys.padSz = 0;
ssl->options.processReply = verifyEncryptedMessage;
/* in case > 1 msg per record */
ssl->curStartIdx = ssl->buffers.inputBuffer.idx;
FALL_THROUGH;
/* verify digest of encrypted message */
case verifyEncryptedMessage:
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (IsEncryptionOn(ssl, 0) && ssl->keys.decryptedCur == 0 &&
!atomicUser && ssl->options.startedETMRead) {
ret = VerifyMacEnc(ssl, ssl->buffers.inputBuffer.buffer +
ssl->buffers.inputBuffer.idx,
ssl->curSize, ssl->curRL.type);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E)
return ret;
#endif
if (ret < 0) {
WOLFSSL_MSG("VerifyMacEnc failed");
#ifdef WOLFSSL_DTLS
/* If in DTLS mode, if the decrypt fails for any
* reason, pretend the datagram never happened. */
if (ssl->options.dtls) {
ssl->options.processReply = doProcessInit;
ssl->buffers.inputBuffer.idx =
ssl->buffers.inputBuffer.length;
return HandleDTLSDecryptFailed(ssl);
}
#endif /* WOLFSSL_DTLS */
#ifdef WOLFSSL_EXTRA_ALERTS
if (!ssl->options.dtls)
SendAlert(ssl, alert_fatal, bad_record_mac);
#endif
WOLFSSL_ERROR_VERBOSE(DECRYPT_ERROR);
return DECRYPT_ERROR;
}
ssl->keys.encryptSz = ssl->curSize;
}
#endif
ssl->options.processReply = decryptMessage;
FALL_THROUGH;
/* decrypt message */
case decryptMessage:
if (IsEncryptionOn(ssl, 0) && ssl->keys.decryptedCur == 0 &&
(!IsAtLeastTLSv1_3(ssl->version) ||
ssl->curRL.type != change_cipher_spec))
{
bufferStatic* in = &ssl->buffers.inputBuffer;
ret = SanityCheckCipherText(ssl, ssl->curSize);
if (ret < 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, bad_record_mac);
#endif
return ret;
}
if (atomicUser) {
#ifdef ATOMIC_USER
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
ret = ssl->ctx->VerifyDecryptCb(ssl,
in->buffer + in->idx, in->buffer + in->idx,
ssl->curSize - MacSize(ssl),
ssl->curRL.type, 1, &ssl->keys.padSz,
ssl->DecryptVerifyCtx);
}
else
#endif
{
ret = ssl->ctx->DecryptVerifyCb(ssl,
in->buffer + in->idx,
in->buffer + in->idx,
ssl->curSize, ssl->curRL.type, 1,
&ssl->keys.padSz, ssl->DecryptVerifyCtx);
}
#endif /* ATOMIC_USER */
}
else {
if (!ssl->options.tls1_3) {
#ifndef WOLFSSL_NO_TLS12
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
word32 digestSz = MacSize(ssl);
ret = DecryptTls(ssl,
in->buffer + in->idx,
in->buffer + in->idx,
ssl->curSize - (word16)digestSz);
if (ret == 0) {
byte invalid = 0;
byte padding = (byte)-1;
word32 i;
word32 off = in->idx + ssl->curSize - digestSz - 1;
/* Last of padding bytes - indicates length. */
ssl->keys.padSz = in->buffer[off];
/* Constant time checking of padding - don't leak
* the length of the data.
*/
/* Compare max pad bytes or at most data + pad. */
for (i = 1; i < MAX_PAD_SIZE && off >= i; i++) {
/* Mask on indicates this is expected to be a
* padding byte.
*/
padding &= ctMaskLTE(i, ssl->keys.padSz);
/* When this is a padding byte and not equal
* to length then mask is set.
*/
invalid |= padding &
ctMaskNotEq(in->buffer[off - i],
ssl->keys.padSz);
}
/* If mask is set then there was an error. */
if (invalid) {
ret = DECRYPT_ERROR;
}
ssl->keys.padSz += 1;
ssl->keys.decryptedCur = 1;
}
}
else
#endif
{
ret = DecryptTls(ssl,
in->buffer + in->idx,
in->buffer + in->idx,
ssl->curSize);
}
#else
ret = DECRYPT_ERROR;
#endif
}
else
{
#ifdef WOLFSSL_TLS13
byte *aad = (byte*)&ssl->curRL;
word16 aad_size = RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls) {
/* aad now points to the record header */
aad = ssl->dtls13CurRL;
aad_size = ssl->dtls13CurRlLength;
}
#endif /* WOLFSSL_DTLS13 */
/* Don't send an alert for DTLS. We will just drop it
* silently later. */
ret = DecryptTls13(ssl,
in->buffer + in->idx,
in->buffer + in->idx,
ssl->curSize,
aad, aad_size);
#else
ret = DECRYPT_ERROR;
#endif /* WOLFSSL_TLS13 */
}
(void)in;
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E)
return ret;
#endif
if (ret >= 0) {
#ifndef WOLFSSL_NO_TLS12
/* handle success */
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->options.tls1_1 && ssl->specs.cipher_type == block)
ssl->buffers.inputBuffer.idx += ssl->specs.block_size;
#endif
/* go past TLSv1.1 IV */
if (CipherHasExpIV(ssl))
ssl->buffers.inputBuffer.idx += AESGCM_EXP_IV_SZ;
#endif
}
else {
WOLFSSL_MSG("Decrypt failed");
#ifdef WOLFSSL_DTLS
/* If in DTLS mode, if the decrypt fails for any
* reason, pretend the datagram never happened. */
if (ssl->options.dtls) {
ssl->options.processReply = doProcessInit;
ssl->buffers.inputBuffer.idx =
ssl->buffers.inputBuffer.length;
return HandleDTLSDecryptFailed(ssl);
}
#endif /* WOLFSSL_DTLS */
#ifdef WOLFSSL_EARLY_DATA
if (ssl->options.tls1_3) {
if (ssl->options.side == WOLFSSL_SERVER_END &&
ssl->earlyData != no_early_data &&
ssl->options.clientState <
CLIENT_FINISHED_COMPLETE) {
ssl->earlyDataSz += ssl->curSize;
if (ssl->earlyDataSz <=
ssl->options.maxEarlyDataSz) {
WOLFSSL_MSG("Ignoring EarlyData!");
if (ssl->keys.peer_sequence_number_lo-- == 0)
ssl->keys.peer_sequence_number_hi--;
ssl->options.processReply = doProcessInit;
ssl->buffers.inputBuffer.idx += ssl->curSize;
if (ssl->buffers.inputBuffer.idx >
ssl->buffers.inputBuffer.length) {
WOLFSSL_ERROR(BUFFER_E);
return BUFFER_E;
}
return 0;
}
WOLFSSL_MSG("Too much EarlyData!");
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR(TOO_MUCH_EARLY_DATA);
return TOO_MUCH_EARLY_DATA;
}
}
#endif
SendAlert(ssl, alert_fatal, bad_record_mac);
/* Push error once we know that we will error out here */
WOLFSSL_ERROR(ret);
return ret;
}
}
ssl->options.processReply = verifyMessage;
FALL_THROUGH;
/* verify digest of message */
case verifyMessage:
if (IsEncryptionOn(ssl, 0) && ssl->keys.decryptedCur == 0 &&
(!IsAtLeastTLSv1_3(ssl->version) ||
ssl->curRL.type != change_cipher_spec))
{
if (!atomicUser
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
&& !ssl->options.startedETMRead
#endif
) {
ret = VerifyMac(ssl, ssl->buffers.inputBuffer.buffer +
ssl->buffers.inputBuffer.idx,
ssl->curSize, ssl->curRL.type,
&ssl->keys.padSz);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E)
return ret;
#endif
if (ret < 0) {
#ifdef WOLFSSL_DTLS
/* If in DTLS mode, if the decrypt fails for any
* reason, pretend the datagram never happened. */
if (ssl->options.dtls) {
ssl->options.processReply = doProcessInit;
ssl->buffers.inputBuffer.idx =
ssl->buffers.inputBuffer.length;
return HandleDTLSDecryptFailed(ssl);
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_EXTRA_ALERTS) && !defined(WOLFSSL_NO_ETM_ALERT)
if (!ssl->options.dtls)
SendAlert(ssl, alert_fatal, bad_record_mac);
#endif
WOLFSSL_MSG("VerifyMac failed");
WOLFSSL_ERROR_VERBOSE(DECRYPT_ERROR);
return DECRYPT_ERROR;
}
}
ssl->keys.encryptSz = ssl->curSize;
ssl->keys.decryptedCur = 1;
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
/* end of plaintext */
word16 i = (word16)(ssl->buffers.inputBuffer.idx +
ssl->curSize - ssl->specs.aead_mac_size);
if (i > ssl->buffers.inputBuffer.length) {
WOLFSSL_ERROR(BUFFER_ERROR);
return BUFFER_ERROR;
}
/* Remove padding from end of plain text. */
for (--i; i > ssl->buffers.inputBuffer.idx; i--) {
if (ssl->buffers.inputBuffer.buffer[i] != 0)
break;
}
/* Get the real content type from the end of the data. */
ssl->curRL.type = ssl->buffers.inputBuffer.buffer[i];
/* consider both contentType byte and MAC as padding */
ssl->keys.padSz = ssl->buffers.inputBuffer.idx
+ ssl->curSize - i;
}
#endif
}
ssl->options.processReply = runProcessingOneRecord;
FALL_THROUGH;
/* the record layer is here */
case runProcessingOneRecord:
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls) {
if (IsAtLeastTLSv1_3(ssl->version)) {
if (!Dtls13CheckWindow(ssl)) {
/* drop packet */
WOLFSSL_MSG("Dropping DTLS record outside receiving "
"window");
ssl->options.processReply = doProcessInit;
ssl->buffers.inputBuffer.idx += ssl->curSize;
if (ssl->buffers.inputBuffer.idx >
ssl->buffers.inputBuffer.length)
return BUFFER_E;
continue;
}
/* Only update the window once we enter stateful parsing */
if (ssl->options.dtlsStateful) {
ret = Dtls13UpdateWindowRecordRecvd(ssl);
if (ret != 0) {
WOLFSSL_ERROR(ret);
return ret;
}
}
}
else if (IsDtlsNotSctpMode(ssl)) {
DtlsUpdateWindow(ssl);
}
}
#endif /* WOLFSSL_DTLS13 */
ssl->options.processReply = runProcessingOneMessage;
FALL_THROUGH;
case runProcessingOneMessage:
/* can't process a message if we have no data. */
if (ssl->buffers.inputBuffer.idx
>= ssl->buffers.inputBuffer.length) {
return BUFFER_ERROR;
}
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (IsEncryptionOn(ssl, 0) && ssl->options.startedETMRead) {
/* For TLS v1.1 the block size and explicit IV are added to idx,
* so it needs to be included in this limit check */
if ((ssl->curSize - ssl->keys.padSz -
(ssl->buffers.inputBuffer.idx - ssl->curStartIdx) -
MacSize(ssl) > MAX_PLAINTEXT_SZ)
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->buffers.inputBuffer.length !=
ssl->buffers.inputBuffer.idx
#endif
) {
WOLFSSL_MSG("Plaintext too long - Encrypt-Then-MAC");
#if defined(WOLFSSL_EXTRA_ALERTS) && !defined(WOLFSSL_NO_ETM_ALERT)
SendAlert(ssl, alert_fatal, record_overflow);
#endif
WOLFSSL_ERROR_VERBOSE(BUFFER_ERROR);
return BUFFER_ERROR;
}
}
else
#endif
/* TLS13 plaintext limit is checked earlier before decryption */
/* For TLS v1.1 the block size and explicit IV are added to idx,
* so it needs to be included in this limit check */
if (!IsAtLeastTLSv1_3(ssl->version)
&& ssl->curSize - ssl->keys.padSz -
(ssl->buffers.inputBuffer.idx - ssl->curStartIdx)
> MAX_PLAINTEXT_SZ
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->buffers.inputBuffer.length !=
ssl->buffers.inputBuffer.idx
#endif
) {
WOLFSSL_MSG("Plaintext too long");
#if defined(WOLFSSL_TLS13) || defined(WOLFSSL_EXTRA_ALERTS)
SendAlert(ssl, alert_fatal, record_overflow);
#endif
WOLFSSL_ERROR_VERBOSE(BUFFER_ERROR);
return BUFFER_ERROR;
}
WOLFSSL_MSG("received record layer msg");
switch (ssl->curRL.type) {
case handshake :
WOLFSSL_MSG("got HANDSHAKE");
/* debugging in DoHandShakeMsg */
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
if (!IsAtLeastTLSv1_3(ssl->version)) {
ret = DoDtlsHandShakeMsg(ssl,
ssl->buffers.inputBuffer.buffer,
&ssl->buffers.inputBuffer.idx,
ssl->buffers.inputBuffer.length);
if (ret == 0 || ret == WC_PENDING_E) {
/* Reset timeout as we have received a valid
* DTLS handshake message */
ssl->dtls_timeout = ssl->dtls_timeout_init;
}
else {
if (SendFatalAlertOnly(ssl, ret)
== SOCKET_ERROR_E) {
ret = SOCKET_ERROR_E;
}
}
}
#endif
#ifdef WOLFSSL_DTLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
ret = Dtls13HandshakeRecv(ssl,
ssl->buffers.inputBuffer.buffer,
&ssl->buffers.inputBuffer.idx,
ssl->buffers.inputBuffer.length);
#ifdef WOLFSSL_EARLY_DATA
if (ret == 0 &&
ssl->options.side == WOLFSSL_SERVER_END &&
ssl->earlyData > early_data_ext &&
ssl->options.handShakeState == HANDSHAKE_DONE) {
/* return so wolfSSL_read_early_data can return
exit */
ssl->earlyData = no_early_data;
ssl->options.processReply = doProcessInit;
return ZERO_RETURN;
}
#endif /* WOLFSSL_EARLY_DATA */
}
#endif /* WOLFSSL_DTLS13 */
}
else if (!IsAtLeastTLSv1_3(ssl->version)
#if defined(WOLFSSL_TLS13) && !defined(WOLFSSL_NO_TLS12)
|| !TLSv1_3_Capable(ssl)
#endif
) {
#ifndef WOLFSSL_NO_TLS12
ret = DoHandShakeMsg(ssl,
ssl->buffers.inputBuffer.buffer,
&ssl->buffers.inputBuffer.idx,
ssl->buffers.inputBuffer.length);
if (ret != 0) {
if (SendFatalAlertOnly(ssl, ret) == SOCKET_ERROR_E)
ret = SOCKET_ERROR_E;
}
#else
ret = BUFFER_ERROR;
#endif
}
else {
#ifdef WOLFSSL_TLS13
ssl->msgsReceived.got_change_cipher = 0;
ret = DoTls13HandShakeMsg(ssl,
ssl->buffers.inputBuffer.buffer,
&ssl->buffers.inputBuffer.idx,
ssl->buffers.inputBuffer.length);
#ifdef WOLFSSL_EARLY_DATA
if (ret != 0)
return ret;
if (ssl->options.side == WOLFSSL_SERVER_END &&
ssl->earlyData > early_data_ext &&
ssl->options.handShakeState == HANDSHAKE_DONE) {
ssl->earlyData = no_early_data;
ssl->options.processReply = doProcessInit;
return ZERO_RETURN;
}
#endif
#else
ret = BUFFER_ERROR;
#endif
}
if (ret != 0
/* DoDtlsHandShakeMsg can return a WANT_WRITE when
* calling DtlsMsgPoolSend. This msg is done
* processing so let's move on. */
&& (!ssl->options.dtls
|| ret != WANT_WRITE)
#ifdef WOLFSSL_ASYNC_CRYPT
/* In async case, on pending, move onto next message.
* Current message should have been DtlsMsgStore'ed and
* should be processed with DtlsMsgDrain */
&& (!ssl->options.dtls
|| ret != WC_PENDING_E)
#endif
) {
WOLFSSL_ERROR(ret);
return ret;
}
break;
case change_cipher_spec:
WOLFSSL_MSG("got CHANGE CIPHER SPEC");
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "ChangeCipher");
/* add record header back on info */
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "ChangeCipher",
change_cipher_spec,
ssl->buffers.inputBuffer.buffer +
ssl->buffers.inputBuffer.idx,
1, READ_PROTO, RECORD_HEADER_SZ, ssl->heap);
if (ret != 0)
return ret;
#ifdef WOLFSSL_CALLBACKS
AddLateRecordHeader(&ssl->curRL, &ssl->timeoutInfo);
#endif
}
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
word32 i = ssl->buffers.inputBuffer.idx;
if (ssl->options.handShakeState == HANDSHAKE_DONE) {
SendAlert(ssl, alert_fatal, unexpected_message);
WOLFSSL_ERROR_VERBOSE(UNKNOWN_RECORD_TYPE);
return UNKNOWN_RECORD_TYPE;
}
if (ssl->curSize != 1 ||
ssl->buffers.inputBuffer.buffer[i] != 1) {
SendAlert(ssl, alert_fatal, illegal_parameter);
WOLFSSL_ERROR_VERBOSE(UNKNOWN_RECORD_TYPE);
return UNKNOWN_RECORD_TYPE;
}
ssl->buffers.inputBuffer.idx++;
if (!ssl->msgsReceived.got_change_cipher) {
ssl->msgsReceived.got_change_cipher = 1;
}
else {
SendAlert(ssl, alert_fatal, illegal_parameter);
WOLFSSL_ERROR_VERBOSE(UNKNOWN_RECORD_TYPE);
return UNKNOWN_RECORD_TYPE;
}
break;
}
#endif
#ifndef WOLFSSL_NO_TLS12
if (ssl->buffers.inputBuffer.idx >=
ssl->buffers.inputBuffer.length ||
ssl->curSize < 1) {
WOLFSSL_MSG("ChangeCipher msg too short");
WOLFSSL_ERROR_VERBOSE(LENGTH_ERROR);
return LENGTH_ERROR;
}
if (ssl->buffers.inputBuffer.buffer[
ssl->buffers.inputBuffer.idx] != 1) {
WOLFSSL_MSG("ChangeCipher msg wrong value");
WOLFSSL_ERROR_VERBOSE(LENGTH_ERROR);
return LENGTH_ERROR;
}
if (IsEncryptionOn(ssl, 0) && ssl->options.handShakeDone) {
#ifdef HAVE_AEAD
if (ssl->specs.cipher_type == aead) {
if (ssl->specs.bulk_cipher_algorithm != wolfssl_chacha)
ssl->curSize -= AESGCM_EXP_IV_SZ;
ssl->buffers.inputBuffer.idx += ssl->specs.aead_mac_size;
ssl->curSize -= ssl->specs.aead_mac_size;
}
else
#endif
{
ssl->buffers.inputBuffer.idx += ssl->keys.padSz;
ssl->curSize -= (word16)ssl->keys.padSz;
ssl->curSize -= ssl->specs.iv_size;
}
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
word32 digestSz = MacSize(ssl);
ssl->buffers.inputBuffer.idx += digestSz;
ssl->curSize -= (word16)digestSz;
}
#endif
}
if (ssl->curSize != 1) {
WOLFSSL_MSG("Malicious or corrupted ChangeCipher msg");
WOLFSSL_ERROR_VERBOSE(LENGTH_ERROR);
return LENGTH_ERROR;
}
ssl->buffers.inputBuffer.idx++;
ret = SanityCheckMsgReceived(ssl, change_cipher_hs);
if (ret != 0) {
if (!ssl->options.dtls) {
return ret;
}
else {
#ifdef WOLFSSL_DTLS
/* Check for duplicate CCS message in DTLS mode.
* DTLS allows for duplicate messages, and it should be
* skipped. Also skip if out of order. */
if (ret != DUPLICATE_MSG_E && ret != OUT_OF_ORDER_E)
return ret;
/* Reset error */
ret = 0;
break;
#endif /* WOLFSSL_DTLS */
}
}
ssl->keys.encryptionOn = 1;
/* setup decrypt keys for following messages */
/* XXX This might not be what we want to do when
* receiving a CCS with multicast. We update the
* key when the application updates them. */
if ((ret = SetKeysSide(ssl, DECRYPT_SIDE_ONLY)) != 0)
return ret;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
ssl->options.startedETMRead = ssl->options.encThenMac;
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
WOLFSSL_DTLS_PEERSEQ* peerSeq = ssl->keys.peerSeq;
#ifdef WOLFSSL_MULTICAST
if (ssl->options.haveMcast) {
peerSeq += ssl->keys.curPeerId;
peerSeq->highwaterMark = UpdateHighwaterMark(0,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
#endif
peerSeq->nextEpoch++;
peerSeq->prevSeq_lo = peerSeq->nextSeq_lo;
peerSeq->prevSeq_hi = peerSeq->nextSeq_hi;
peerSeq->nextSeq_lo = 0;
peerSeq->nextSeq_hi = 0;
XMEMCPY(peerSeq->prevWindow, peerSeq->window,
DTLS_SEQ_SZ);
XMEMSET(peerSeq->window, 0, DTLS_SEQ_SZ);
}
#endif
#ifdef HAVE_LIBZ
if (ssl->options.usingCompression)
if ( (ret = InitStreams(ssl)) != 0)
return ret;
#endif
ret = BuildFinished(ssl, &ssl->hsHashes->verifyHashes,
ssl->options.side == WOLFSSL_CLIENT_END ?
kTlsServerStr : kTlsClientStr);
if (ret != 0)
return ret;
#endif /* !WOLFSSL_NO_TLS12 */
break;
case application_data:
WOLFSSL_MSG("got app DATA");
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls && ssl->options.dtlsHsRetain) {
#ifdef HAVE_SECURE_RENEGOTIATION
/*
* Only free HS resources when not in the process of a
* secure renegotiation and we have received APP DATA
* from the current epoch
*/
if (!IsSCR(ssl) && (DtlsUseSCRKeys(ssl)
|| !DtlsSCRKeysSet(ssl))) {
FreeHandshakeResources(ssl);
ssl->options.dtlsHsRetain = 0;
}
#else
FreeHandshakeResources(ssl);
ssl->options.dtlsHsRetain = 0;
#endif
}
#endif
#ifdef WOLFSSL_TLS13
if (ssl->keys.keyUpdateRespond) {
WOLFSSL_MSG("No KeyUpdate from peer seen");
WOLFSSL_ERROR_VERBOSE(SANITY_MSG_E);
return SANITY_MSG_E;
}
#endif
if ((ret = DoApplicationData(ssl,
ssl->buffers.inputBuffer.buffer,
&ssl->buffers.inputBuffer.idx,
NO_SNIFF)) != 0) {
WOLFSSL_ERROR(ret);
#if defined(WOLFSSL_DTLS13) || \
defined(HAVE_SECURE_RENEGOTIATION)
/* Not really an error. We will return after cleaning
* up the processReply state. */
if (ret != APP_DATA_READY)
#endif
return ret;
}
break;
case alert:
WOLFSSL_MSG("got ALERT!");
ret = DoAlert(ssl, ssl->buffers.inputBuffer.buffer,
&ssl->buffers.inputBuffer.idx, &type);
if (ret == alert_fatal)
return FATAL_ERROR;
else if (ret < 0)
return ret;
/* catch warnings that are handled as errors */
if (type == close_notify) {
ssl->buffers.inputBuffer.idx =
ssl->buffers.inputBuffer.length;
ssl->options.processReply = doProcessInit;
return ssl->error = ZERO_RETURN;
}
if (type == decrypt_error)
return FATAL_ERROR;
/* Reset error if we got an alert level in ret */
if (ret > 0)
ret = 0;
break;
#ifdef WOLFSSL_DTLS13
case ack:
WOLFSSL_MSG("got ACK");
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
word32 processedSize = 0;
ret = DoDtls13Ack(ssl, ssl->buffers.inputBuffer.buffer +
ssl->buffers.inputBuffer.idx,
ssl->buffers.inputBuffer.length -
ssl->buffers.inputBuffer.idx -
ssl->keys.padSz, &processedSize);
ssl->buffers.inputBuffer.idx += processedSize;
ssl->buffers.inputBuffer.idx += ssl->keys.padSz;
if (ret != 0)
return ret;
break;
}
FALL_THROUGH;
#endif /* WOLFSSL_DTLS13 */
default:
WOLFSSL_ERROR(UNKNOWN_RECORD_TYPE);
return UNKNOWN_RECORD_TYPE;
}
ssl->options.processReply = doProcessInit;
/* input exhausted */
if (ssl->buffers.inputBuffer.idx >= ssl->buffers.inputBuffer.length
#ifdef WOLFSSL_DTLS
|| (ssl->options.dtls &&
/* If app data was processed then return now to avoid
* dropping any app data. */
(ssl->curRL.type == application_data ||
/* client: if we processed a finished message, return to
* allow higher layers to establish the crypto
* parameters of the connection. The remaining data
* may be app data that we would drop without the
* crypto setup. */
(ssl->options.side == WOLFSSL_CLIENT_END &&
ssl->options.serverState == SERVER_FINISHED_COMPLETE &&
ssl->options.handShakeState != HANDSHAKE_DONE)))
#endif
) {
/* Shrink input buffer when we successfully finish record
* processing */
if ((ret == 0) && ssl->buffers.inputBuffer.dynamicFlag)
ShrinkInputBuffer(ssl, NO_FORCED_FREE);
return ret;
}
/* more messages per record */
else if ((ssl->buffers.inputBuffer.idx - ssl->curStartIdx)
< ssl->curSize) {
WOLFSSL_MSG("More messages in record");
ssl->options.processReply = runProcessingOneMessage;
if (IsEncryptionOn(ssl, 0)) {
WOLFSSL_MSG("Bundled encrypted messages, remove middle pad");
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead) {
word32 digestSz = MacSize(ssl);
if (ssl->buffers.inputBuffer.idx >=
ssl->keys.padSz + digestSz) {
ssl->buffers.inputBuffer.idx -=
ssl->keys.padSz + digestSz;
}
else {
WOLFSSL_MSG("\tmiddle padding error");
WOLFSSL_ERROR_VERBOSE(FATAL_ERROR);
return FATAL_ERROR;
}
}
else
#endif
{
if (ssl->buffers.inputBuffer.idx >= ssl->keys.padSz) {
ssl->buffers.inputBuffer.idx -= ssl->keys.padSz;
}
else {
WOLFSSL_MSG("\tmiddle padding error");
WOLFSSL_ERROR_VERBOSE(FATAL_ERROR);
return FATAL_ERROR;
}
}
}
}
/* more records */
else {
WOLFSSL_MSG("More records in input");
}
#ifdef WOLFSSL_ASYNC_CRYPT
/* We are setup to read next message/record but we had an error
* (probably WC_PENDING_E) so return that so it can be handled
* by higher layers. */
if (ret != 0)
return ret;
#endif
#if defined(WOLFSSL_DTLS13) || defined(HAVE_SECURE_RENEGOTIATION)
/* Signal to user that we have application data ready to read */
if (ret == APP_DATA_READY)
return ret;
#endif
/* It is safe to shrink the input buffer here now. local vars will
* be reset to the new starting value. */
if (ret == 0 && ssl->buffers.inputBuffer.dynamicFlag)
ShrinkInputBuffer(ssl, NO_FORCED_FREE);
continue;
default:
WOLFSSL_MSG("Bad process input state, programming error");
WOLFSSL_ERROR_VERBOSE(INPUT_CASE_ERROR);
return INPUT_CASE_ERROR;
}
}
}
#if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS) || \
(defined(WOLFSSL_TLS13) && defined(WOLFSSL_TLS13_MIDDLEBOX_COMPAT))
int SendChangeCipher(WOLFSSL* ssl)
{
byte *output;
int sendSz = RECORD_HEADER_SZ + ENUM_LEN;
int idx = RECORD_HEADER_SZ;
int ret;
#ifdef OPENSSL_EXTRA
ssl->cbmode = SSL_CB_MODE_WRITE;
if (ssl->options.side == WOLFSSL_SERVER_END){
ssl->options.serverState = SERVER_CHANGECIPHERSPEC_COMPLETE;
if (ssl->CBIS != NULL)
ssl->CBIS(ssl, SSL_CB_ACCEPT_LOOP, WOLFSSL_SUCCESS);
}
else{
ssl->options.clientState =
CLIENT_CHANGECIPHERSPEC_COMPLETE;
if (ssl->CBIS != NULL)
ssl->CBIS(ssl, SSL_CB_CONNECT_LOOP, WOLFSSL_SUCCESS);
}
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
sendSz += DTLS_RECORD_EXTRA;
idx += DTLS_RECORD_EXTRA;
}
#endif
/* are we in scr */
if (IsEncryptionOn(ssl, 1) && ssl->options.handShakeDone) {
sendSz += MAX_MSG_EXTRA;
}
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
AddRecordHeader(output, 1, change_cipher_spec, ssl, CUR_ORDER);
output[idx] = 1; /* turn it on */
if (IsEncryptionOn(ssl, 1) && ssl->options.handShakeDone) {
byte input[ENUM_LEN];
int inputSz = ENUM_LEN;
input[0] = 1; /* turn it on */
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, input, inputSz, change_cipher_hs)) != 0) {
return ret;
}
#endif
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
change_cipher_spec, 0, 0, 0, CUR_ORDER);
if (sendSz < 0) {
return sendSz;
}
}
#ifdef WOLFSSL_DTLS
else {
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, output, sendSz, change_cipher_hs)) != 0)
return ret;
DtlsSEQIncrement(ssl, CUR_ORDER);
}
}
#endif
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn) AddPacketName(ssl, "ChangeCipher");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "ChangeCipher", change_cipher_spec, output,
sendSz, WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->buffers.outputBuffer.length += sendSz;
#ifdef WOLFSSL_TLS13
if (!ssl->options.tls1_3)
#endif
{
/* setup encrypt keys */
if ((ret = SetKeysSide(ssl, ENCRYPT_SIDE_ONLY)) != 0)
return ret;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
ssl->options.startedETMWrite = ssl->options.encThenMac;
#endif
}
ssl->options.buildingMsg = 0;
if (ssl->options.groupMessages)
return 0;
#if defined(WOLFSSL_DTLS) && !defined(WOLFSSL_DEBUG_DTLS)
else if (ssl->options.dtls) {
/* If using DTLS, force the ChangeCipherSpec message to be in the
* same datagram as the finished message. */
return 0;
}
#endif
else
return SendBuffered(ssl);
}
#endif
#if !defined(NO_OLD_TLS) && !defined(WOLFSSL_AEAD_ONLY)
static int SSL_hmac(WOLFSSL* ssl, byte* digest, const byte* in, word32 sz,
int padLen, int content, int verify, int epochOrder)
{
byte result[WC_MAX_DIGEST_SIZE];
word32 digestSz = ssl->specs.hash_size; /* actual sizes */
word32 padSz = ssl->specs.pad_size;
int ret = 0;
wc_Md5 md5;
wc_Sha sha;
/* data */
byte seq[SEQ_SZ];
byte conLen[ENUM_LEN + LENGTH_SZ]; /* content & length */
const byte* macSecret = NULL;
(void)padLen;
#ifdef HAVE_FUZZER
if (ssl->fuzzerCb)
ssl->fuzzerCb(ssl, in, sz, FUZZ_HMAC, ssl->fuzzerCtx);
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
macSecret = wolfSSL_GetDtlsMacSecret(ssl, verify, epochOrder);
else
macSecret = wolfSSL_GetMacSecret(ssl, verify);
#else
macSecret = wolfSSL_GetMacSecret(ssl, verify);
#endif
XMEMSET(seq, 0, SEQ_SZ);
conLen[0] = (byte)content;
c16toa((word16)sz, &conLen[ENUM_LEN]);
WriteSEQ(ssl, epochOrder, seq);
if (ssl->specs.mac_algorithm == md5_mac) {
ret = wc_InitMd5_ex(&md5, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
/* inner */
ret = wc_Md5Update(&md5, macSecret, digestSz);
ret |= wc_Md5Update(&md5, PAD1, padSz);
ret |= wc_Md5Update(&md5, seq, SEQ_SZ);
ret |= wc_Md5Update(&md5, conLen, sizeof(conLen));
/* in buffer */
ret |= wc_Md5Update(&md5, in, sz);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
ret = wc_Md5Final(&md5, result);
#ifdef WOLFSSL_ASYNC_CRYPT
/* TODO: Make non-blocking */
if (ret == WC_PENDING_E) {
ret = wc_AsyncWait(ret, &md5.asyncDev, WC_ASYNC_FLAG_NONE);
}
#endif
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
/* outer */
ret = wc_Md5Update(&md5, macSecret, digestSz);
ret |= wc_Md5Update(&md5, PAD2, padSz);
ret |= wc_Md5Update(&md5, result, digestSz);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
ret = wc_Md5Final(&md5, digest);
#ifdef WOLFSSL_ASYNC_CRYPT
/* TODO: Make non-blocking */
if (ret == WC_PENDING_E) {
ret = wc_AsyncWait(ret, &md5.asyncDev, WC_ASYNC_FLAG_NONE);
}
#endif
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
wc_Md5Free(&md5);
}
else {
ret = wc_InitSha_ex(&sha, ssl->heap, ssl->devId);
if (ret != 0)
return ret;
/* inner */
ret = wc_ShaUpdate(&sha, macSecret, digestSz);
ret |= wc_ShaUpdate(&sha, PAD1, padSz);
ret |= wc_ShaUpdate(&sha, seq, SEQ_SZ);
ret |= wc_ShaUpdate(&sha, conLen, sizeof(conLen));
/* in buffer */
ret |= wc_ShaUpdate(&sha, in, sz);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
ret = wc_ShaFinal(&sha, result);
#ifdef WOLFSSL_ASYNC_CRYPT
/* TODO: Make non-blocking */
if (ret == WC_PENDING_E) {
ret = wc_AsyncWait(ret, &sha.asyncDev, WC_ASYNC_FLAG_NONE);
}
#endif
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
/* outer */
ret = wc_ShaUpdate(&sha, macSecret, digestSz);
ret |= wc_ShaUpdate(&sha, PAD2, padSz);
ret |= wc_ShaUpdate(&sha, result, digestSz);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
ret = wc_ShaFinal(&sha, digest);
#ifdef WOLFSSL_ASYNC_CRYPT
/* TODO: Make non-blocking */
if (ret == WC_PENDING_E) {
ret = wc_AsyncWait(ret, &sha.asyncDev, WC_ASYNC_FLAG_NONE);
}
#endif
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(VERIFY_MAC_ERROR);
return VERIFY_MAC_ERROR;
}
wc_ShaFree(&sha);
}
return 0;
}
#endif /* !NO_OLD_TLS && !WOLFSSL_AEAD_ONLY */
#if !defined(NO_MD5) && !defined(NO_OLD_TLS)
static int BuildMD5_CertVerify(const WOLFSSL* ssl, byte* digest)
{
int ret;
byte md5_result[WC_MD5_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
wc_Md5* md5 = (wc_Md5*)XMALLOC(sizeof(wc_Md5), ssl->heap, DYNAMIC_TYPE_HASHCTX);
#else
wc_Md5 md5[1];
#endif
/* make md5 inner */
ret = wc_Md5Copy(&ssl->hsHashes->hashMd5, md5); /* Save current position */
if (ret == 0)
ret = wc_Md5Update(md5, ssl->arrays->masterSecret,SECRET_LEN);
if (ret == 0)
ret = wc_Md5Update(md5, PAD1, PAD_MD5);
if (ret == 0)
ret = wc_Md5Final(md5, md5_result);
/* make md5 outer */
if (ret == 0) {
ret = wc_InitMd5_ex(md5, ssl->heap, ssl->devId);
if (ret == 0) {
ret = wc_Md5Update(md5, ssl->arrays->masterSecret, SECRET_LEN);
if (ret == 0)
ret = wc_Md5Update(md5, PAD2, PAD_MD5);
if (ret == 0)
ret = wc_Md5Update(md5, md5_result, WC_MD5_DIGEST_SIZE);
if (ret == 0)
ret = wc_Md5Final(md5, digest);
wc_Md5Free(md5);
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(md5, ssl->heap, DYNAMIC_TYPE_HASHCTX);
#endif
return ret;
}
#endif /* !NO_MD5 && !NO_OLD_TLS */
#if !defined(NO_SHA) && (!defined(NO_OLD_TLS) || \
defined(WOLFSSL_ALLOW_TLS_SHA1))
static int BuildSHA_CertVerify(const WOLFSSL* ssl, byte* digest)
{
int ret;
byte sha_result[WC_SHA_DIGEST_SIZE];
#ifdef WOLFSSL_SMALL_STACK
wc_Sha* sha = (wc_Sha*)XMALLOC(sizeof(wc_Sha), ssl->heap, DYNAMIC_TYPE_HASHCTX);
#else
wc_Sha sha[1];
#endif
/* make sha inner */
ret = wc_ShaCopy(&ssl->hsHashes->hashSha, sha); /* Save current position */
if (ret == 0)
ret = wc_ShaUpdate(sha, ssl->arrays->masterSecret,SECRET_LEN);
if (ret == 0)
ret = wc_ShaUpdate(sha, PAD1, PAD_SHA);
if (ret == 0)
ret = wc_ShaFinal(sha, sha_result);
/* make sha outer */
if (ret == 0) {
ret = wc_InitSha_ex(sha, ssl->heap, ssl->devId);
if (ret == 0) {
ret = wc_ShaUpdate(sha, ssl->arrays->masterSecret,SECRET_LEN);
if (ret == 0)
ret = wc_ShaUpdate(sha, PAD2, PAD_SHA);
if (ret == 0)
ret = wc_ShaUpdate(sha, sha_result, WC_SHA_DIGEST_SIZE);
if (ret == 0)
ret = wc_ShaFinal(sha, digest);
wc_ShaFree(sha);
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(sha, ssl->heap, DYNAMIC_TYPE_HASHCTX);
#endif
return ret;
}
#endif /* !NO_SHA && (!NO_OLD_TLS || WOLFSSL_ALLOW_TLS_SHA1) */
int BuildCertHashes(const WOLFSSL* ssl, Hashes* hashes)
{
int ret = 0;
(void)hashes;
if (ssl->options.tls) {
#if !defined(NO_MD5) && !defined(NO_OLD_TLS)
ret = wc_Md5GetHash(&ssl->hsHashes->hashMd5, hashes->md5);
if (ret != 0)
return ret;
#endif
#if !defined(NO_SHA)
ret = wc_ShaGetHash(&ssl->hsHashes->hashSha, hashes->sha);
if (ret != 0)
return ret;
#endif
if (IsAtLeastTLSv1_2(ssl)) {
#ifndef NO_SHA256
ret = wc_Sha256GetHash(&ssl->hsHashes->hashSha256,
hashes->sha256);
if (ret != 0)
return ret;
#endif
#ifdef WOLFSSL_SHA384
ret = wc_Sha384GetHash(&ssl->hsHashes->hashSha384,
hashes->sha384);
if (ret != 0)
return ret;
#endif
#ifdef WOLFSSL_SHA512
ret = wc_Sha512GetHash(&ssl->hsHashes->hashSha512,
hashes->sha512);
if (ret != 0)
return ret;
#endif
#ifdef WOLFSSL_SM3
ret = wc_Sm3GetHash(&ssl->hsHashes->hashSm3,
hashes->sm3);
if (ret != 0)
return ret;
#endif
}
}
else {
#if !defined(NO_MD5) && !defined(NO_OLD_TLS)
ret = BuildMD5_CertVerify(ssl, hashes->md5);
if (ret != 0)
return ret;
#endif
#if !defined(NO_SHA) && (!defined(NO_OLD_TLS) || \
defined(WOLFSSL_ALLOW_TLS_SHA1))
ret = BuildSHA_CertVerify(ssl, hashes->sha);
if (ret != 0)
return ret;
#endif
}
return ret;
}
#ifndef WOLFSSL_NO_TLS12
void FreeBuildMsgArgs(WOLFSSL* ssl, BuildMsgArgs* args)
{
(void)ssl;
if (args
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->options.buildArgsSet
#endif
) {
/* only free the IV if it was dynamically allocated */
if (args->iv && (args->iv != args->staticIvBuffer)) {
XFREE(args->iv, ssl->heap, DYNAMIC_TYPE_SALT);
}
}
#ifdef WOLFSSL_ASYNC_CRYPT
ssl->options.buildArgsSet = 0;
#endif
}
#endif
/* Build SSL Message, encrypted */
int BuildMessage(WOLFSSL* ssl, byte* output, int outSz, const byte* input,
int inSz, int type, int hashOutput, int sizeOnly, int asyncOkay,
int epochOrder)
{
#ifndef WOLFSSL_NO_TLS12
int ret;
BuildMsgArgs* args;
BuildMsgArgs lcl_args;
#endif
WOLFSSL_ENTER("BuildMessage");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
/* catch mistaken sizeOnly parameter */
if (!sizeOnly && (output == NULL || input == NULL) ) {
return BAD_FUNC_ARG;
}
if (sizeOnly && (output || input) ) {
return BAD_FUNC_ARG;
}
(void)epochOrder;
#ifndef NO_TLS
#if defined(WOLFSSL_NO_TLS12) && defined(WOLFSSL_TLS13)
return BuildTls13Message(ssl, output, outSz, input, inSz, type,
hashOutput, sizeOnly, asyncOkay);
#else
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return BuildTls13Message(ssl, output, outSz, input, inSz, type,
hashOutput, sizeOnly, asyncOkay);
}
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
ret = WC_NO_PENDING_E;
if (asyncOkay) {
if (ssl->async == NULL) {
return BAD_FUNC_ARG;
}
args = &ssl->async->buildArgs;
ret = wolfSSL_AsyncPop(ssl, &ssl->options.buildMsgState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_buildmsg;
}
}
else
#endif
{
args = &lcl_args;
}
/* Reset state */
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_NO_PENDING_E)
#endif
{
ret = 0;
#ifdef WOLFSSL_ASYNC_CRYPT
ssl->options.buildArgsSet = 1;
#endif
ssl->options.buildMsgState = BUILD_MSG_BEGIN;
XMEMSET(args, 0, sizeof(BuildMsgArgs));
args->sz = RECORD_HEADER_SZ + inSz;
args->idx = RECORD_HEADER_SZ;
args->headerSz = RECORD_HEADER_SZ;
}
switch (ssl->options.buildMsgState) {
case BUILD_MSG_BEGIN:
{
#if defined(WOLFSSL_DTLS) && defined(HAVE_SECURE_RENEGOTIATION)
if (ssl->options.dtls && DtlsSCRKeysSet(ssl)) {
/* For epochs >1 the current cipher parameters are located in
* ssl->secure_renegotiation->tmp_keys. Previous cipher
* parameters and for epoch 1 use ssl->keys */
switch (epochOrder) {
case PREV_ORDER:
if (ssl->encrypt.src != KEYS) {
ssl->secure_renegotiation->cache_status =
SCR_CACHE_NULL;
if ((ret = SetKeysSide(ssl, ENCRYPT_SIDE_ONLY)) != 0)
ERROR_OUT(ret, exit_buildmsg);
}
break;
case CUR_ORDER:
if (ssl->keys.dtls_epoch ==
ssl->secure_renegotiation->tmp_keys.dtls_epoch) {
if (ssl->encrypt.src != SCR) {
ssl->secure_renegotiation->cache_status =
SCR_CACHE_NEEDED;
if ((ret = SetKeysSide(ssl, ENCRYPT_SIDE_ONLY))
!= 0)
ERROR_OUT(ret, exit_buildmsg);
}
}
else {
if (ssl->encrypt.src != KEYS) {
ssl->secure_renegotiation->cache_status =
SCR_CACHE_NULL;
if ((ret = SetKeysSide(ssl, ENCRYPT_SIDE_ONLY))
!= 0)
ERROR_OUT(ret, exit_buildmsg);
}
}
break;
default:
WOLFSSL_MSG("BuildMessage only supports PREV_ORDER and "
"CUR_ORDER");
ERROR_OUT(BAD_FUNC_ARG, exit_buildmsg);
}
}
#endif
ssl->options.buildMsgState = BUILD_MSG_SIZE;
}
FALL_THROUGH;
case BUILD_MSG_SIZE:
{
args->digestSz = ssl->specs.hash_size;
#ifdef HAVE_TRUNCATED_HMAC
if (ssl->truncated_hmac)
args->digestSz = min(TRUNCATED_HMAC_SZ, args->digestSz);
#endif
args->sz += args->digestSz;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
args->sz += DTLS_RECORD_EXTRA;
args->idx += DTLS_RECORD_EXTRA;
args->headerSz += DTLS_RECORD_EXTRA;
}
#endif
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type == block) {
word32 blockSz = ssl->specs.block_size;
if (blockSz == 0) {
WOLFSSL_MSG("Invalid block size with block cipher type");
ERROR_OUT(BAD_STATE_E, exit_buildmsg);
}
if (ssl->options.tls1_1) {
args->ivSz = blockSz;
args->sz += args->ivSz;
if (args->ivSz > MAX_IV_SZ)
ERROR_OUT(BUFFER_E, exit_buildmsg);
}
args->sz += 1; /* pad byte */
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMWrite) {
args->pad = (args->sz - args->headerSz -
args->digestSz) % blockSz;
}
else
#endif
{
args->pad = (args->sz - args->headerSz) % blockSz;
}
if (args->pad != 0)
args->pad = blockSz - args->pad;
args->sz += args->pad;
}
#endif /* WOLFSSL_AEAD_ONLY */
#ifdef HAVE_AEAD
if (ssl->specs.cipher_type == aead) {
if (ssl->specs.bulk_cipher_algorithm != wolfssl_chacha)
args->ivSz = AESGCM_EXP_IV_SZ;
args->sz += (args->ivSz + ssl->specs.aead_mac_size - args->digestSz);
}
#endif
/* done with size calculations */
if (sizeOnly)
goto exit_buildmsg;
if (args->sz > (word32)outSz) {
WOLFSSL_MSG("Oops, want to write past output buffer size");
ERROR_OUT(BUFFER_E, exit_buildmsg);
}
if (args->ivSz > 0) {
if (args->ivSz > sizeof(args->staticIvBuffer)) {
args->iv = (byte*)XMALLOC(args->ivSz, ssl->heap,
DYNAMIC_TYPE_SALT);
if (args->iv == NULL) {
ERROR_OUT(MEMORY_E, exit_buildmsg);
}
}
else {
args->iv = args->staticIvBuffer;
}
ret = wc_RNG_GenerateBlock(ssl->rng, args->iv, args->ivSz);
if (ret != 0)
goto exit_buildmsg;
}
#if !defined(NO_PUBLIC_GCM_SET_IV) && \
((defined(HAVE_FIPS) || defined(HAVE_SELFTEST)) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2)) && \
defined(HAVE_AEAD))
if (ssl->specs.cipher_type == aead) {
if (ssl->specs.bulk_cipher_algorithm != wolfssl_chacha)
XMEMCPY(args->iv, ssl->keys.aead_exp_IV, AESGCM_EXP_IV_SZ);
}
#endif
args->size = (word16)(args->sz - args->headerSz); /* include mac and digest */
AddRecordHeader(output, args->size, (byte)type, ssl, epochOrder);
/* write to output */
if (args->ivSz > 0) {
XMEMCPY(output + args->idx, args->iv,
min(args->ivSz, MAX_IV_SZ));
args->idx += min(args->ivSz, MAX_IV_SZ);
}
XMEMCPY(output + args->idx, input, inSz);
args->idx += inSz;
ssl->options.buildMsgState = BUILD_MSG_HASH;
}
FALL_THROUGH;
case BUILD_MSG_HASH:
{
/* done with size calculations */
if (sizeOnly)
goto exit_buildmsg;
if (type == handshake && hashOutput) {
ret = HashOutput(ssl, output, args->headerSz + inSz, args->ivSz);
if (ret != 0)
goto exit_buildmsg;
}
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type == block) {
word32 tmpIdx;
word32 i;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMWrite)
tmpIdx = args->idx;
else
#endif
tmpIdx = args->idx + args->digestSz;
for (i = 0; i <= args->pad; i++)
output[tmpIdx++] = (byte)args->pad; /* pad byte gets pad value */
}
#endif
ssl->options.buildMsgState = BUILD_MSG_VERIFY_MAC;
}
FALL_THROUGH;
case BUILD_MSG_VERIFY_MAC:
{
/* done with size calculations */
if (sizeOnly)
goto exit_buildmsg;
/* User Record Layer Callback handling */
#ifdef ATOMIC_USER
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMWrite) {
if (ssl->ctx->EncryptMacCb) {
ret = ssl->ctx->EncryptMacCb(ssl, output + args->idx +
args->pad + 1, type, 0,
output + args->headerSz,
output + args->headerSz,
args->size - args->digestSz,
ssl->MacEncryptCtx);
goto exit_buildmsg;
}
}
else
#endif
{
if (ssl->ctx->MacEncryptCb) {
ret = ssl->ctx->MacEncryptCb(ssl, output + args->idx,
output + args->headerSz + args->ivSz, inSz,
type, 0, output + args->headerSz,
output + args->headerSz, args->size,
ssl->MacEncryptCtx);
goto exit_buildmsg;
}
}
#endif
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type != aead
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
&& !ssl->options.startedETMWrite
#endif
) {
#ifdef HAVE_TRUNCATED_HMAC
if (ssl->truncated_hmac &&
ssl->specs.hash_size > args->digestSz) {
#ifdef WOLFSSL_SMALL_STACK
byte* hmac;
#else
byte hmac[WC_MAX_DIGEST_SIZE];
#endif
#ifdef WOLFSSL_SMALL_STACK
hmac = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, ssl->heap,
DYNAMIC_TYPE_DIGEST);
if (hmac == NULL)
ERROR_OUT(MEMORY_E, exit_buildmsg);
#endif
ret = ssl->hmac(ssl, hmac,
output + args->headerSz + args->ivSz, inSz,
-1, type, 0, epochOrder);
XMEMCPY(output + args->idx, hmac, args->digestSz);
#ifdef WOLFSSL_SMALL_STACK
XFREE(hmac, ssl->heap, DYNAMIC_TYPE_DIGEST);
#endif
}
else
#endif
{
ret = ssl->hmac(ssl, output + args->idx, output +
args->headerSz + args->ivSz, inSz, -1, type, 0, epochOrder);
}
}
#endif /* WOLFSSL_AEAD_ONLY */
if (ret != 0)
goto exit_buildmsg;
ssl->options.buildMsgState = BUILD_MSG_ENCRYPT;
}
FALL_THROUGH;
case BUILD_MSG_ENCRYPT:
{
/* done with size calculations */
if (sizeOnly)
goto exit_buildmsg;
{
#if defined(HAVE_SECURE_RENEGOTIATION) && defined(WOLFSSL_DTLS)
/* If we want the PREV_ORDER then modify CUR_ORDER sequence number
* for all encryption algos that use it for encryption parameters */
word16 dtls_epoch = 0;
word16 dtls_sequence_number_hi = 0;
word32 dtls_sequence_number_lo = 0;
int swap_seq = ssl->options.dtls && epochOrder == PREV_ORDER &&
DtlsUseSCRKeys(ssl);
if (swap_seq) {
dtls_epoch = ssl->keys.dtls_epoch;
dtls_sequence_number_hi = ssl->keys.dtls_sequence_number_hi;
dtls_sequence_number_lo = ssl->keys.dtls_sequence_number_lo;
ssl->keys.dtls_epoch--;
ssl->keys.dtls_sequence_number_hi =
ssl->keys.dtls_prev_sequence_number_hi;
ssl->keys.dtls_sequence_number_lo =
ssl->keys.dtls_prev_sequence_number_lo;
}
#endif
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMWrite) {
ret = Encrypt(ssl, output + args->headerSz,
output + args->headerSz,
(word16)(args->size - args->digestSz),
asyncOkay);
}
else
#endif
{
ret = Encrypt(ssl, output + args->headerSz,
output + args->headerSz, args->size, asyncOkay);
}
#if defined(HAVE_SECURE_RENEGOTIATION) && defined(WOLFSSL_DTLS)
/* Restore sequence numbers */
if (swap_seq) {
ssl->keys.dtls_epoch = dtls_epoch;
ssl->keys.dtls_sequence_number_hi = dtls_sequence_number_hi;
ssl->keys.dtls_sequence_number_lo = dtls_sequence_number_lo;
}
#endif
}
if (ret != 0) {
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
/* Zeroize plaintext. */
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMWrite) {
ForceZero(output + args->headerSz,
(word16)(args->size - args->digestSz));
}
else
#endif
{
ForceZero(output + args->headerSz, (word16)args->size);
}
}
goto exit_buildmsg;
}
ssl->options.buildMsgState = BUILD_MSG_ENCRYPTED_VERIFY_MAC;
}
FALL_THROUGH;
case BUILD_MSG_ENCRYPTED_VERIFY_MAC:
{
/* done with size calculations */
if (sizeOnly)
goto exit_buildmsg;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMWrite) {
WOLFSSL_MSG("Calculate MAC of Encrypted Data");
#ifdef HAVE_TRUNCATED_HMAC
if (ssl->truncated_hmac &&
ssl->specs.hash_size > args->digestSz) {
#ifdef WOLFSSL_SMALL_STACK
byte* hmac = NULL;
#else
byte hmac[WC_MAX_DIGEST_SIZE];
#endif
#ifdef WOLFSSL_SMALL_STACK
hmac = (byte*)XMALLOC(WC_MAX_DIGEST_SIZE, ssl->heap,
DYNAMIC_TYPE_DIGEST);
if (hmac == NULL)
ERROR_OUT(MEMORY_E, exit_buildmsg);
#endif
ret = ssl->hmac(ssl, hmac, output + args->headerSz,
args->ivSz + inSz + args->pad + 1, -1, type,
0, epochOrder);
XMEMCPY(output + args->idx + args->pad + 1, hmac,
args->digestSz);
#ifdef WOLFSSL_SMALL_STACK
XFREE(hmac, ssl->heap, DYNAMIC_TYPE_DIGEST);
#endif
}
else
#endif
{
ret = ssl->hmac(ssl, output + args->idx + args->pad + 1,
output + args->headerSz,
args->ivSz + inSz + args->pad + 1, -1, type,
0, epochOrder);
}
}
#endif /* HAVE_ENCRYPT_THEN_MAC && !WOLFSSL_AEAD_ONLY */
}
FALL_THROUGH;
default:
break;
}
exit_buildmsg:
WOLFSSL_LEAVE("BuildMessage", ret);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
return ret;
}
#endif
/* make sure build message state is reset */
ssl->options.buildMsgState = BUILD_MSG_BEGIN;
#ifdef WOLFSSL_DTLS
if (ret == 0 && ssl->options.dtls && !sizeOnly)
DtlsSEQIncrement(ssl, epochOrder);
#endif
/* return sz on success */
if (ret == 0) {
ret = args->sz;
}
else {
WOLFSSL_ERROR_VERBOSE(ret);
}
/* Final cleanup */
FreeBuildMsgArgs(ssl, args);
return ret;
#endif /* !WOLFSSL_NO_TLS12 */
#else
(void)outSz;
(void)inSz;
(void)type;
(void)hashOutput;
(void)asyncOkay;
return NOT_COMPILED_IN;
#endif /* NO_TLS */
}
#ifndef WOLFSSL_NO_TLS12
int SendFinished(WOLFSSL* ssl)
{
int sendSz,
finishedSz = ssl->options.tls ? TLS_FINISHED_SZ :
FINISHED_SZ;
byte input[FINISHED_SZ + DTLS_HANDSHAKE_HEADER_SZ]; /* max */
byte *output;
Hashes* hashes;
int ret;
int headerSz = HANDSHAKE_HEADER_SZ;
int outputSz;
WOLFSSL_START(WC_FUNC_FINISHED_SEND);
WOLFSSL_ENTER("SendFinished");
/* check for available size */
outputSz = sizeof(input) + MAX_MSG_EXTRA;
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
if ((ret = CheckAvailableSize(ssl, outputSz)) != 0)
return ret;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
headerSz += DTLS_HANDSHAKE_EXTRA;
ssl->keys.dtls_epoch++;
ssl->keys.dtls_prev_sequence_number_hi =
ssl->keys.dtls_sequence_number_hi;
ssl->keys.dtls_prev_sequence_number_lo =
ssl->keys.dtls_sequence_number_lo;
ssl->keys.dtls_sequence_number_hi = 0;
ssl->keys.dtls_sequence_number_lo = 0;
}
#endif
/* get output buffer */
output = GetOutputBuffer(ssl);
AddHandShakeHeader(input, finishedSz, 0, finishedSz, finished, ssl);
/* make finished hashes */
hashes = (Hashes*)&input[headerSz];
ret = BuildFinished(ssl, hashes, ssl->options.side == WOLFSSL_CLIENT_END ?
kTlsClientStr : kTlsServerStr);
if (ret != 0) return ret;
#ifdef HAVE_SECURE_RENEGOTIATION
if (ssl->secure_renegotiation) {
if (ssl->options.side == WOLFSSL_CLIENT_END)
XMEMCPY(ssl->secure_renegotiation->client_verify_data, hashes,
TLS_FINISHED_SZ);
else
XMEMCPY(ssl->secure_renegotiation->server_verify_data, hashes,
TLS_FINISHED_SZ);
}
#endif
#ifdef WOLFSSL_HAVE_TLS_UNIQUE
if (ssl->options.side == WOLFSSL_CLIENT_END) {
XMEMCPY(ssl->clientFinished,
hashes, TLS_FINISHED_SZ);
ssl->clientFinished_len = TLS_FINISHED_SZ;
}
else {
XMEMCPY(ssl->serverFinished,
hashes, TLS_FINISHED_SZ);
ssl->serverFinished_len = TLS_FINISHED_SZ;
}
#endif
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, input, headerSz + finishedSz,
finished)) != 0) {
return ret;
}
}
#endif
sendSz = BuildMessage(ssl, output, outputSz, input, headerSz + finishedSz,
handshake, 1, 0, 0, CUR_ORDER);
if (sendSz < 0)
return BUILD_MSG_ERROR;
if (!ssl->options.resuming) {
SetupSession(ssl);
#ifndef NO_SESSION_CACHE
AddSession(ssl);
#endif
if (ssl->options.side == WOLFSSL_SERVER_END) {
#ifdef OPENSSL_EXTRA
ssl->options.serverState = SERVER_FINISHED_COMPLETE;
ssl->cbmode = SSL_CB_MODE_WRITE;
if (ssl->CBIS != NULL)
ssl->CBIS(ssl, SSL_CB_HANDSHAKE_DONE, WOLFSSL_SUCCESS);
#endif
ssl->options.handShakeState = HANDSHAKE_DONE;
ssl->options.handShakeDone = 1;
#ifdef HAVE_SECURE_RENEGOTIATION
ssl->options.resumed = ssl->options.resuming;
#endif
}
}
else {
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef OPENSSL_EXTRA
ssl->options.clientState = CLIENT_FINISHED_COMPLETE;
ssl->cbmode = SSL_CB_MODE_WRITE;
if (ssl->CBIS != NULL)
ssl->CBIS(ssl, SSL_CB_HANDSHAKE_DONE, WOLFSSL_SUCCESS);
#endif
ssl->options.handShakeState = HANDSHAKE_DONE;
ssl->options.handShakeDone = 1;
#ifdef HAVE_SECURE_RENEGOTIATION
ssl->options.resumed = ssl->options.resuming;
#endif
}
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn) AddPacketName(ssl, "Finished");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "Finished", handshake, output, sendSz,
WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->buffers.outputBuffer.length += sendSz;
ret = SendBuffered(ssl);
ssl->options.buildingMsg = 0;
#ifdef WOLFSSL_DTLS
if ((!ssl->options.resuming &&
ssl->options.side == WOLFSSL_SERVER_END) ||
(ssl->options.resuming &&
ssl->options.side == WOLFSSL_CLIENT_END)) {
ssl->keys.dtls_handshake_number = 0;
ssl->keys.dtls_expected_peer_handshake_number = 0;
}
#endif
WOLFSSL_LEAVE("SendFinished", ret);
WOLFSSL_END(WC_FUNC_FINISHED_SEND);
return ret;
}
#endif /* WOLFSSL_NO_TLS12 */
#ifndef NO_WOLFSSL_SERVER
#if (!defined(WOLFSSL_NO_TLS12) && \
(defined(HAVE_CERTIFICATE_STATUS_REQUEST) || \
defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2))) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_CERTIFICATE_STATUS_REQUEST))
/* Parses and decodes the certificate then initializes "request". In the case
* of !ssl->buffers.weOwnCert, ssl->ctx->certOcspRequest gets set to "request".
*
* Returns 0 on success
*/
static int CreateOcspRequest(WOLFSSL* ssl, OcspRequest* request,
DecodedCert* cert, byte* certData, word32 length)
{
int ret;
if (request != NULL)
XMEMSET(request, 0, sizeof(OcspRequest));
InitDecodedCert(cert, certData, length, ssl->heap);
/* TODO: Setup async support here */
ret = ParseCertRelative(cert, CERT_TYPE, VERIFY, SSL_CM(ssl));
if (ret != 0) {
WOLFSSL_MSG("ParseCert failed");
}
if (ret == 0)
ret = InitOcspRequest(request, cert, 0, ssl->heap);
if (ret == 0) {
/* make sure ctx OCSP request is updated */
if (!ssl->buffers.weOwnCert) {
wolfSSL_Mutex* ocspLock = &SSL_CM(ssl)->ocsp_stapling->ocspLock;
if (wc_LockMutex(ocspLock) == 0) {
if (ssl->ctx->certOcspRequest == NULL)
ssl->ctx->certOcspRequest = request;
wc_UnLockMutex(ocspLock);
}
}
}
FreeDecodedCert(cert);
return ret;
}
/* Creates OCSP response and places it in variable "response". Memory
* management for "buffer* response" is up to the caller.
*
* Also creates an OcspRequest in the case that ocspRequest is null or that
* ssl->buffers.weOwnCert is set. In those cases managing ocspRequest free'ing
* is up to the caller. NOTE: in OcspCreateRequest ssl->ctx->certOcspRequest can
* be set to point to "ocspRequest" and it then should not be free'd since
* wolfSSL_CTX_free will take care of it.
*
* Returns 0 on success
*/
int CreateOcspResponse(WOLFSSL* ssl, OcspRequest** ocspRequest,
buffer* response)
{
int ret = 0;
OcspRequest* request = NULL;
byte createdRequest = 0;
if (ssl == NULL || ocspRequest == NULL || response == NULL)
return BAD_FUNC_ARG;
XMEMSET(response, 0, sizeof(*response));
request = *ocspRequest;
/* unable to fetch status. skip. */
if (SSL_CM(ssl) == NULL || SSL_CM(ssl)->ocspStaplingEnabled == 0)
return 0;
if (request == NULL || ssl->buffers.weOwnCert) {
DerBuffer* der = ssl->buffers.certificate;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
/* unable to fetch status. skip. */
if (der->buffer == NULL || der->length == 0)
return 0;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), ssl->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
request = (OcspRequest*)XMALLOC(sizeof(OcspRequest), ssl->heap,
DYNAMIC_TYPE_OCSP_REQUEST);
if (request == NULL)
ret = MEMORY_E;
createdRequest = 1;
if (ret == 0) {
ret = CreateOcspRequest(ssl, request, cert, der->buffer,
der->length);
}
if (ret != 0) {
XFREE(request, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
request = NULL;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, ssl->heap, DYNAMIC_TYPE_DCERT);
#endif
}
if (ret == 0) {
request->ssl = ssl;
ret = CheckOcspRequest(SSL_CM(ssl)->ocsp_stapling, request, response,
ssl->heap);
/* Suppressing, not critical */
if (ret == OCSP_CERT_REVOKED ||
ret == OCSP_CERT_UNKNOWN ||
ret == OCSP_LOOKUP_FAIL) {
ret = 0;
}
}
/* free request up if error case found otherwise return it */
if (ret != 0 && createdRequest) {
FreeOcspRequest(request);
XFREE(request, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
}
if (ret == 0)
*ocspRequest = request;
return ret;
}
#endif
#endif /* !NO_WOLFSSL_SERVER */
int cipherExtraData(WOLFSSL* ssl)
{
int cipherExtra;
/* Cipher data that may be added by BuildMessage */
/* There is always an IV (expect for chacha). For AEAD ciphers,
* there is the authentication tag (aead_mac_size). For block
* ciphers we have the hash_size MAC on the message, and one
* block size for possible padding. */
if (ssl->specs.cipher_type == aead) {
cipherExtra = ssl->specs.aead_mac_size;
/* CHACHA does not have an explicit IV. */
if (ssl->specs.bulk_cipher_algorithm != wolfssl_chacha) {
cipherExtra += AESGCM_EXP_IV_SZ;
}
}
else {
cipherExtra = ssl->specs.iv_size + ssl->specs.block_size +
ssl->specs.hash_size;
}
/* Sanity check so we don't ever return negative. */
return cipherExtra > 0 ? cipherExtra : 0;
}
#ifndef WOLFSSL_NO_TLS12
#ifndef NO_CERTS
#if !defined(NO_WOLFSSL_SERVER) || !defined(WOLFSSL_NO_CLIENT_AUTH)
/* handle generation of certificate (11) */
int SendCertificate(WOLFSSL* ssl)
{
int ret = 0;
word32 certSz, certChainSz, headerSz, listSz, payloadSz;
word32 length, maxFragment;
WOLFSSL_START(WC_FUNC_CERTIFICATE_SEND);
WOLFSSL_ENTER("SendCertificate");
if (ssl->options.usingPSK_cipher || ssl->options.usingAnon_cipher) {
WOLFSSL_MSG("Not sending certificate msg. Using PSK or ANON cipher.");
return 0; /* not needed */
}
if (ssl->options.sendVerify == SEND_BLANK_CERT) {
#ifdef OPENSSL_EXTRA
if (ssl->version.major == SSLv3_MAJOR
&& ssl->version.minor == SSLv3_MINOR){
return SendAlert(ssl, alert_warning, no_certificate);
} else {
#endif
certSz = 0;
certChainSz = 0;
headerSz = CERT_HEADER_SZ;
length = CERT_HEADER_SZ;
listSz = 0;
#ifdef OPENSSL_EXTRA
}
#endif
}
else {
if (!ssl->buffers.certificate) {
WOLFSSL_MSG("Send Cert missing certificate buffer");
return BUFFER_ERROR;
}
certSz = ssl->buffers.certificate->length;
headerSz = 2 * CERT_HEADER_SZ;
/* list + cert size */
length = certSz + headerSz;
listSz = certSz + CERT_HEADER_SZ;
/* may need to send rest of chain, already has leading size(s) */
if (certSz && ssl->buffers.certChain) {
certChainSz = ssl->buffers.certChain->length;
length += certChainSz;
listSz += certChainSz;
}
else
certChainSz = 0;
}
payloadSz = length;
if (ssl->fragOffset != 0)
length -= (ssl->fragOffset + headerSz);
maxFragment = MAX_RECORD_SIZE;
maxFragment = wolfSSL_GetMaxFragSize(ssl, maxFragment);
while (length > 0 && ret == 0) {
byte* output = NULL;
word32 fragSz = 0;
word32 i = RECORD_HEADER_SZ;
int sendSz = RECORD_HEADER_SZ;
ssl->options.buildingMsg = 1;
if (!ssl->options.dtls) {
if (ssl->fragOffset == 0) {
if (headerSz + certSz + certChainSz <=
maxFragment - HANDSHAKE_HEADER_SZ) {
fragSz = headerSz + certSz + certChainSz;
}
else {
fragSz = maxFragment - HANDSHAKE_HEADER_SZ;
}
sendSz += fragSz + HANDSHAKE_HEADER_SZ;
i += HANDSHAKE_HEADER_SZ;
}
else {
fragSz = min(length, maxFragment);
sendSz += fragSz;
}
if (IsEncryptionOn(ssl, 1))
sendSz += MAX_MSG_EXTRA;
}
else {
#ifdef WOLFSSL_DTLS
fragSz = min(length, maxFragment);
sendSz += fragSz + DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_HEADER_SZ;
i += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_HEADER_SZ;
#endif
}
if (IsEncryptionOn(ssl, 1))
sendSz += cipherExtraData(ssl);
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
/* Safe to use ssl->fragOffset since it will be incremented immediately
* after this block. This block needs to be entered only once to not
* hash the cert msg twice. */
if (ssl->fragOffset == 0) {
if (!ssl->options.dtls) {
AddFragHeaders(output, fragSz, 0, payloadSz, certificate, ssl);
if (!IsEncryptionOn(ssl, 1))
HashRaw(ssl, output + RECORD_HEADER_SZ,
HANDSHAKE_HEADER_SZ);
}
else {
#ifdef WOLFSSL_DTLS
AddHeaders(output, payloadSz, certificate, ssl);
HashRaw(ssl,
output + RECORD_HEADER_SZ + DTLS_RECORD_EXTRA,
HANDSHAKE_HEADER_SZ + DTLS_HANDSHAKE_EXTRA);
/* Adding the headers increments these, decrement them for
* actual message header. */
ssl->keys.dtls_handshake_number--;
AddFragHeaders(output, fragSz, 0, payloadSz, certificate, ssl);
ssl->keys.dtls_handshake_number--;
#endif /* WOLFSSL_DTLS */
}
/* list total */
c32to24(listSz, output + i);
if (ssl->options.dtls || !IsEncryptionOn(ssl, 1))
HashRaw(ssl, output + i, CERT_HEADER_SZ);
i += CERT_HEADER_SZ;
length -= CERT_HEADER_SZ;
fragSz -= CERT_HEADER_SZ;
if (certSz) {
c32to24(certSz, output + i);
if (ssl->options.dtls || !IsEncryptionOn(ssl, 1))
HashRaw(ssl, output + i, CERT_HEADER_SZ);
i += CERT_HEADER_SZ;
length -= CERT_HEADER_SZ;
fragSz -= CERT_HEADER_SZ;
if (ssl->options.dtls || !IsEncryptionOn(ssl, 1)) {
HashRaw(ssl, ssl->buffers.certificate->buffer, certSz);
if (certChainSz)
HashRaw(ssl, ssl->buffers.certChain->buffer,
certChainSz);
}
}
}
else {
if (!ssl->options.dtls) {
AddRecordHeader(output, fragSz, handshake, ssl, CUR_ORDER);
}
else {
#ifdef WOLFSSL_DTLS
AddFragHeaders(output, fragSz, ssl->fragOffset + headerSz,
payloadSz, certificate, ssl);
ssl->keys.dtls_handshake_number--;
#endif /* WOLFSSL_DTLS */
}
}
/* member */
if (certSz && ssl->fragOffset < certSz) {
word32 copySz = min(certSz - ssl->fragOffset, fragSz);
XMEMCPY(output + i,
ssl->buffers.certificate->buffer + ssl->fragOffset, copySz);
i += copySz;
ssl->fragOffset += copySz;
length -= copySz;
fragSz -= copySz;
}
if (certChainSz && fragSz) {
word32 copySz = min(certChainSz + certSz - ssl->fragOffset, fragSz);
XMEMCPY(output + i,
ssl->buffers.certChain->buffer + ssl->fragOffset - certSz,
copySz);
i += copySz;
ssl->fragOffset += copySz;
length -= copySz;
}
if (IsEncryptionOn(ssl, 1)) {
byte* input = NULL;
int inputSz = i; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls)
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz -= recordHeaderSz;
if (inputSz < 0) {
WOLFSSL_MSG("Send Cert bad inputSz");
return BUFFER_E;
}
if (inputSz > 0) { /* clang thinks could be zero, let's help */
input = (byte*)XMALLOC(inputSz, ssl->heap,
DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
}
#ifndef WOLFSSL_DTLS
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
#else
if (!ssl->options.dtls)
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
else /* DTLS 1.2 has to ignore fragmentation in hashing so we need to
* calculate the hash ourselves above */ {
if ((ret = DtlsMsgPoolSave(ssl, input, inputSz, certificate)) != 0) {
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
return ret;
}
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 0, 0, 0, CUR_ORDER);
}
#endif
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
}
else {
sendSz = i;
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, output, sendSz, certificate)) != 0)
return ret;
}
if (ssl->options.dtls)
DtlsSEQIncrement(ssl, CUR_ORDER);
#endif
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "Certificate");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "Certificate", handshake, output, sendSz,
WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->buffers.outputBuffer.length += sendSz;
if (!ssl->options.groupMessages)
ret = SendBuffered(ssl);
}
if (ret != WANT_WRITE) {
/* Clean up the fragment offset. */
ssl->options.buildingMsg = 0;
ssl->fragOffset = 0;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
ssl->keys.dtls_handshake_number++;
#endif
if (ssl->options.side == WOLFSSL_SERVER_END){
ssl->options.serverState = SERVER_CERT_COMPLETE;
}
}
WOLFSSL_LEAVE("SendCertificate", ret);
WOLFSSL_END(WC_FUNC_CERTIFICATE_SEND);
return ret;
}
#endif /* !NO_WOLFSSL_SERVER || !WOLFSSL_NO_CLIENT_AUTH */
/* handle generation of certificate_request (13) */
int SendCertificateRequest(WOLFSSL* ssl)
{
byte *output;
int ret;
int sendSz;
word32 i = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
word32 dnLen = 0;
#ifndef WOLFSSL_NO_CA_NAMES
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names;
#endif
const Suites* suites = WOLFSSL_SUITES(ssl);
int typeTotal = 1; /* only 1 for now */
int reqSz = ENUM_LEN + typeTotal + REQ_HEADER_SZ; /* add auth later */
WOLFSSL_START(WC_FUNC_CERTIFICATE_REQUEST_SEND);
WOLFSSL_ENTER("SendCertificateRequest");
if (IsAtLeastTLSv1_2(ssl))
reqSz += LENGTH_SZ + suites->hashSigAlgoSz;
#ifndef WOLFSSL_NO_CA_NAMES
/* Certificate Authorities */
names = SSL_CA_NAMES(ssl);
while (names != NULL) {
byte seq[MAX_SEQ_SZ];
WOLFSSL_X509_NAME* name = names->data.name;
if (name != NULL) {
/* 16-bit length | SEQ | Len | DER of name */
dnLen += OPAQUE16_LEN + SetSequence(name->rawLen, seq) +
name->rawLen;
}
names = names->next;
}
reqSz += dnLen;
#endif
if (ssl->options.usingPSK_cipher || ssl->options.usingAnon_cipher)
return 0; /* not needed */
sendSz = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ + reqSz;
if (!ssl->options.dtls) {
if (IsEncryptionOn(ssl, 1))
sendSz += MAX_MSG_EXTRA;
}
else {
#ifdef WOLFSSL_DTLS
sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
i += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
#endif
}
if (IsEncryptionOn(ssl, 1))
sendSz += cipherExtraData(ssl);
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
AddHeaders(output, reqSz, certificate_request, ssl);
/* write to output */
output[i++] = (byte)typeTotal; /* # of types */
#ifdef HAVE_ECC
if ((ssl->options.cipherSuite0 == ECC_BYTE ||
ssl->options.cipherSuite0 == CHACHA_BYTE) &&
ssl->specs.sig_algo == ecc_dsa_sa_algo) {
output[i++] = ecdsa_sign;
}
else
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3) && \
(defined(WOLFSSL_SM4_CBC) || defined(WOLFSSL_SM4_GCM) || \
defined(WOLFSSL_SM4_CCM))
if (ssl->options.cipherSuite0 == SM_BYTE && (0
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
|| ssl->options.cipherSuite == TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3
|| ssl->options.cipherSuite == TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3
|| ssl->options.cipherSuite == TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3
#endif
)) {
output[i++] = ecdsa_sign;
}
else
#endif
#endif /* HAVE_ECC */
{
output[i++] = rsa_sign;
}
/* supported hash/sig */
if (IsAtLeastTLSv1_2(ssl)) {
c16toa(suites->hashSigAlgoSz, &output[i]);
i += OPAQUE16_LEN;
XMEMCPY(&output[i], suites->hashSigAlgo, suites->hashSigAlgoSz);
i += suites->hashSigAlgoSz;
}
/* Certificate Authorities */
c16toa((word16)dnLen, &output[i]); /* auth's */
i += REQ_HEADER_SZ;
#ifndef WOLFSSL_NO_CA_NAMES
names = SSL_CA_NAMES(ssl);
while (names != NULL) {
byte seq[MAX_SEQ_SZ];
WOLFSSL_X509_NAME* name = names->data.name;
if (name != NULL) {
c16toa((word16)name->rawLen +
(word16)SetSequence(name->rawLen, seq), &output[i]);
i += OPAQUE16_LEN;
i += SetSequence(name->rawLen, output + i);
XMEMCPY(output + i, name->raw, name->rawLen);
i += name->rawLen;
}
names = names->next;
}
#endif
(void)i;
if (IsEncryptionOn(ssl, 1)) {
byte* input = NULL;
int inputSz = i; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls)
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz -= recordHeaderSz;
if (inputSz <= 0) {
WOLFSSL_MSG("Send Cert Req bad inputSz");
return BUFFER_E;
}
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, input, inputSz, certificate_request)) != 0) {
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
return ret;
}
#endif
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
} else {
sendSz = i;
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, output, sendSz, certificate_request)) != 0)
return ret;
}
if (ssl->options.dtls)
DtlsSEQIncrement(ssl, CUR_ORDER);
#endif
ret = HashOutput(ssl, output, sendSz, 0);
if (ret != 0)
return ret;
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "CertificateRequest");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "CertificateRequest", handshake, output,
sendSz, WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->buffers.outputBuffer.length += sendSz;
if (ssl->options.groupMessages)
ret = 0;
else
ret = SendBuffered(ssl);
ssl->options.buildingMsg = 0;
WOLFSSL_LEAVE("SendCertificateRequest", ret);
WOLFSSL_END(WC_FUNC_CERTIFICATE_REQUEST_SEND);
return ret;
}
#ifndef NO_WOLFSSL_SERVER
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
static int BuildCertificateStatus(WOLFSSL* ssl, byte type, buffer* status,
byte count)
{
byte* output = NULL;
word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
word32 length = ENUM_LEN;
int sendSz = 0;
int ret = 0;
int i = 0;
WOLFSSL_ENTER("BuildCertificateStatus");
switch (type) {
case WOLFSSL_CSR2_OCSP_MULTI:
length += OPAQUE24_LEN;
FALL_THROUGH; /* followed by */
case WOLFSSL_CSR2_OCSP:
for (i = 0; i < count; i++)
length += OPAQUE24_LEN + status[i].length;
break;
default:
return 0;
}
sendSz = idx + length;
if (ssl->keys.encryptionOn)
sendSz += MAX_MSG_EXTRA;
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
if ((ret = CheckAvailableSize(ssl, sendSz)) == 0) {
output = GetOutputBuffer(ssl);
AddHeaders(output, length, certificate_status, ssl);
output[idx++] = type;
if (type == WOLFSSL_CSR2_OCSP_MULTI) {
c32to24(length - (ENUM_LEN + OPAQUE24_LEN), output + idx);
idx += OPAQUE24_LEN;
}
for (i = 0; i < count; i++) {
c32to24(status[i].length, output + idx);
idx += OPAQUE24_LEN;
XMEMCPY(output + idx, status[i].buffer, status[i].length);
idx += status[i].length;
}
if (IsEncryptionOn(ssl, 1)) {
byte* input;
int inputSz = idx; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls)
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz -= recordHeaderSz;
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
#ifdef WOLFSSL_DTLS
ret = DtlsMsgPoolSave(ssl, input, inputSz, certificate_status);
#endif
if (ret == 0)
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
ret = sendSz;
}
else {
#ifdef WOLFSSL_DTLS
if (ret == 0 && IsDtlsNotSctpMode(ssl))
ret = DtlsMsgPoolSave(ssl, output, sendSz, certificate_status);
if (ret == 0 && ssl->options.dtls)
DtlsSEQIncrement(ssl, CUR_ORDER);
#endif
ret = HashOutput(ssl, output, sendSz, 0);
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ret == 0 && ssl->hsInfoOn)
AddPacketName(ssl, "CertificateStatus");
if (ret == 0 && ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "CertificateStatus", handshake, output,
sendSz, WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
if (ret == 0) {
ssl->options.buildingMsg = 0;
ssl->buffers.outputBuffer.length += sendSz;
if (!ssl->options.groupMessages)
ret = SendBuffered(ssl);
}
}
WOLFSSL_LEAVE("BuildCertificateStatus", ret);
return ret;
}
#endif
#endif /* NO_WOLFSSL_SERVER */
/* handle generation of certificate_status (22) */
int SendCertificateStatus(WOLFSSL* ssl)
{
int ret = 0;
byte status_type = 0;
WOLFSSL_START(WC_FUNC_CERTIFICATE_STATUS_SEND);
WOLFSSL_ENTER("SendCertificateStatus");
(void) ssl;
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
status_type = ssl->status_request;
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
status_type = status_type ? status_type : ssl->status_request_v2;
#endif
switch (status_type) {
#ifndef NO_WOLFSSL_SERVER
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
/* case WOLFSSL_CSR_OCSP: */
case WOLFSSL_CSR2_OCSP:
{
OcspRequest* request = ssl->ctx->certOcspRequest;
buffer response;
ret = CreateOcspResponse(ssl, &request, &response);
/* if a request was successfully created and not stored in
* ssl->ctx then free it */
if (ret == 0 && request != ssl->ctx->certOcspRequest) {
FreeOcspRequest(request);
XFREE(request, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
request = NULL;
}
if (ret == 0 && response.buffer) {
ret = BuildCertificateStatus(ssl, status_type, &response, 1);
}
/* Let's not error out the connection if we can't verify our cert */
if (ret == ASN_SELF_SIGNED_E || ret == ASN_NO_SIGNER_E)
ret = 0;
if (response.buffer) {
XFREE(response.buffer, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
response.buffer = NULL;
}
break;
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
/* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
#if defined HAVE_CERTIFICATE_STATUS_REQUEST_V2
case WOLFSSL_CSR2_OCSP_MULTI:
{
OcspRequest* request = ssl->ctx->certOcspRequest;
buffer responses[1 + MAX_CHAIN_DEPTH];
int i = 0;
XMEMSET(responses, 0, sizeof(responses));
ret = CreateOcspResponse(ssl, &request, &responses[0]);
/* if a request was successfully created and not stored in
* ssl->ctx then free it */
if (ret == 0 && request != ssl->ctx->certOcspRequest) {
FreeOcspRequest(request);
XFREE(request, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
request = NULL;
}
if (ret == 0 && (!ssl->ctx->chainOcspRequest[0]
|| ssl->buffers.weOwnCertChain)) {
buffer der;
word32 idx = 0;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
DerBuffer* chain;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), ssl->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
request = (OcspRequest*)XMALLOC(sizeof(OcspRequest), ssl->heap,
DYNAMIC_TYPE_OCSP_REQUEST);
if (request == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, ssl->heap, DYNAMIC_TYPE_DCERT);
#endif
return MEMORY_E;
}
/* use certChain if available, otherwise use peer certificate */
chain = ssl->buffers.certChain;
if (chain == NULL) {
chain = ssl->buffers.certificate;
}
if (chain && chain->buffer) {
while (idx + OPAQUE24_LEN < chain->length) {
c24to32(chain->buffer + idx, &der.length);
idx += OPAQUE24_LEN;
der.buffer = chain->buffer + idx;
idx += der.length;
if (idx > chain->length)
break;
ret = CreateOcspRequest(ssl, request, cert, der.buffer,
der.length);
if (ret == 0) {
request->ssl = ssl;
ret = CheckOcspRequest(SSL_CM(ssl)->ocsp_stapling,
request, &responses[i + 1], ssl->heap);
/* Suppressing, not critical */
if (ret == OCSP_CERT_REVOKED ||
ret == OCSP_CERT_UNKNOWN ||
ret == OCSP_LOOKUP_FAIL) {
ret = 0;
}
i++;
FreeOcspRequest(request);
}
}
}
XFREE(request, ssl->heap, DYNAMIC_TYPE_OCSP_REQUEST);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, ssl->heap, DYNAMIC_TYPE_DCERT);
#endif
}
else {
while (ret == 0 &&
NULL != (request = ssl->ctx->chainOcspRequest[i])) {
request->ssl = ssl;
ret = CheckOcspRequest(SSL_CM(ssl)->ocsp_stapling,
request, &responses[++i], ssl->heap);
/* Suppressing, not critical */
if (ret == OCSP_CERT_REVOKED ||
ret == OCSP_CERT_UNKNOWN ||
ret == OCSP_LOOKUP_FAIL) {
ret = 0;
}
}
}
if (responses[0].buffer) {
if (ret == 0) {
ret = BuildCertificateStatus(ssl, status_type, responses,
(byte)i + 1);
}
for (i = 0; i < 1 + MAX_CHAIN_DEPTH; i++) {
if (responses[i].buffer) {
XFREE(responses[i].buffer, ssl->heap,
DYNAMIC_TYPE_OCSP_REQUEST);
}
}
}
/* Let's not error out the connection if we can't verify our cert */
if (ret == ASN_SELF_SIGNED_E || ret == ASN_NO_SIGNER_E)
ret = 0;
break;
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
#endif /* NO_WOLFSSL_SERVER */
default:
break;
}
WOLFSSL_LEAVE("SendCertificateStatus", ret);
WOLFSSL_END(WC_FUNC_CERTIFICATE_STATUS_SEND);
return ret;
}
#endif /* !NO_CERTS */
#endif /* WOLFSSL_NO_TLS12 */
#if defined(HAVE_SECURE_RENEGOTIATION) && defined(WOLFSSL_DTLS)
/**
* Check if the SCR keys are set in ssl->secure_renegotiation->tmp_keys.
*/
int DtlsSCRKeysSet(WOLFSSL* ssl)
{
return ssl->secure_renegotiation &&
ssl->secure_renegotiation->tmp_keys.dtls_epoch != 0;
}
/**
* ssl->keys contains the current cipher parameters only for epoch 1. For
* epochs >1 ssl->secure_renegotiation->tmp_keys contains the current
* cipher parameters. This function checks if the message currently being
* processed should use ssl->keys or ssl->secure_renegotiation->tmp_keys.
*/
int IsDtlsMsgSCRKeys(WOLFSSL* ssl)
{
return DtlsSCRKeysSet(ssl) &&
ssl->keys.curEpoch ==
ssl->secure_renegotiation->tmp_keys.dtls_epoch;
}
/**
* ssl->keys contains the current cipher parameters only for epoch 1. For
* epochs >1 ssl->secure_renegotiation->tmp_keys contains the current
* cipher parameters. This function checks if the message currently being
* built should use ssl->keys or ssl->secure_renegotiation->tmp_keys.
*/
int DtlsUseSCRKeys(WOLFSSL* ssl)
{
return DtlsSCRKeysSet(ssl) &&
ssl->secure_renegotiation->tmp_keys.dtls_epoch ==
ssl->keys.dtls_epoch;
}
/**
* If ssl->secure_renegotiation->tmp_keys.dtls_epoch > ssl->keys.dtls_epoch
* then PREV_ORDER refers to the current epoch.
* */
int DtlsCheckOrder(WOLFSSL* ssl, int order)
{
if (order == PREV_ORDER && ssl->secure_renegotiation &&
ssl->secure_renegotiation->tmp_keys.dtls_epoch > ssl->keys.dtls_epoch) {
return CUR_ORDER;
}
else {
return order;
}
}
#endif /* HAVE_SECURE_RENEGOTIATION && WOLFSSL_DTLS */
/* If secure renegotiation is disabled, this will always return false.
* Otherwise it checks to see if we are currently renegotiating. */
int IsSCR(WOLFSSL* ssl)
{
#ifndef HAVE_SECURE_RENEGOTIATION
(void)ssl;
#else /* HAVE_SECURE_RENEGOTIATION */
if (ssl->secure_renegotiation &&
ssl->secure_renegotiation->enabled && /* Is SCR enabled? */
ssl->options.handShakeDone && /* At least one handshake done? */
ssl->options.handShakeState != HANDSHAKE_DONE) /* Currently handshaking? */
return 1;
#endif /* HAVE_SECURE_RENEGOTIATION */
return 0;
}
#ifdef WOLFSSL_DTLS
static int ModifyForMTU(WOLFSSL* ssl, int buffSz, int outputSz, int mtuSz)
{
int recordExtra = outputSz - buffSz;
(void)ssl;
if (recordExtra > 0 && outputSz > mtuSz) {
buffSz = mtuSz - recordExtra;
#ifndef WOLFSSL_AEAD_ONLY
/* Subtract a block size to be certain that returned fragment
* size won't get more padding. */
if (ssl->specs.cipher_type == block)
buffSz -= ssl->specs.block_size;
#endif
}
return buffSz;
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_TLS13) && !defined(WOLFSSL_TLS13_IGNORE_AEAD_LIMITS)
/*
* Enforce limits specified in
* https://www.rfc-editor.org/rfc/rfc8446#section-5.5
*/
static int CheckTLS13AEADSendLimit(WOLFSSL* ssl)
{
w64wrapper seq;
w64wrapper limit;
switch (ssl->specs.bulk_cipher_algorithm) {
#ifdef BUILD_AESGCM
case wolfssl_aes_gcm:
/* Limit is 2^24.5 */
limit = AEAD_AES_LIMIT;
break;
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
case wolfssl_chacha:
/* For ChaCha20/Poly1305, the record sequence number would wrap
* before the safety limit is reached. */
return 0;
#endif
#ifdef HAVE_AESCCM
case wolfssl_aes_ccm:
/* Use the limits calculated in the DTLS 1.3 spec
* https://www.rfc-editor.org/rfc/rfc9147.html#name-analysis-of-limits-on-ccm-u */
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls)
limit = DTLS_AEAD_AES_CCM_LIMIT; /* Limit is 2^23 */
else
#endif
limit = AEAD_AES_LIMIT; /* Limit is 2^24.5 */
break;
#endif
#ifdef WOLFSSL_SM4_GCM
case wolfssl_sm4_gcm:
/* Limit is 2^22 - 1 */
limit = AEAD_SM4_GCM_LIMIT;
break;
#endif
#ifdef WOLFSSL_SM4_CCM
case wolfssl_sm4_ccm:
/* Limit is 2^10 - 1 */
limit = AEAD_SM4_CCM_LIMIT;
break;
#endif
case wolfssl_cipher_null:
/* No encryption being done */
return 0;
default:
WOLFSSL_MSG("Unrecognized ciphersuite for AEAD limit check");
return BAD_STATE_E;
}
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls) {
seq = ssl->dtls13EncryptEpoch->nextSeqNumber;
}
else
#endif
{
seq = w64From32(ssl->keys.sequence_number_hi,
ssl->keys.sequence_number_lo);
}
if (w64GTE(seq, limit))
return Tls13UpdateKeys(ssl); /* Need to generate new keys */
return 0;
}
#endif /* WOLFSSL_TLS13 && !WOLFSSL_TLS13_IGNORE_AEAD_LIMITS */
int SendData(WOLFSSL* ssl, const void* data, int sz)
{
int sent = 0, /* plainText size */
sendSz,
ret;
#if defined(WOLFSSL_EARLY_DATA) && defined(WOLFSSL_EARLY_DATA_GROUP)
int groupMsgs = 0;
#endif
if (ssl->error == WANT_WRITE
#ifdef WOLFSSL_ASYNC_CRYPT
|| ssl->error == WC_PENDING_E
#endif
) {
ssl->error = 0;
}
/* don't allow write after decrypt or mac error */
if (ssl->error == VERIFY_MAC_ERROR || ssl->error == DECRYPT_ERROR) {
/* For DTLS allow these possible errors and allow the session
to continue despite them */
if (ssl->options.dtls) {
ssl->error = 0;
}
else {
WOLFSSL_MSG("Not allowing write after decrypt or mac error");
return WOLFSSL_FATAL_ERROR;
}
}
#ifdef WOLFSSL_EARLY_DATA
if (ssl->earlyData != no_early_data) {
if (ssl->options.handShakeState == HANDSHAKE_DONE) {
WOLFSSL_MSG("handshake complete, trying to send early data");
ssl->error = BUILD_MSG_ERROR;
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_EARLY_DATA_GROUP
groupMsgs = 1;
#endif
}
else if (IsAtLeastTLSv1_3(ssl->version) &&
ssl->options.side == WOLFSSL_SERVER_END &&
ssl->options.acceptState >= TLS13_ACCEPT_FINISHED_SENT) {
/* We can send data without waiting on peer finished msg */
WOLFSSL_MSG("server sending data before receiving client finished");
}
else
#endif
if (ssl->options.handShakeState != HANDSHAKE_DONE && !IsSCR(ssl)) {
int err;
WOLFSSL_MSG("handshake not complete, trying to finish");
if ( (err = wolfSSL_negotiate(ssl)) != WOLFSSL_SUCCESS) {
#ifdef WOLFSSL_ASYNC_CRYPT
/* if async would block return WANT_WRITE */
if (ssl->error == WC_PENDING_E) {
return WOLFSSL_CBIO_ERR_WANT_WRITE;
}
#endif
return err;
}
}
/* last time system socket output buffer was full, try again to send */
if (ssl->buffers.outputBuffer.length > 0
#if defined(WOLFSSL_EARLY_DATA) && defined(WOLFSSL_EARLY_DATA_GROUP)
&& !groupMsgs
#endif
) {
WOLFSSL_MSG("output buffer was full, trying to send again");
if ( (ssl->error = SendBuffered(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
if (ssl->error == SOCKET_ERROR_E && (ssl->options.connReset ||
ssl->options.isClosed)) {
ssl->error = SOCKET_PEER_CLOSED_E;
WOLFSSL_ERROR(ssl->error);
return 0; /* peer reset or closed */
}
return ssl->error;
}
else {
/* advance sent to previous sent + plain size just sent */
sent = ssl->buffers.prevSent + ssl->buffers.plainSz;
WOLFSSL_MSG("sent write buffered data");
if (sent > sz) {
WOLFSSL_MSG("error: write() after WANT_WRITE with short size");
return ssl->error = BAD_FUNC_ARG;
}
}
}
ret = RetrySendAlert(ssl);
if (ret != 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
for (;;) {
byte* out;
byte* sendBuffer = (byte*)data + sent; /* may switch on comp */
int buffSz; /* may switch on comp */
int outputSz;
#ifdef HAVE_LIBZ
byte comp[MAX_RECORD_SIZE + MAX_COMP_EXTRA];
#endif
#if defined(WOLFSSL_TLS13) && !defined(WOLFSSL_TLS13_IGNORE_AEAD_LIMITS)
if (IsAtLeastTLSv1_3(ssl->version)) {
ret = CheckTLS13AEADSendLimit(ssl);
if (ret != 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
}
#endif
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && ssl->options.tls1_3) {
byte isEarlyData = 0;
if (ssl->dtls13EncryptEpoch == NULL)
return ssl->error = BAD_STATE_E;
#ifdef WOLFSSL_EARLY_DATA
isEarlyData = ssl->earlyData != no_early_data;
#endif
if (isEarlyData) {
#ifdef WOLFSSL_EARLY_DATA
ret = Dtls13SetEpochKeys(ssl,
w64From32(0x0, DTLS13_EPOCH_EARLYDATA), ENCRYPT_SIDE_ONLY);
if (ret != 0) {
WOLFSSL_MSG(
"trying to send early data without epoch 1");
ssl->error = BUILD_MSG_ERROR;
return WOLFSSL_FATAL_ERROR;
}
#endif /* WOLFSSL_EARLY_DATA */
}
else if (!w64Equal(
ssl->dtls13EncryptEpoch->epochNumber,
ssl->dtls13Epoch)) {
ret = Dtls13SetEpochKeys(
ssl, ssl->dtls13Epoch, ENCRYPT_SIDE_ONLY);
if (ret != 0) {
ssl->error = BUILD_MSG_ERROR;
return WOLFSSL_FATAL_ERROR;
}
}
}
#endif /* WOLFSSL_DTLS13 */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
buffSz = wolfSSL_GetMaxFragSize(ssl, sz - sent);
}
else
#endif
{
buffSz = wolfSSL_GetMaxFragSize(ssl, sz - sent);
}
if (sent == sz) break;
#if defined(WOLFSSL_DTLS) && !defined(WOLFSSL_NO_DTLS_SIZE_CHECK)
if (ssl->options.dtls && (buffSz < sz - sent)) {
ssl->error = DTLS_SIZE_ERROR;
WOLFSSL_ERROR(ssl->error);
return ssl->error;
}
#endif
outputSz = buffSz + COMP_EXTRA + DTLS_RECORD_HEADER_SZ;
if (IsEncryptionOn(ssl, 1) || ssl->options.tls1_3)
outputSz += cipherExtraData(ssl);
/* check for available size */
if ((ret = CheckAvailableSize(ssl, outputSz)) != 0)
return ssl->error = ret;
/* get output buffer */
out = GetOutputBuffer(ssl);
#ifdef HAVE_LIBZ
if (ssl->options.usingCompression) {
buffSz = myCompress(ssl, sendBuffer, buffSz, comp, sizeof(comp));
if (buffSz < 0) {
return buffSz;
}
sendBuffer = comp;
}
#endif
if (!ssl->options.tls1_3) {
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
return MEMORY_E;
ssl->async->freeArgs = NULL;
}
#endif
sendSz = BuildMessage(ssl, out, outputSz, sendBuffer, buffSz,
application_data, 0, 0, 1, CUR_ORDER);
}
else {
#ifdef WOLFSSL_TLS13
sendSz = BuildTls13Message(ssl, out, outputSz, sendBuffer, buffSz,
application_data, 0, 0, 1);
#else
sendSz = BUFFER_ERROR;
#endif
}
if (sendSz < 0) {
#ifdef WOLFSSL_ASYNC_CRYPT
if (sendSz == WC_PENDING_E)
ssl->error = sendSz;
#endif
return BUILD_MSG_ERROR;
}
#ifdef WOLFSSL_ASYNC_CRYPT
FreeAsyncCtx(ssl, 0);
#endif
ssl->buffers.outputBuffer.length += sendSz;
if ( (ssl->error = SendBuffered(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
/* store for next call if WANT_WRITE or user embedSend() that
doesn't present like WANT_WRITE */
ssl->buffers.plainSz = buffSz;
ssl->buffers.prevSent = sent;
if (ssl->error == SOCKET_ERROR_E && (ssl->options.connReset ||
ssl->options.isClosed)) {
ssl->error = SOCKET_PEER_CLOSED_E;
WOLFSSL_ERROR(ssl->error);
return 0; /* peer reset or closed */
}
return ssl->error;
}
sent += buffSz;
/* only one message per attempt */
if (ssl->options.partialWrite == 1) {
WOLFSSL_MSG("Partial Write on, only sending one record");
break;
}
}
return sent;
}
/* process input data */
int ReceiveData(WOLFSSL* ssl, byte* output, int sz, int peek)
{
int size;
WOLFSSL_ENTER("ReceiveData");
/* reset error state */
if (ssl->error == WANT_READ || ssl->error == WOLFSSL_ERROR_WANT_READ) {
ssl->error = 0;
}
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
/* In DTLS mode, we forgive some errors and allow the session
* to continue despite them. */
if (ssl->error == VERIFY_MAC_ERROR ||
ssl->error == DECRYPT_ERROR ||
ssl->error == DTLS_SIZE_ERROR) {
ssl->error = 0;
}
}
#endif /* WOLFSSL_DTLS */
if (ssl->error != 0 && ssl->error != WANT_WRITE
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->error != WC_PENDING_E
#endif
#if defined(HAVE_SECURE_RENEGOTIATION) || defined(WOLFSSL_DTLS13)
&& ssl->error != APP_DATA_READY
#endif
) {
WOLFSSL_MSG("User calling wolfSSL_read in error state, not allowed");
return ssl->error;
}
#ifdef WOLFSSL_EARLY_DATA
if (ssl->earlyData != no_early_data) {
}
else
#endif
{
int negotiate = 0;
#ifdef HAVE_SECURE_RENEGOTIATION
if (ssl->secure_renegotiation && ssl->secure_renegotiation->enabled) {
if (ssl->options.handShakeState != HANDSHAKE_DONE
&& ssl->buffers.clearOutputBuffer.length == 0)
negotiate = 1;
}
else
#endif
if (ssl->options.handShakeState != HANDSHAKE_DONE)
negotiate = 1;
if (negotiate) {
int err;
WOLFSSL_MSG("Handshake not complete, trying to finish");
if ( (err = wolfSSL_negotiate(ssl)) != WOLFSSL_SUCCESS) {
#ifdef WOLFSSL_ASYNC_CRYPT
/* if async would block return WANT_WRITE */
if (ssl->error == WC_PENDING_E) {
return WOLFSSL_CBIO_ERR_WANT_READ;
}
#endif
return err;
}
}
}
#ifdef HAVE_SECURE_RENEGOTIATION
startScr:
if (ssl->secure_renegotiation && ssl->secure_renegotiation->startScr) {
int ret;
WOLFSSL_MSG("Need to start scr, server requested");
ret = wolfSSL_Rehandshake(ssl);
ssl->secure_renegotiation->startScr = 0; /* only start once */
if (ret != WOLFSSL_SUCCESS)
return ret;
}
#endif
while (ssl->buffers.clearOutputBuffer.length == 0) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
if (ssl->error == ZERO_RETURN) {
WOLFSSL_MSG("Zero return, no more data coming");
return 0; /* no more data coming */
}
if (ssl->error == SOCKET_ERROR_E) {
if (ssl->options.connReset || ssl->options.isClosed) {
WOLFSSL_MSG("Peer reset or closed, connection done");
ssl->error = SOCKET_PEER_CLOSED_E;
WOLFSSL_ERROR(ssl->error);
return 0; /* peer reset or closed */
}
}
WOLFSSL_ERROR(ssl->error);
return ssl->error;
}
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls) {
/* Dtls13DoScheduledWork(ssl) may return WANT_WRITE */
if ((ssl->error = Dtls13DoScheduledWork(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return ssl->error;
}
}
#endif /* WOLFSSL_DTLS13 */
#ifdef HAVE_SECURE_RENEGOTIATION
if (ssl->secure_renegotiation &&
ssl->secure_renegotiation->startScr) {
goto startScr;
}
if (ssl->secure_renegotiation && ssl->secure_renegotiation->enabled &&
ssl->options.handShakeState != HANDSHAKE_DONE
&& ssl->buffers.clearOutputBuffer.length == 0) {
/* ProcessReply processed a handshake packet and not any APP DATA
* so let's move the handshake along */
int err;
WOLFSSL_MSG("Handshake not complete, trying to finish");
if ( (err = wolfSSL_negotiate(ssl)) != WOLFSSL_SUCCESS) {
#ifdef WOLFSSL_ASYNC_CRYPT
/* if async would block return WANT_WRITE */
if (ssl->error == WC_PENDING_E) {
return WOLFSSL_CBIO_ERR_WANT_READ;
}
#endif
return err;
}
}
#endif
#ifdef WOLFSSL_DTLS13
/* if wolfSSL_Peek() is invoked with sz == 0 it will not block (but
* it processes pending non-application records) */
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version) && peek &&
sz == 0 && ssl->buffers.inputBuffer.idx
- ssl->buffers.inputBuffer.length == 0) {
return 0;
}
#endif /* WOLFSSL_DTLS13 */
#ifndef WOLFSSL_TLS13_NO_PEEK_HANDSHAKE_DONE
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version) && ssl->options.handShakeDone &&
ssl->curRL.type == handshake && peek) {
WOLFSSL_MSG("Got Handshake Message in APP data");
if (ssl->buffers.inputBuffer.length == 0) {
ssl->error = WOLFSSL_ERROR_WANT_READ;
return 0;
}
}
#endif
#endif
}
size = min(sz, (int)ssl->buffers.clearOutputBuffer.length);
XMEMCPY(output, ssl->buffers.clearOutputBuffer.buffer, size);
if (peek == 0) {
ssl->buffers.clearOutputBuffer.length -= size;
ssl->buffers.clearOutputBuffer.buffer += size;
}
if (ssl->buffers.inputBuffer.dynamicFlag)
ShrinkInputBuffer(ssl, NO_FORCED_FREE);
WOLFSSL_LEAVE("ReceiveData()", size);
return size;
}
static int SendAlert_ex(WOLFSSL* ssl, int severity, int type)
{
byte input[ALERT_SIZE];
byte *output;
int sendSz;
int ret;
int outputSz;
int dtlsExtra = 0;
WOLFSSL_ENTER("SendAlert");
WOLFSSL_MSG_EX("SendAlert: %d %s", type, AlertTypeToString(type));
#ifdef WOLFSSL_QUIC
if (WOLFSSL_IS_QUIC(ssl)) {
ret = !ssl->quic.method->send_alert(ssl, ssl->quic.enc_level_write, (uint8_t)type);
if (ret) {
WOLFSSL_MSG("QUIC send_alert callback error");
}
return ret;
}
#endif
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite && ssl->dupSide == READ_DUP_SIDE) {
int notifyErr = 0;
WOLFSSL_MSG("Read dup side cannot write alerts, notifying sibling");
if (type == close_notify) {
notifyErr = ZERO_RETURN;
} else if (severity == alert_fatal) {
notifyErr = FATAL_ERROR;
}
if (notifyErr != 0) {
return NotifyWriteSide(ssl, notifyErr);
}
return 0;
}
#endif
ssl->pendingAlert.code = type;
ssl->pendingAlert.level = severity;
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_ALERT, type);
}
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
dtlsExtra = DTLS_RECORD_EXTRA;
#endif
/* check for available size */
outputSz = ALERT_SIZE + MAX_MSG_EXTRA + dtlsExtra;
if ((ret = CheckAvailableSize(ssl, outputSz)) != 0) {
#ifdef WOLFSSL_DTLS
/* If CheckAvailableSize returned WANT_WRITE due to a blocking write
* then discard pending output and just send the alert. */
if (ssl->options.dtls) {
if (ret != WANT_WRITE || severity != alert_fatal)
return ret;
ShrinkOutputBuffer(ssl);
if ((ret = CheckAvailableSize(ssl, outputSz)) != 0) {
return ret;
}
}
else {
return ret;
}
#else
return ret;
#endif
}
/* Check output buffer */
if (ssl->buffers.outputBuffer.buffer == NULL)
return BUFFER_E;
/* get output buffer */
output = GetOutputBuffer(ssl);
input[0] = (byte)severity;
input[1] = (byte)type;
ssl->alert_history.last_tx.code = type;
ssl->alert_history.last_tx.level = severity;
if (severity == alert_fatal) {
#ifdef WOLFSSL_DTLS
/* Mark as closed in dtls only once we enter stateful mode. */
if (!ssl->options.dtls || ssl->options.dtlsStateful)
#endif
ssl->options.isClosed = 1; /* Don't send close_notify */
}
/* send encrypted alert if encryption is on - can be a rehandshake over
* an existing encrypted channel.
* TLS 1.3 encrypts handshake packets after the ServerHello
*/
if (IsEncryptionOn(ssl, 1)) {
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls
&& IsAtLeastTLSv1_3(ssl->version)
&& !w64Equal(ssl->dtls13EncryptEpoch->epochNumber, ssl->dtls13Epoch)) {
ret = Dtls13SetEpochKeys(ssl, ssl->dtls13Epoch, ENCRYPT_SIDE_ONLY);
if (ret != 0)
return ret;
}
#endif /* WOLFSSL_DTLS13 */
sendSz = BuildMessage(ssl, output, outputSz, input, ALERT_SIZE, alert,
0, 0, 0, CUR_ORDER);
}
else {
#ifdef WOLFSSL_DTLS13
if (ssl->options.dtls && IsAtLeastTLSv1_3(ssl->version)) {
ret = Dtls13RlAddPlaintextHeader(ssl, output, alert, ALERT_SIZE);
if (ret != 0)
return ret;
}
else
#endif /* WOLFSSL_DTLS13 */
{
AddRecordHeader(output, ALERT_SIZE, alert, ssl, CUR_ORDER);
}
output += RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
output += DTLS_RECORD_EXTRA;
#endif
XMEMCPY(output, input, ALERT_SIZE);
sendSz = RECORD_HEADER_SZ + ALERT_SIZE;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
sendSz += DTLS_RECORD_EXTRA;
#endif
}
if (sendSz < 0)
return BUILD_MSG_ERROR;
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "Alert");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "Alert", alert, output, sendSz,
WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->buffers.outputBuffer.length += sendSz;
ret = SendBuffered(ssl);
ssl->pendingAlert.code = 0;
ssl->pendingAlert.level = alert_none;
WOLFSSL_LEAVE("SendAlert", ret);
return ret;
}
int RetrySendAlert(WOLFSSL* ssl)
{
int type = ssl->pendingAlert.code;
int severity = ssl->pendingAlert.level;
if (severity == alert_none)
return 0;
ssl->pendingAlert.code = 0;
ssl->pendingAlert.level = alert_none;
return SendAlert_ex(ssl, severity, type);
}
/* send alert message */
int SendAlert(WOLFSSL* ssl, int severity, int type)
{
if (ssl->pendingAlert.level != alert_none) {
int ret = RetrySendAlert(ssl);
if (ret != 0) {
if (ssl->pendingAlert.level == alert_none ||
(ssl->pendingAlert.level != alert_fatal &&
severity == alert_fatal)) {
/* Store current alert if pendingAlert is empty or if current
* is fatal and previous was not */
ssl->pendingAlert.code = type;
ssl->pendingAlert.level = severity;
}
return ret;
}
}
return SendAlert_ex(ssl, severity, type);
}
const char* wolfSSL_ERR_reason_error_string(unsigned long e)
{
#ifdef NO_ERROR_STRINGS
(void)e;
return "no support for error strings built in";
#else
int error = (int)e;
/* OpenSSL uses positive error codes */
if (error > 0) {
error = -error;
}
/* pass to wolfCrypt */
if (error < MAX_CODE_E && error > MIN_CODE_E) {
return wc_GetErrorString(error);
}
switch (error) {
#ifdef OPENSSL_EXTRA
case 0 :
return "ok";
#endif
case UNSUPPORTED_SUITE :
return "unsupported cipher suite";
case INPUT_CASE_ERROR :
return "input state error";
case PREFIX_ERROR :
return "bad index to key rounds";
case MEMORY_ERROR :
return "out of memory";
case VERIFY_FINISHED_ERROR :
return "verify problem on finished";
case VERIFY_MAC_ERROR :
return "verify mac problem";
case PARSE_ERROR :
return "parse error on header";
case SIDE_ERROR :
return "wrong client/server type";
case NO_PEER_CERT : /* OpenSSL compatibility expects this exact text */
return "peer did not return a certificate";
case UNKNOWN_HANDSHAKE_TYPE :
return "weird handshake type";
case SOCKET_ERROR_E :
return "error state on socket";
case SOCKET_NODATA :
return "expected data, not there";
case INCOMPLETE_DATA :
return "don't have enough data to complete task";
case UNKNOWN_RECORD_TYPE :
return "unknown type in record hdr";
case DECRYPT_ERROR :
return "error during decryption";
case FATAL_ERROR :
return "received alert fatal error";
case ENCRYPT_ERROR :
return "error during encryption";
case FREAD_ERROR :
return "fread problem";
case NO_PEER_KEY :
return "need peer's key";
case NO_PRIVATE_KEY :
return "need the private key";
case NO_DH_PARAMS :
return "server missing DH params";
case RSA_PRIVATE_ERROR :
return "error during rsa priv op";
case MATCH_SUITE_ERROR :
return "can't match cipher suite";
case COMPRESSION_ERROR :
return "compression mismatch error";
case BUILD_MSG_ERROR :
return "build message failure";
case BAD_HELLO :
return "client hello malformed";
case DOMAIN_NAME_MISMATCH :
return "peer subject name mismatch";
case IPADDR_MISMATCH :
return "peer ip address mismatch";
case WANT_READ :
case -WOLFSSL_ERROR_WANT_READ :
return "non-blocking socket wants data to be read";
case NOT_READY_ERROR :
return "handshake layer not ready yet, complete first";
case VERSION_ERROR :
return "record layer version error";
case WANT_WRITE :
case -WOLFSSL_ERROR_WANT_WRITE :
return "non-blocking socket write buffer full";
case -WOLFSSL_ERROR_WANT_CONNECT:
case -WOLFSSL_ERROR_WANT_ACCEPT:
return "The underlying BIO was not yet connected";
case -WOLFSSL_ERROR_SYSCALL:
return "fatal I/O error in TLS layer";
case -WOLFSSL_ERROR_WANT_X509_LOOKUP:
return "application client cert callback asked to be called again";
case -WOLFSSL_ERROR_SSL:
return "fatal TLS protocol error";
case BUFFER_ERROR :
return "malformed buffer input error";
case VERIFY_CERT_ERROR :
return "verify problem on certificate";
case VERIFY_SIGN_ERROR :
return "verify problem based on signature";
case CLIENT_ID_ERROR :
return "psk client identity error";
case SERVER_HINT_ERROR:
return "psk server hint error";
case PSK_KEY_ERROR:
return "psk key callback error";
case GETTIME_ERROR:
return "gettimeofday() error";
case GETITIMER_ERROR:
return "getitimer() error";
case SIGACT_ERROR:
return "sigaction() error";
case SETITIMER_ERROR:
return "setitimer() error";
case LENGTH_ERROR:
return "record layer length error";
case PEER_KEY_ERROR:
return "can't decode peer key";
case ZERO_RETURN:
case -WOLFSSL_ERROR_ZERO_RETURN:
return "peer sent close notify alert";
case ECC_CURVETYPE_ERROR:
return "Bad ECC Curve Type or unsupported";
case ECC_CURVE_ERROR:
return "Bad ECC Curve or unsupported";
case ECC_PEERKEY_ERROR:
return "Bad ECC Peer Key";
case ECC_MAKEKEY_ERROR:
return "ECC Make Key failure";
case ECC_EXPORT_ERROR:
return "ECC Export Key failure";
case ECC_SHARED_ERROR:
return "ECC DHE shared failure";
case NOT_CA_ERROR:
return "Not a CA by basic constraint error";
case BAD_CERT_MANAGER_ERROR:
return "Bad Cert Manager error";
case OCSP_CERT_REVOKED:
return "OCSP Cert revoked";
case CRL_CERT_REVOKED:
#ifdef OPENSSL_EXTRA
return "certificate revoked";
#else
return "CRL Cert revoked";
#endif
case CRL_MISSING:
return "CRL missing, not loaded";
case MONITOR_SETUP_E:
return "CRL monitor setup error";
case THREAD_CREATE_E:
return "Thread creation problem";
case OCSP_NEED_URL:
return "OCSP need URL";
case OCSP_CERT_UNKNOWN:
return "OCSP Cert unknown";
case OCSP_LOOKUP_FAIL:
return "OCSP Responder lookup fail";
case MAX_CHAIN_ERROR:
return "Maximum Chain Depth Exceeded";
case COOKIE_ERROR:
return "DTLS Cookie Error";
case SEQUENCE_ERROR:
return "DTLS Sequence Error";
case SUITES_ERROR:
return "Suites Pointer Error";
case OUT_OF_ORDER_E:
return "Out of order message, fatal";
case BAD_KEA_TYPE_E:
return "Bad KEA type found";
case SANITY_CIPHER_E:
return "Sanity check on ciphertext failed";
case RECV_OVERFLOW_E:
return "Receive callback returned more than requested";
case GEN_COOKIE_E:
return "Generate Cookie Error";
case NO_PEER_VERIFY:
return "Need peer certificate verify Error";
case FWRITE_ERROR:
return "fwrite Error";
case CACHE_MATCH_ERROR:
return "Cache restore header match Error";
case UNKNOWN_SNI_HOST_NAME_E:
return "Unrecognized host name Error";
case UNKNOWN_MAX_FRAG_LEN_E:
return "Unrecognized max frag len Error";
case KEYUSE_SIGNATURE_E:
return "Key Use digitalSignature not set Error";
case KEYUSE_ENCIPHER_E:
return "Key Use keyEncipherment not set Error";
case EXTKEYUSE_AUTH_E:
return "Ext Key Use server/client auth not set Error";
case SEND_OOB_READ_E:
return "Send Callback Out of Bounds Read Error";
case SECURE_RENEGOTIATION_E:
return "Invalid Renegotiation Error";
case SESSION_TICKET_LEN_E:
return "Session Ticket Too Long Error";
case SESSION_TICKET_EXPECT_E:
return "Session Ticket Error";
case SESSION_SECRET_CB_E:
return "Session Secret Callback Error";
case NO_CHANGE_CIPHER_E:
return "Finished received from peer before Change Cipher Error";
case SANITY_MSG_E:
return "Sanity Check on message order Error";
case DUPLICATE_MSG_E:
return "Duplicate HandShake message Error";
case SNI_UNSUPPORTED:
return "Protocol version does not support SNI Error";
case SOCKET_PEER_CLOSED_E:
return "Peer closed underlying transport Error";
case BAD_TICKET_KEY_CB_SZ:
return "Bad user session ticket key callback Size Error";
case BAD_TICKET_MSG_SZ:
return "Bad session ticket message Size Error";
case BAD_TICKET_ENCRYPT:
return "Bad user ticket callback encrypt Error";
case DH_KEY_SIZE_E:
return "DH key too small Error";
case SNI_ABSENT_ERROR:
return "No Server Name Indication extension Error";
case RSA_SIGN_FAULT:
return "RSA Signature Fault Error";
case HANDSHAKE_SIZE_ERROR:
return "Handshake message too large Error";
case UNKNOWN_ALPN_PROTOCOL_NAME_E:
return "Unrecognized protocol name Error";
case BAD_CERTIFICATE_STATUS_ERROR:
return "Bad Certificate Status Message Error";
case OCSP_INVALID_STATUS:
return "Invalid OCSP Status Error";
case OCSP_WANT_READ:
return "OCSP nonblock wants read";
case RSA_KEY_SIZE_E:
return "RSA key too small";
case ECC_KEY_SIZE_E:
return "ECC key too small";
case DTLS_EXPORT_VER_E:
return "Version needs updated after code change or version mismatch";
case INPUT_SIZE_E:
return "Input size too large Error";
case CTX_INIT_MUTEX_E:
return "Initialize ctx mutex error";
case EXT_MASTER_SECRET_NEEDED_E:
return "Extended Master Secret must be enabled to resume EMS session";
case DTLS_POOL_SZ_E:
return "Maximum DTLS pool size exceeded";
case DECODE_E:
return "Decode handshake message error";
case WRITE_DUP_READ_E:
return "Write dup write side can't read error";
case WRITE_DUP_WRITE_E:
return "Write dup read side can't write error";
case INVALID_CERT_CTX_E:
return "Certificate context does not match request or not empty";
case BAD_KEY_SHARE_DATA:
return "The Key Share data contains group that wasn't in Client Hello";
case MISSING_HANDSHAKE_DATA:
return "The handshake message is missing required data";
case BAD_BINDER: /* OpenSSL compatibility expects this exact text */
return "binder does not verify";
case EXT_NOT_ALLOWED:
return "Extension type not allowed in handshake message type";
case INVALID_PARAMETER:
return "The security parameter is invalid";
case UNSUPPORTED_EXTENSION:
return "TLS Extension not requested by the client";
case PRF_MISSING:
return "Pseudo-random function is not enabled";
case KEY_SHARE_ERROR:
return "Key share extension did not contain a valid named group";
case POST_HAND_AUTH_ERROR:
return "Client will not do post handshake authentication";
case HRR_COOKIE_ERROR:
return "Cookie does not match one sent in HelloRetryRequest";
case MCAST_HIGHWATER_CB_E:
return "Multicast highwater callback returned error";
case ALERT_COUNT_E:
return "Alert Count exceeded error";
case EXT_MISSING:
return "Required TLS extension missing";
case DTLS_RETX_OVER_TX:
return "DTLS interrupting flight transmit with retransmit";
case DH_PARAMS_NOT_FFDHE_E:
return "Server DH parameters were not from the FFDHE set as required";
case TCA_INVALID_ID_TYPE:
return "TLS Extension Trusted CA ID type invalid";
case TCA_ABSENT_ERROR:
return "TLS Extension Trusted CA ID response absent";
case TSIP_MAC_DIGSZ_E:
return "TSIP MAC size invalid, must be sized for SHA-1 or SHA-256";
case CLIENT_CERT_CB_ERROR:
return "Error importing client cert or key from callback";
case SSL_SHUTDOWN_ALREADY_DONE_E:
return "Shutdown has already occurred";
case TLS13_SECRET_CB_E:
return "TLS1.3 Secret Callback Error";
case DTLS_SIZE_ERROR:
return "DTLS trying to send too much in single datagram error";
case NO_CERT_ERROR:
return "TLS1.3 No Certificate Set Error";
case APP_DATA_READY:
return "Application data is available for reading";
case TOO_MUCH_EARLY_DATA:
return "Too much early data";
case SOCKET_FILTERED_E:
return "Session stopped by network filter";
case UNSUPPORTED_CERTIFICATE:
return "Unsupported certificate type";
#ifdef HAVE_HTTP_CLIENT
case HTTP_TIMEOUT:
return "HTTP timeout for OCSP or CRL req";
case HTTP_RECV_ERR:
return "HTTP Receive error";
case HTTP_HEADER_ERR:
return "HTTP Header error";
case HTTP_PROTO_ERR:
return "HTTP Protocol error";
case HTTP_STATUS_ERR:
return "HTTP Status error";
case HTTP_VERSION_ERR:
return "HTTP Version error";
case HTTP_APPSTR_ERR:
return "HTTP Application string error";
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
/* TODO: -WOLFSSL_X509_V_ERR_CERT_SIGNATURE_FAILURE. Conflicts with
* -WOLFSSL_ERROR_WANT_CONNECT. */
case -WOLFSSL_X509_V_ERR_CERT_NOT_YET_VALID:
return "certificate not yet valid";
case -WOLFSSL_X509_V_ERR_CERT_HAS_EXPIRED:
return "certificate has expired";
case -WOLFSSL_X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
return "certificate signature failure";
case -WOLFSSL_X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
return "format error in certificate's notAfter field";
case -WOLFSSL_X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
return "self-signed certificate in certificate chain";
case -WOLFSSL_X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
return "unable to get local issuer certificate";
case -WOLFSSL_X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
return "unable to verify the first certificate";
case -WOLFSSL_X509_V_ERR_CERT_CHAIN_TOO_LONG:
return "certificate chain too long";
case -WOLFSSL_X509_V_ERR_CERT_REVOKED:
return "certificate revoked";
case -WOLFSSL_X509_V_ERR_INVALID_CA:
return "invalid CA certificate";
case -WOLFSSL_X509_V_ERR_PATH_LENGTH_EXCEEDED:
return "path length constraint exceeded";
case -WOLFSSL_X509_V_ERR_CERT_REJECTED:
return "certificate rejected";
case -WOLFSSL_X509_V_ERR_SUBJECT_ISSUER_MISMATCH:
return "subject issuer mismatch";
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || HAVE_WEBSERVER */
case UNSUPPORTED_PROTO_VERSION:
#ifdef OPENSSL_EXTRA
return "WRONG_SSL_VERSION";
#else
return "bad/unsupported protocol version";
#endif
case FALCON_KEY_SIZE_E:
return "Wrong key size for Falcon.";
case DILITHIUM_KEY_SIZE_E:
return "Wrong key size for Dilithium.";
#ifdef WOLFSSL_QUIC
case QUIC_TP_MISSING_E:
return "QUIC transport parameter not set";
case QUIC_WRONG_ENC_LEVEL:
return "QUIC data received at wrong encryption level";
#endif
case DTLS_CID_ERROR:
return "DTLS ConnectionID mismatch or missing";
case DTLS_TOO_MANY_FRAGMENTS_E:
return "Received too many fragmented messages from peer error";
case DUPLICATE_TLS_EXT_E:
return "Duplicate TLS extension in message.";
default :
return "unknown error number";
}
#endif /* NO_ERROR_STRINGS */
}
const char* wolfSSL_ERR_func_error_string(unsigned long e)
{
(void)e;
WOLFSSL_MSG("wolfSSL_ERR_func_error_string does not return the name of "
"the function that failed. Please inspect the wolfSSL debug "
"logs to determine where the error occurred.");
return "";
}
/* return library name
* @param e error code
* @return text library name,
* if there is no suitable library found, returns empty string
*/
const char* wolfSSL_ERR_lib_error_string(unsigned long e)
{
int libe = 0;
(void)libe;
(void)e;
#if defined(OPENSSL_EXTRA)
libe = wolfSSL_ERR_GET_LIB(e);
switch (libe) {
case ERR_LIB_PEM:
return "wolfSSL PEM routines";
case ERR_LIB_EVP:
return "wolfSSL digital envelope routines";
default:
return "";
}
#else
return "";
#endif
}
void SetErrorString(int error, char* str)
{
XSTRNCPY(str, wolfSSL_ERR_reason_error_string(error), WOLFSSL_MAX_ERROR_SZ);
str[WOLFSSL_MAX_ERROR_SZ-1] = 0;
}
#ifdef NO_CIPHER_SUITE_ALIASES
#ifndef NO_ERROR_STRINGS
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
#define SUITE_INFO(x,y,z,w,v,u) {(x),(y),(z),(w),(v),(u),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) /* null expansion */
#else
#define SUITE_INFO(x,y,z,w,v,u) {(x),(y),(z),(w),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) /* null expansion */
#endif
#else
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
#define SUITE_INFO(x,y,z,w,v,u) {(x),(z),(w),(v),(u),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) /* null expansion */
#else
#define SUITE_INFO(x,y,z,w,v,u) {(x),(z),(w),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) /* null expansion */
#endif
#endif
#else /* !NO_CIPHER_SUITE_ALIASES */
/* note that the comma is included at the end of the SUITE_ALIAS() macro
* definitions, to allow aliases to be gated out by the above null macros
* in the NO_CIPHER_SUITE_ALIASES section.
*/
#ifndef NO_ERROR_STRINGS
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_NGINX)
#define SUITE_INFO(x,y,z,w,v,u) {(x),(y),(z),(w),(v),(u),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) {(x),"",(z),(w),(v),(u),WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS},
#else
#define SUITE_INFO(x,y,z,w,v,u) {(x),(y),(z),(w),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) {(x),"",(z),(w),WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS},
#endif
#else
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_NGINX)
#define SUITE_INFO(x,y,z,w,v,u) {(x),(z),(w),(v),(u),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) {(x),(z),(w),(v),(u),WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS},
#else
#define SUITE_INFO(x,y,z,w,v,u) {(x),(z),(w),WOLFSSL_CIPHER_SUITE_FLAG_NONE}
#define SUITE_ALIAS(x,z,w,v,u) {(x),(z),(w),WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS},
#endif
#endif
#endif /* NO_CIPHER_SUITE_ALIASES */
static const CipherSuiteInfo cipher_names[] =
{
#ifdef BUILD_TLS_AES_128_GCM_SHA256
SUITE_INFO("TLS13-AES128-GCM-SHA256","TLS_AES_128_GCM_SHA256",TLS13_BYTE,TLS_AES_128_GCM_SHA256, TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_AES_256_GCM_SHA384
SUITE_INFO("TLS13-AES256-GCM-SHA384","TLS_AES_256_GCM_SHA384",TLS13_BYTE,TLS_AES_256_GCM_SHA384, TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_CHACHA20_POLY1305_SHA256
SUITE_INFO("TLS13-CHACHA20-POLY1305-SHA256","TLS_CHACHA20_POLY1305_SHA256",TLS13_BYTE,TLS_CHACHA20_POLY1305_SHA256, TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_AES_128_CCM_SHA256
SUITE_INFO("TLS13-AES128-CCM-SHA256","TLS_AES_128_CCM_SHA256",TLS13_BYTE,TLS_AES_128_CCM_SHA256, TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_AES_128_CCM_8_SHA256
SUITE_INFO("TLS13-AES128-CCM-8-SHA256","TLS_AES_128_CCM_8_SHA256",TLS13_BYTE,TLS_AES_128_CCM_8_SHA256,TLSv1_3_MINOR, SSLv3_MAJOR),
SUITE_ALIAS("TLS13-AES128-CCM8-SHA256",TLS13_BYTE,TLS_AES_128_CCM_8_SHA256,TLSv1_3_MINOR, SSLv3_MAJOR)
#endif
#ifdef BUILD_TLS_SM4_GCM_SM3
SUITE_INFO("TLS13-SM4-GCM-SM3","TLS_SM4_GCM_SM3",CIPHER_BYTE,TLS_SM4_GCM_SM3, TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_SM4_CCM_SM3
SUITE_INFO("TLS13-SM4-CCM-SM3","TLS_SM4_CCM_SM3",CIPHER_BYTE,TLS_SM4_CCM_SM3, TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_SHA256_SHA256
SUITE_INFO("TLS13-SHA256-SHA256","TLS_SHA256_SHA256",ECC_BYTE,TLS_SHA256_SHA256,TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_SHA384_SHA384
SUITE_INFO("TLS13-SHA384-SHA384","TLS_SHA384_SHA384",ECC_BYTE,TLS_SHA384_SHA384,TLSv1_3_MINOR, SSLv3_MAJOR),
#endif
#ifndef WOLFSSL_NO_TLS12
#ifdef BUILD_SSL_RSA_WITH_RC4_128_SHA
SUITE_INFO("RC4-SHA","SSL_RSA_WITH_RC4_128_SHA",CIPHER_BYTE,SSL_RSA_WITH_RC4_128_SHA,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_SSL_RSA_WITH_RC4_128_MD5
SUITE_INFO("RC4-MD5","SSL_RSA_WITH_RC4_128_MD5",CIPHER_BYTE,SSL_RSA_WITH_RC4_128_MD5,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_SSL_RSA_WITH_3DES_EDE_CBC_SHA
SUITE_INFO("DES-CBC3-SHA","SSL_RSA_WITH_3DES_EDE_CBC_SHA",CIPHER_BYTE,SSL_RSA_WITH_3DES_EDE_CBC_SHA,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_CBC_SHA
SUITE_INFO("AES128-SHA","TLS_RSA_WITH_AES_128_CBC_SHA",CIPHER_BYTE,TLS_RSA_WITH_AES_128_CBC_SHA,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_CBC_SHA
SUITE_INFO("AES256-SHA","TLS_RSA_WITH_AES_256_CBC_SHA",CIPHER_BYTE,TLS_RSA_WITH_AES_256_CBC_SHA,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_NULL_MD5
SUITE_INFO("NULL-MD5","TLS_RSA_WITH_NULL_MD5",CIPHER_BYTE,TLS_RSA_WITH_NULL_MD5,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_NULL_SHA
SUITE_INFO("NULL-SHA","TLS_RSA_WITH_NULL_SHA",CIPHER_BYTE,TLS_RSA_WITH_NULL_SHA,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_NULL_SHA256
SUITE_INFO("NULL-SHA256","TLS_RSA_WITH_NULL_SHA256",CIPHER_BYTE,TLS_RSA_WITH_NULL_SHA256,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_128_CBC_SHA
SUITE_INFO("DHE-RSA-AES128-SHA","TLS_DHE_RSA_WITH_AES_128_CBC_SHA",CIPHER_BYTE,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_256_CBC_SHA
SUITE_INFO("DHE-RSA-AES256-SHA","TLS_DHE_RSA_WITH_AES_256_CBC_SHA",CIPHER_BYTE,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
SUITE_INFO("DHE-PSK-AES256-GCM-SHA384","TLS_DHE_PSK_WITH_AES_256_GCM_SHA384",CIPHER_BYTE,TLS_DHE_PSK_WITH_AES_256_GCM_SHA384,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_128_GCM_SHA256
SUITE_INFO("DHE-PSK-AES128-GCM-SHA256","TLS_DHE_PSK_WITH_AES_128_GCM_SHA256",CIPHER_BYTE,TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_GCM_SHA384
SUITE_INFO("PSK-AES256-GCM-SHA384","TLS_PSK_WITH_AES_256_GCM_SHA384",CIPHER_BYTE,TLS_PSK_WITH_AES_256_GCM_SHA384,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_GCM_SHA256
SUITE_INFO("PSK-AES128-GCM-SHA256","TLS_PSK_WITH_AES_128_GCM_SHA256",CIPHER_BYTE,TLS_PSK_WITH_AES_128_GCM_SHA256,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_256_CBC_SHA384
SUITE_INFO("DHE-PSK-AES256-CBC-SHA384","TLS_DHE_PSK_WITH_AES_256_CBC_SHA384",CIPHER_BYTE,TLS_DHE_PSK_WITH_AES_256_CBC_SHA384,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_128_CBC_SHA256
SUITE_INFO("DHE-PSK-AES128-CBC-SHA256","TLS_DHE_PSK_WITH_AES_128_CBC_SHA256",CIPHER_BYTE,TLS_DHE_PSK_WITH_AES_128_CBC_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CBC_SHA384
SUITE_INFO("PSK-AES256-CBC-SHA384","TLS_PSK_WITH_AES_256_CBC_SHA384",CIPHER_BYTE,TLS_PSK_WITH_AES_256_CBC_SHA384,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CBC_SHA256
SUITE_INFO("PSK-AES128-CBC-SHA256","TLS_PSK_WITH_AES_128_CBC_SHA256",CIPHER_BYTE,TLS_PSK_WITH_AES_128_CBC_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CBC_SHA
SUITE_INFO("PSK-AES128-CBC-SHA","TLS_PSK_WITH_AES_128_CBC_SHA",CIPHER_BYTE,TLS_PSK_WITH_AES_128_CBC_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CBC_SHA
SUITE_INFO("PSK-AES256-CBC-SHA","TLS_PSK_WITH_AES_256_CBC_SHA",CIPHER_BYTE,TLS_PSK_WITH_AES_256_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_128_CCM
SUITE_INFO("DHE-PSK-AES128-CCM","TLS_DHE_PSK_WITH_AES_128_CCM",ECC_BYTE,TLS_DHE_PSK_WITH_AES_128_CCM,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_AES_256_CCM
SUITE_INFO("DHE-PSK-AES256-CCM","TLS_DHE_PSK_WITH_AES_256_CCM",ECC_BYTE,TLS_DHE_PSK_WITH_AES_256_CCM,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CCM
SUITE_INFO("PSK-AES128-CCM","TLS_PSK_WITH_AES_128_CCM",ECC_BYTE,TLS_PSK_WITH_AES_128_CCM,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CCM
SUITE_INFO("PSK-AES256-CCM","TLS_PSK_WITH_AES_256_CCM",ECC_BYTE,TLS_PSK_WITH_AES_256_CCM,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_128_CCM_8
SUITE_INFO("PSK-AES128-CCM-8","TLS_PSK_WITH_AES_128_CCM_8",ECC_BYTE,TLS_PSK_WITH_AES_128_CCM_8,TLSv1_MINOR,SSLv3_MAJOR),
SUITE_ALIAS("PSK-AES128-CCM8",ECC_BYTE,TLS_PSK_WITH_AES_128_CCM_8,TLSv1_MINOR,SSLv3_MAJOR)
#endif
#ifdef BUILD_TLS_PSK_WITH_AES_256_CCM_8
SUITE_INFO("PSK-AES256-CCM-8","TLS_PSK_WITH_AES_256_CCM_8",ECC_BYTE,TLS_PSK_WITH_AES_256_CCM_8,TLSv1_MINOR,SSLv3_MAJOR),
SUITE_ALIAS("PSK-AES256-CCM8",ECC_BYTE,TLS_PSK_WITH_AES_256_CCM_8,TLSv1_MINOR,SSLv3_MAJOR)
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_NULL_SHA384
SUITE_INFO("DHE-PSK-NULL-SHA384","TLS_DHE_PSK_WITH_NULL_SHA384",CIPHER_BYTE,TLS_DHE_PSK_WITH_NULL_SHA384,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_NULL_SHA256
SUITE_INFO("DHE-PSK-NULL-SHA256","TLS_DHE_PSK_WITH_NULL_SHA256",CIPHER_BYTE,TLS_DHE_PSK_WITH_NULL_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_NULL_SHA384
SUITE_INFO("PSK-NULL-SHA384","TLS_PSK_WITH_NULL_SHA384",CIPHER_BYTE,TLS_PSK_WITH_NULL_SHA384,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_NULL_SHA256
SUITE_INFO("PSK-NULL-SHA256","TLS_PSK_WITH_NULL_SHA256",CIPHER_BYTE,TLS_PSK_WITH_NULL_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_NULL_SHA
SUITE_INFO("PSK-NULL-SHA","TLS_PSK_WITH_NULL_SHA",CIPHER_BYTE,TLS_PSK_WITH_NULL_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_CCM_8
SUITE_INFO("AES128-CCM-8","TLS_RSA_WITH_AES_128_CCM_8",ECC_BYTE,TLS_RSA_WITH_AES_128_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR),
SUITE_ALIAS("AES128-CCM8",ECC_BYTE,TLS_RSA_WITH_AES_128_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR)
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_CCM_8
SUITE_INFO("AES256-CCM-8","TLS_RSA_WITH_AES_256_CCM_8",ECC_BYTE,TLS_RSA_WITH_AES_256_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR),
SUITE_ALIAS("AES256-CCM8",ECC_BYTE,TLS_RSA_WITH_AES_256_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR)
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CCM
SUITE_INFO("ECDHE-ECDSA-AES128-CCM","TLS_ECDHE_ECDSA_WITH_AES_128_CCM",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_128_CCM, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
SUITE_INFO("ECDHE-ECDSA-AES128-CCM-8","TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR),
SUITE_ALIAS("ECDHE-ECDSA-AES128-CCM8",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR)
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8
SUITE_INFO("ECDHE-ECDSA-AES256-CCM-8","TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR),
SUITE_ALIAS("ECDHE-ECDSA-AES256-CCM8",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8, TLSv1_2_MINOR, SSLv3_MAJOR)
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
SUITE_INFO("ECDHE-RSA-AES128-SHA","TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",ECC_BYTE,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
SUITE_INFO("ECDHE-RSA-AES256-SHA","TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",ECC_BYTE,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
SUITE_INFO("ECDHE-ECDSA-AES128-SHA","TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
SUITE_INFO("ECDHE-ECDSA-AES256-SHA","TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_RC4_128_SHA
SUITE_INFO("ECDHE-RSA-RC4-SHA","TLS_ECDHE_RSA_WITH_RC4_128_SHA",ECC_BYTE,TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
SUITE_INFO("ECDHE-RSA-DES-CBC3-SHA","TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA",ECC_BYTE,TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
SUITE_INFO("ECDHE-ECDSA-RC4-SHA","TLS_ECDHE_ECDSA_WITH_RC4_128_SHA",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
SUITE_INFO("ECDHE-ECDSA-DES-CBC3-SHA","TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_CBC_SHA256
SUITE_INFO("AES128-SHA256","TLS_RSA_WITH_AES_128_CBC_SHA256",CIPHER_BYTE,TLS_RSA_WITH_AES_128_CBC_SHA256, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_CBC_SHA256
SUITE_INFO("AES256-SHA256","TLS_RSA_WITH_AES_256_CBC_SHA256",CIPHER_BYTE,TLS_RSA_WITH_AES_256_CBC_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
SUITE_INFO("DHE-RSA-AES128-SHA256","TLS_DHE_RSA_WITH_AES_128_CBC_SHA256",CIPHER_BYTE,TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
SUITE_INFO("DHE-RSA-AES256-SHA256","TLS_DHE_RSA_WITH_AES_256_CBC_SHA256",CIPHER_BYTE,TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
SUITE_INFO("ECDH-RSA-AES128-SHA","TLS_ECDH_RSA_WITH_AES_128_CBC_SHA",ECC_BYTE,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
SUITE_INFO("ECDH-RSA-AES256-SHA","TLS_ECDH_RSA_WITH_AES_256_CBC_SHA",ECC_BYTE,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
SUITE_INFO("ECDH-ECDSA-AES128-SHA","TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA",ECC_BYTE,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
SUITE_INFO("ECDH-ECDSA-AES256-SHA","TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA",ECC_BYTE,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_RC4_128_SHA
SUITE_INFO("ECDH-RSA-RC4-SHA","TLS_ECDH_RSA_WITH_RC4_128_SHA",ECC_BYTE,TLS_ECDH_RSA_WITH_RC4_128_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
SUITE_INFO("ECDH-RSA-DES-CBC3-SHA","TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA",ECC_BYTE,TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_RC4_128_SHA
SUITE_INFO("ECDH-ECDSA-RC4-SHA","TLS_ECDH_ECDSA_WITH_RC4_128_SHA",ECC_BYTE,TLS_ECDH_ECDSA_WITH_RC4_128_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
SUITE_INFO("ECDH-ECDSA-DES-CBC3-SHA","TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA",ECC_BYTE,TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_128_GCM_SHA256
SUITE_INFO("AES128-GCM-SHA256","TLS_RSA_WITH_AES_128_GCM_SHA256",CIPHER_BYTE,TLS_RSA_WITH_AES_128_GCM_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_AES_256_GCM_SHA384
SUITE_INFO("AES256-GCM-SHA384","TLS_RSA_WITH_AES_256_GCM_SHA384",CIPHER_BYTE,TLS_RSA_WITH_AES_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
SUITE_INFO("DHE-RSA-AES128-GCM-SHA256","TLS_DHE_RSA_WITH_AES_128_GCM_SHA256",CIPHER_BYTE,TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
SUITE_INFO("DHE-RSA-AES256-GCM-SHA384","TLS_DHE_RSA_WITH_AES_256_GCM_SHA384",CIPHER_BYTE,TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
SUITE_INFO("ECDHE-RSA-AES128-GCM-SHA256","TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",ECC_BYTE,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
SUITE_INFO("ECDHE-RSA-AES256-GCM-SHA384","TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",ECC_BYTE,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
SUITE_INFO("ECDHE-ECDSA-AES128-GCM-SHA256","TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
SUITE_INFO("ECDHE-ECDSA-AES256-GCM-SHA384","TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
SUITE_INFO("ECDH-RSA-AES128-GCM-SHA256","TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256",ECC_BYTE,TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
SUITE_INFO("ECDH-RSA-AES256-GCM-SHA384","TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384",ECC_BYTE,TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
SUITE_INFO("ECDH-ECDSA-AES128-GCM-SHA256","TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256",ECC_BYTE,TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
SUITE_INFO("ECDH-ECDSA-AES256-GCM-SHA384","TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384",ECC_BYTE,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
SUITE_INFO("CAMELLIA128-SHA","TLS_RSA_WITH_CAMELLIA_128_CBC_SHA",CIPHER_BYTE,TLS_RSA_WITH_CAMELLIA_128_CBC_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
SUITE_INFO("DHE-RSA-CAMELLIA128-SHA","TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA",CIPHER_BYTE,TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
SUITE_INFO("CAMELLIA256-SHA","TLS_RSA_WITH_CAMELLIA_256_CBC_SHA",CIPHER_BYTE,TLS_RSA_WITH_CAMELLIA_256_CBC_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
SUITE_INFO("DHE-RSA-CAMELLIA256-SHA","TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA",CIPHER_BYTE,TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256
SUITE_INFO("CAMELLIA128-SHA256","TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256",CIPHER_BYTE,TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256
SUITE_INFO("DHE-RSA-CAMELLIA128-SHA256","TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256",CIPHER_BYTE,TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
SUITE_INFO("CAMELLIA256-SHA256","TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256",CIPHER_BYTE,TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
SUITE_INFO("DHE-RSA-CAMELLIA256-SHA256","TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256",CIPHER_BYTE,TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
SUITE_INFO("ECDHE-RSA-AES128-SHA256","TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256",ECC_BYTE,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
SUITE_INFO("ECDHE-ECDSA-AES128-SHA256","TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
SUITE_INFO("ECDH-RSA-AES128-SHA256","TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256",ECC_BYTE,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
SUITE_INFO("ECDH-ECDSA-AES128-SHA256","TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256",ECC_BYTE,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
SUITE_INFO("ECDHE-RSA-AES256-SHA384","TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384",ECC_BYTE,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
SUITE_INFO("ECDHE-ECDSA-AES256-SHA384","TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
SUITE_INFO("ECDH-RSA-AES256-SHA384","TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384",ECC_BYTE,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
SUITE_INFO("ECDH-ECDSA-AES256-SHA384","TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384",ECC_BYTE,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
SUITE_INFO("ECDHE-RSA-CHACHA20-POLY1305","TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",CHACHA_BYTE,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
SUITE_INFO("ECDHE-ECDSA-CHACHA20-POLY1305","TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",CHACHA_BYTE,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
SUITE_INFO("DHE-RSA-CHACHA20-POLY1305","TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256",CHACHA_BYTE,TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256
SUITE_INFO("ECDHE-RSA-CHACHA20-POLY1305-OLD","TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256",CHACHA_BYTE,TLS_ECDHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_CHACHA20_OLD_POLY1305_SHA256
SUITE_INFO("ECDHE-ECDSA-CHACHA20-POLY1305-OLD","TLS_ECDHE_ECDSA_WITH_CHACHA20_OLD_POLY1305_SHA256",CHACHA_BYTE,TLS_ECDHE_ECDSA_WITH_CHACHA20_OLD_POLY1305_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256
SUITE_INFO("DHE-RSA-CHACHA20-POLY1305-OLD","TLS_DHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256",CHACHA_BYTE,TLS_DHE_RSA_WITH_CHACHA20_OLD_POLY1305_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
SUITE_INFO("ECDHE-ECDSA-SM4-CBC-SM3","TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3",SM_BYTE,TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3
SUITE_INFO("ECDHE-ECDSA-SM4-GCM-SM3","TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3",SM_BYTE,TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3
SUITE_INFO("ECDHE-ECDSA-SM4-CCM-SM3","TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3",SM_BYTE,TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DH_anon_WITH_AES_128_CBC_SHA
SUITE_INFO("ADH-AES128-SHA","TLS_DH_anon_WITH_AES_128_CBC_SHA",CIPHER_BYTE,TLS_DH_anon_WITH_AES_128_CBC_SHA, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DH_anon_WITH_AES_256_GCM_SHA384
SUITE_INFO("ADH-AES256-GCM-SHA384","TLS_DH_anon_WITH_AES_256_GCM_SHA384",CIPHER_BYTE,TLS_DH_anon_WITH_AES_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef HAVE_RENEGOTIATION_INDICATION
SUITE_INFO("RENEGOTIATION-INFO","TLS_EMPTY_RENEGOTIATION_INFO_SCSV",CIPHER_BYTE,TLS_EMPTY_RENEGOTIATION_INFO_SCSV,SSLv3_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_NULL_SHA
SUITE_INFO("ECDHE-ECDSA-NULL-SHA","TLS_ECDHE_ECDSA_WITH_NULL_SHA",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_NULL_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_NULL_SHA256
SUITE_INFO("ECDHE-PSK-NULL-SHA256","TLS_ECDHE_PSK_WITH_NULL_SHA256",ECC_BYTE,TLS_ECDHE_PSK_WITH_NULL_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
SUITE_INFO("ECDHE-PSK-AES128-CBC-SHA256","TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256",ECC_BYTE,TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256
SUITE_INFO("ECDHE-PSK-AES128-GCM-SHA256","TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256",ECDHE_PSK_BYTE,TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256,TLSv1_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_PSK_WITH_CHACHA20_POLY1305_SHA256
SUITE_INFO("PSK-CHACHA20-POLY1305","TLS_PSK_WITH_CHACHA20_POLY1305_SHA256",CHACHA_BYTE,TLS_PSK_WITH_CHACHA20_POLY1305_SHA256,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256
SUITE_INFO("ECDHE-PSK-CHACHA20-POLY1305","TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256",CHACHA_BYTE,TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256
SUITE_INFO("DHE-PSK-CHACHA20-POLY1305","TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256",CHACHA_BYTE,TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256,TLSv1_2_MINOR,SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
SUITE_INFO("EDH-RSA-DES-CBC3-SHA","TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA",CIPHER_BYTE,TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, TLSv1_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256
SUITE_INFO("ECDHE-ECDSA-ARIA128-GCM-SHA256","TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384
SUITE_INFO("ECDHE-ECDSA-ARIA256-GCM-SHA384","TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384",ECC_BYTE,TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384, TLSv1_2_MINOR, SSLv3_MAJOR),
#endif
#ifdef BUILD_WDM_WITH_NULL_SHA256
SUITE_INFO("WDM-NULL-SHA256","WDM_WITH_NULL_SHA256",CIPHER_BYTE,WDM_WITH_NULL_SHA256, TLSv1_3_MINOR, SSLv3_MAJOR)
#endif
#endif /* WOLFSSL_NO_TLS12 */
};
/* returns the cipher_names array */
const CipherSuiteInfo* GetCipherNames(void)
{
return cipher_names;
}
/* returns the number of elements in the cipher_names array */
int GetCipherNamesSize(void)
{
return (int)(sizeof(cipher_names) / sizeof(CipherSuiteInfo));
}
const char* GetCipherNameInternal(const byte cipherSuite0, const byte cipherSuite)
{
int i;
const char* nameInternal = "None";
for (i = 0; i < GetCipherNamesSize(); i++) {
if ((cipher_names[i].cipherSuite0 == cipherSuite0) &&
(cipher_names[i].cipherSuite == cipherSuite)
#ifndef NO_CIPHER_SUITE_ALIASES
&& (! (cipher_names[i].flags & WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS))
#endif
) {
nameInternal = cipher_names[i].name;
break;
}
}
return nameInternal;
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* Segment cipher name into n[n0,n1,n2,n4]
* @param cipher a pointer to WOLFSSL_CIPHER
* @param n return segment cipher name
* return cipher name if cipher is in the list,
* otherwise NULL
*/
const char* GetCipherSegment(const WOLFSSL_CIPHER* cipher, char n[][MAX_SEGMENT_SZ])
{
int i,j,k;
int strLen;
unsigned long offset;
const char* name;
/* sanity check */
if (cipher == NULL || n == NULL)
return NULL;
offset = cipher->offset;
if (offset >= (unsigned long)GetCipherNamesSize())
return NULL;
name = cipher_names[offset].name;
if (name == NULL)
return NULL;
/* Segment cipher name into n[n0,n1,n2,n4]
* These are used later for comparisons to create:
* keaStr, authStr, encStr, macStr
*
* If cipher_name = ECDHE-ECDSA-AES256-SHA
* then n0 = "ECDHE", n1 = "ECDSA", n2 = "AES256", n3 = "SHA"
* and n = [n0,n1,n2,n3,0]
*/
strLen = (int)XSTRLEN(name);
for (i = 0, j = 0, k = 0; i <= strLen; i++) {
if (k >= MAX_SEGMENTS || j >= MAX_SEGMENT_SZ)
break;
if (name[i] != '-' && name[i] != '\0') {
n[k][j] = name[i]; /* Fill kth segment string until '-' */
j++;
}
else {
n[k][j] = '\0';
j = 0;
k++;
}
}
return name;
}
/* gcc-12 and later, building with ASAN at -O2 and higher, generate spurious
* stringop-overread warnings on some (but not all...) reads of n[1] in
* GetCipherKeaStr().
*/
#if defined(__GNUC__) && __GNUC__ > 11 && defined(__SANITIZE_ADDRESS__)
PRAGMA_GCC_DIAG_PUSH
PRAGMA_GCC("GCC diagnostic ignored \"-Wstringop-overread\"")
#endif
const char* GetCipherKeaStr(char n[][MAX_SEGMENT_SZ]) {
const char* keaStr = NULL;
if (XSTRCMP(n[0],"ECDHE") == 0 && XSTRCMP(n[1],"PSK") == 0)
keaStr = "ECDHEPSK";
else if ((XSTRCMP(n[0],"ECDH") == 0) || (XSTRCMP(n[0],"ECDHE") == 0))
keaStr = "ECDH";
else if (XSTRCMP(n[0],"DHE") == 0 && XSTRCMP(n[1],"PSK") == 0)
keaStr = "DHEPSK";
else if (XSTRCMP(n[0],"DHE") == 0)
keaStr = "DH";
else if (XSTRCMP(n[0],"RSA") == 0 && XSTRCMP(n[1],"PSK") == 0)
keaStr = "RSAPSK";
else if (XSTRCMP(n[0],"SRP") == 0)
keaStr = "SRP";
else if (XSTRCMP(n[0],"PSK") == 0)
keaStr = "PSK";
else if (XSTRCMP(n[0],"EDH") == 0)
keaStr = "EDH";
else if ((XSTRNCMP(n[1],"SHA", 3) == 0) || (XSTRNCMP(n[2],"SHA", 3) == 0) ||
(XSTRNCMP(n[3],"SHA", 3) == 0) || (XSTRNCMP(n[4],"SHA", 3) == 0) ||
(XSTRCMP(n[2],"RSA") == 0) || (XSTRCMP(n[0],"AES128") == 0) ||
(XSTRCMP(n[0],"AES256") == 0) || (XSTRCMP(n[1],"MD5") == 0))
keaStr = "RSA";
else if (XSTRCMP(n[0],"NULL") == 0)
keaStr = "None";
else
keaStr = "unknown";
return keaStr;
}
#if defined(__GNUC__) && __GNUC__ > 11 && defined(__SANITIZE_ADDRESS__)
PRAGMA_GCC_DIAG_POP
#endif
const char* GetCipherAuthStr(char n[][MAX_SEGMENT_SZ]) {
const char* authStr = NULL;
if ((XSTRCMP(n[0],"AES128") == 0) || (XSTRCMP(n[0],"AES256") == 0) ||
((XSTRCMP(n[0],"TLS13") == 0) && ((XSTRCMP(n[1],"AES128") == 0) ||
(XSTRCMP(n[1],"AES256") == 0) || (XSTRCMP(n[1],"CHACHA20") == 0))) ||
(XSTRCMP(n[0],"RSA") == 0) || (XSTRCMP(n[1],"RSA") == 0) ||
(XSTRNCMP(n[1],"SHA", 3) == 0) || (XSTRNCMP(n[2],"SHA", 3) == 0) ||
(XSTRCMP(n[1],"MD5") == 0))
authStr = "RSA";
else if (XSTRCMP(n[0],"PSK") == 0 || XSTRCMP(n[1],"PSK") == 0)
authStr = "PSK";
else if (XSTRCMP(n[0],"SRP") == 0 && XSTRCMP(n[1],"AES") == 0)
authStr = "SRP";
else if (XSTRCMP(n[1],"ECDSA") == 0)
authStr = "ECDSA";
else if (XSTRCMP(n[0],"ADH") == 0 || XSTRCMP(n[0],"NULL") == 0)
authStr = "None";
else
authStr = "unknown";
return authStr;
}
const char* GetCipherEncStr(char n[][MAX_SEGMENT_SZ]) {
const char* encStr = NULL;
if ((XSTRCMP(n[0],"AES256") == 0 && XSTRCMP(n[1],"GCM") == 0) ||
(XSTRCMP(n[1],"AES256") == 0 && XSTRCMP(n[2],"GCM") == 0) ||
(XSTRCMP(n[2],"AES256") == 0 && XSTRCMP(n[3],"GCM") == 0))
encStr = "AESGCM(256)";
else if ((XSTRCMP(n[0],"AES128") == 0 && XSTRCMP(n[1],"GCM") == 0) ||
(XSTRCMP(n[1],"AES128") == 0 && XSTRCMP(n[2],"GCM") == 0) ||
(XSTRCMP(n[2],"AES128") == 0 && XSTRCMP(n[3],"GCM") == 0))
encStr = "AESGCM(128)";
else if ((XSTRCMP(n[0],"AES128") == 0 && XSTRCMP(n[1],"CCM") == 0) ||
(XSTRCMP(n[1],"AES128") == 0 && XSTRCMP(n[2],"CCM") == 0) ||
(XSTRCMP(n[2],"AES128") == 0 && XSTRCMP(n[3],"CCM") == 0))
encStr = "AESCCM(128)";
else if ((XSTRCMP(n[0],"AES128") == 0) ||
(XSTRCMP(n[1],"AES128") == 0) ||
(XSTRCMP(n[2],"AES128") == 0) ||
(XSTRCMP(n[1],"AES") == 0 && XSTRCMP(n[2],"128") == 0) ||
(XSTRCMP(n[2],"AES") == 0 && XSTRCMP(n[3],"128") == 0))
encStr = "AES(128)";
else if ((XSTRCMP(n[0],"AES256") == 0) ||
(XSTRCMP(n[1],"AES256") == 0) ||
(XSTRCMP(n[2],"AES256") == 0) ||
(XSTRCMP(n[1],"AES") == 0 && XSTRCMP(n[2],"256") == 0) ||
(XSTRCMP(n[2],"AES") == 0 && XSTRCMP(n[3],"256") == 0))
encStr = "AES(256)";
#ifdef HAVE_ARIA
else if ((XSTRCMP(n[0],"ARIA256") == 0) ||
(XSTRCMP(n[2],"ARIA256") == 0))
encStr = "ARIA(256)";
else if ((XSTRCMP(n[0],"ARIA128") == 0) ||
(XSTRCMP(n[2],"ARIA128") == 0))
encStr = "ARIA(128)";
#endif
else if ((XSTRCMP(n[0],"CAMELLIA256") == 0) ||
(XSTRCMP(n[2],"CAMELLIA256") == 0))
encStr = "CAMELLIA(256)";
else if ((XSTRCMP(n[0],"CAMELLIA128") == 0) ||
(XSTRCMP(n[2],"CAMELLIA128") == 0))
encStr = "CAMELLIA(128)";
#ifdef WOLFSSL_SM4_GCM
else if ((XSTRCMP(n[0],"SM4") == 0 && XSTRCMP(n[1],"GCM") == 0) ||
(XSTRCMP(n[1],"SM4") == 0 && XSTRCMP(n[2],"GCM") == 0) ||
(XSTRCMP(n[2],"SM4") == 0 && XSTRCMP(n[3],"GCM") == 0))
encStr = "SM4-GCM";
#endif
#ifdef WOLFSSL_SM4_CCM
else if ((XSTRCMP(n[0],"SM4") == 0 && XSTRCMP(n[1],"CCM") == 0) ||
(XSTRCMP(n[1],"SM4") == 0 && XSTRCMP(n[2],"CCM") == 0) ||
(XSTRCMP(n[2],"SM4") == 0 && XSTRCMP(n[3],"CCM") == 0))
encStr = "SM4-CCM";
#endif
#ifdef WOLFSSL_SM4_CBC
else if ((XSTRCMP(n[0],"SM4") == 0) ||
(XSTRCMP(n[2],"SM4") == 0))
encStr = "SM4";
#endif
else if ((XSTRCMP(n[0],"RC4") == 0) || (XSTRCMP(n[1],"RC4") == 0) ||
(XSTRCMP(n[2],"RC4") == 0))
encStr = "RC4";
else if (((XSTRCMP(n[0],"DES") == 0) || (XSTRCMP(n[1],"DES") == 0) ||
(XSTRCMP(n[2],"DES") == 0)) &&
((XSTRCMP(n[1],"CBC3") == 0) || (XSTRCMP(n[2],"CBC3") == 0) ||
(XSTRCMP(n[3],"CBC3") == 0)))
encStr = "3DES";
else if ((XSTRCMP(n[1],"CHACHA20") == 0 && XSTRCMP(n[2],"POLY1305") == 0) ||
(XSTRCMP(n[2],"CHACHA20") == 0 && XSTRCMP(n[3],"POLY1305") == 0))
encStr = "CHACHA20/POLY1305(256)";
else if ((XSTRCMP(n[0],"NULL") == 0) || (XSTRCMP(n[1],"NULL") == 0) ||
(XSTRCMP(n[2],"NULL") == 0) ||
((XSTRCMP(n[0],"TLS13") == 0) && (XSTRCMP(n[3],"") == 0)))
encStr = "None";
else
encStr = "unknown";
return encStr;
}
/* Check if a cipher is AEAD
* @param n return segment cipher name
* return 1 if the cipher is AEAD, otherwise 0
*/
int IsCipherAEAD(char n[][MAX_SEGMENT_SZ])
{
WOLFSSL_ENTER("IsCipherAEAD");
if (n == NULL) {
WOLFSSL_MSG("bad function argument. n is NULL.");
return 0;
}
if ((XSTRCMP(n[2],"GCM") == 0) || (XSTRCMP(n[3],"GCM") == 0) ||
(XSTRCMP(n[1],"CCM") == 0) ||
(XSTRCMP(n[2],"CCM") == 0) || (XSTRCMP(n[3],"CCM") == 0) ||
(XSTRCMP(n[1],"CHACHA20") == 0 && XSTRCMP(n[2],"POLY1305") == 0) ||
(XSTRCMP(n[2],"CHACHA20") == 0 && XSTRCMP(n[3],"POLY1305") == 0))
return 1;
return 0;
}
/* Returns the MAC string of a cipher or "unknown" on failure */
const char* GetCipherMacStr(char n[][MAX_SEGMENT_SZ]) {
const char* macStr = NULL;
if ((XSTRCMP(n[4],"SHA256") == 0) || (XSTRCMP(n[3],"SHA256") == 0) ||
(XSTRCMP(n[2],"SHA256") == 0) || (XSTRCMP(n[1],"SHA256") == 0))
macStr = "SHA256";
else if ((XSTRCMP(n[4],"SHA384") == 0) ||
(XSTRCMP(n[3],"SHA384") == 0) ||
(XSTRCMP(n[2],"SHA384") == 0) ||
(XSTRCMP(n[1],"SHA384") == 0))
macStr = "SHA384";
#ifdef WOLFSSL_SM3
else if ((XSTRCMP(n[4],"SM3") == 0) ||
(XSTRCMP(n[3],"SM3") == 0) ||
(XSTRCMP(n[2],"SM3") == 0) ||
(XSTRCMP(n[1],"SM3") == 0))
macStr = "SM3";
#endif
else if ((XSTRCMP(n[4],"SHA") == 0) || (XSTRCMP(n[3],"SHA") == 0) ||
(XSTRCMP(n[2],"SHA") == 0) || (XSTRCMP(n[1],"SHA") == 0) ||
(XSTRCMP(n[1],"MD5") == 0))
macStr = "SHA1";
else if ((XSTRCMP(n[3],"GCM") == 0) ||
(XSTRCMP(n[1],"CCM") == 0) ||
(XSTRCMP(n[2],"CCM") == 0) || (XSTRCMP(n[3],"CCM") == 0) ||
(XSTRCMP(n[1],"CHACHA20") == 0 && XSTRCMP(n[2],"POLY1305") == 0) ||
(XSTRCMP(n[2],"CHACHA20") == 0 && XSTRCMP(n[3],"POLY1305") == 0))
macStr = "AEAD";
else
macStr = "unknown";
return macStr;
}
/* Returns the number of bits based on the cipher enc string, or 0 on failure */
int SetCipherBits(const char* enc) {
int ret = WOLFSSL_FAILURE;
if ((XSTRCMP(enc,"AESGCM(256)") == 0) ||
(XSTRCMP(enc,"AES(256)") == 0) ||
(XSTRCMP(enc,"CAMELLIA(256)") == 0) ||
(XSTRCMP(enc,"CHACHA20/POLY1305(256)") == 0))
ret = 256;
else if
((XSTRCMP(enc,"3DES") == 0))
ret = 168;
else if
((XSTRCMP(enc,"AESGCM(128)") == 0) ||
(XSTRCMP(enc,"AES(128)") == 0) ||
(XSTRCMP(enc,"CAMELLIA(128)") == 0) ||
(XSTRCMP(enc,"RC4") == 0))
ret = 128;
else if
((XSTRCMP(enc,"DES") == 0))
ret = 56;
return ret;
}
#endif /* WOLFSSL_QT || OPENSSL_ALL */
const char* GetCipherNameIana(const byte cipherSuite0, const byte cipherSuite)
{
#ifndef NO_ERROR_STRINGS
int i;
const char* nameIana = "NONE";
for (i = 0; i < GetCipherNamesSize(); i++) {
if ((cipher_names[i].cipherSuite0 == cipherSuite0) &&
(cipher_names[i].cipherSuite == cipherSuite)
#ifndef NO_CIPHER_SUITE_ALIASES
&& (! (cipher_names[i].flags & WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS))
#endif
) {
nameIana = cipher_names[i].name_iana;
break;
}
}
return nameIana;
#else
(void)cipherSuite0;
(void)cipherSuite;
return NULL;
#endif
}
const char* wolfSSL_get_cipher_name_internal(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
return GetCipherNameInternal(ssl->options.cipherSuite0, ssl->options.cipherSuite);
}
const char* wolfSSL_get_cipher_name_iana(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
return GetCipherNameIana(ssl->options.cipherSuite0, ssl->options.cipherSuite);
}
int GetCipherSuiteFromName(const char* name, byte* cipherSuite0,
byte* cipherSuite, int* flags)
{
int ret = BAD_FUNC_ARG;
int i;
unsigned long len;
const char* nameDelim;
/* Support trailing : */
nameDelim = XSTRSTR(name, ":");
if (nameDelim)
len = (unsigned long)(nameDelim - name);
else
len = (unsigned long)XSTRLEN(name);
for (i = 0; i < GetCipherNamesSize(); i++) {
int found = (XSTRNCMP(name, cipher_names[i].name, len) == 0) &&
(cipher_names[i].name[len] == 0);
#ifndef NO_ERROR_STRINGS
if (!found)
found = (XSTRNCMP(name, cipher_names[i].name_iana, len) == 0) &&
(cipher_names[i].name_iana[len] == 0);
#endif
if (found) {
*cipherSuite0 = cipher_names[i].cipherSuite0;
*cipherSuite = cipher_names[i].cipherSuite;
*flags = cipher_names[i].flags;
ret = 0;
break;
}
}
return ret;
}
/**
Set the enabled cipher suites.
With OPENSSL_EXTRA we attempt to understand some of the available "bulk"
ciphersuites. We can not perfectly filter ciphersuites based on the "bulk"
names but we do what we can. Ciphersuites named explicitly take precedence to
ciphersuites introduced through the "bulk" ciphersuites.
@param [out] suites Suites structure.
@param [in] list List of cipher suites, only supports full name from
cipher_names[] delimited by ':'.
@return true on success, else false.
*/
int SetCipherList(WOLFSSL_CTX* ctx, Suites* suites, const char* list)
{
int ret = 0;
int idx = 0;
int haveSig = 0;
word16 haveRSA = 0;
#ifdef OPENSSL_EXTRA
word16 haveDH = 0;
word16 haveECC = 0;
word16 haveStaticRSA = 1; /* allowed by default if compiled in */
word16 haveStaticECC = 0;
word16 haveNull = 1; /* allowed by default if compiled in */
int callInitSuites = 0;
word16 havePSK = 0;
#endif
const int suiteSz = GetCipherNamesSize();
const char* next = list;
if (suites == NULL || list == NULL) {
WOLFSSL_MSG("SetCipherList parameter error");
return 0;
}
if (next[0] == 0 || XSTRCMP(next, "ALL") == 0 ||
XSTRCMP(next, "DEFAULT") == 0 || XSTRCMP(next, "HIGH") == 0) {
/* Add all ciphersuites except anonymous and null ciphers. Prefer RSA */
#ifndef NO_RSA
haveRSA = 1;
#endif
InitSuites(suites, ctx->method->version,
#ifndef NO_CERTS
ctx->privateKeySz,
#else
0,
#endif
haveRSA, 1, 1, !haveRSA, 1, haveRSA, !haveRSA, 1, 1, 0, 0,
ctx->method->side);
return 1; /* wolfSSL default */
}
do {
const char* current = next;
char name[MAX_SUITE_NAME + 1];
int i;
word32 length;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
word16 allowing = 1;
#endif
next = XSTRSTR(next, ":");
length = MAX_SUITE_NAME;
if (next != NULL) {
word32 currLen = (word32)(next - current);
if (length > currLen) {
length = currLen;
}
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
if (length > 1) {
if (*current == '!') {
allowing = 0;
current++;
length--;
}
}
#endif
XSTRNCPY(name, current, length);
name[(length == sizeof(name)) ? length - 1 : length] = 0;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
if (length > 1) {
char* substr = NULL;
char* substrCurrent = name;
/* extract first public key type from a string like ECDHE+AESGCM */
substr = XSTRSTR(substrCurrent, "+");
if (substr != NULL) {
do {
if (substr) {
length = (word32)(substr - substrCurrent);
substrCurrent[length] = '\0';
}
else {
length = (int)XSTRLEN(substrCurrent);
}
/* check if is a public key type */
if (XSTRCMP(substrCurrent, "ECDHE") == 0 ||
XSTRCMP(substrCurrent, "RSA") == 0 ||
XSTRCMP(substrCurrent, "DHE") == 0) {
if (name != substrCurrent)
XMEMMOVE(name, substrCurrent, length);
name[length] = '\0';
break;
}
substrCurrent = substr;
if (substr) {
substrCurrent = substrCurrent + 1; /* +1 to skip over '+' */
substr = XSTRSTR(substrCurrent, "+");
}
} while (substrCurrent != NULL);
}
}
if (XSTRCMP(name, "DEFAULT") == 0 || XSTRCMP(name, "ALL") == 0) {
if (XSTRCMP(name, "ALL") == 0)
haveSig |= SIG_ANON;
else
haveSig &= ~SIG_ANON;
#ifdef HAVE_ANON
ctx->haveAnon = (haveSig & SIG_ANON) == SIG_ANON;
#endif
haveRSA = 1;
haveDH = 1;
haveECC = 1;
/* having static ECC will disable all RSA use, do not set
* static ECC suites here
* haveStaticECC = 1; */
haveStaticRSA = 1;
haveSig |= SIG_RSA;
havePSK = 1;
haveNull = 0;
callInitSuites = 1;
ret = 1;
continue;
}
/* We don't have a way to disallow high bit sizes. Only disable unsafe
* ciphersuites. */
if (XSTRCMP(name, "HIGH") == 0 && allowing) {
/* Disable static, anonymous, and null ciphers */
haveSig &= ~SIG_ANON;
#ifdef HAVE_ANON
ctx->haveAnon = 0;
#endif
haveRSA = 1;
haveDH = 1;
haveECC = 1;
haveStaticECC = 0;
haveStaticRSA = 0;
haveSig |= SIG_RSA;
havePSK = 1;
haveNull = 0;
callInitSuites = 1;
ret = 1;
continue;
}
if (XSTRCMP(name, "aNULL") == 0) {
if (allowing)
haveSig |= SIG_ANON;
else
haveSig &= ~SIG_ANON;
#ifdef HAVE_ANON
ctx->haveAnon = allowing;
#endif
if (allowing) {
/* Allow RSA by default. */
if (!haveECC)
haveRSA = 1;
if ((haveSig & SIG_ECDSA) == 0)
haveSig |= SIG_RSA;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "eNULL") == 0 || XSTRCMP(name, "NULL") == 0) {
haveNull = allowing;
if (allowing) {
/* Allow RSA by default. */
if (!haveECC)
haveRSA = 1;
if ((haveSig & SIG_ECDSA) == 0)
haveSig |= SIG_RSA;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "kDH") == 0) {
if (allowing) {
haveDH = 1;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "DHE") == 0 || XSTRCMP(name, "EDH") == 0) {
if (allowing) {
haveDH = 1;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "ECDHE") == 0 || XSTRCMP(name, "EECDH") == 0) {
if (allowing) {
haveECC = 1;
haveSig |= SIG_ECDSA;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "kRSA") == 0 || XSTRCMP(name, "RSA") == 0) {
haveStaticRSA = allowing;
if (allowing) {
haveRSA = 1;
haveSig |= SIG_RSA;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "PSK") == 0) {
havePSK = allowing;
haveSig |= SIG_RSA;
if (allowing) {
/* Allow RSA by default. */
if (!haveECC)
haveRSA = 1;
if ((haveSig & SIG_ECDSA) == 0)
haveSig |= SIG_RSA;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "LOW") == 0 || XSTRCMP(name, "MEDIUM") == 0) {
/* No way to limit or allow low bit sizes */
if (allowing) {
/* Allow RSA by default */
haveRSA = 1;
haveSig |= SIG_RSA;
callInitSuites = 1;
ret = 1;
}
continue;
}
if (XSTRCMP(name, "DSS") == 0) {
/* No support for DSA ciphersuites */
continue;
}
if (XSTRCMP(name, "EXP") == 0 || XSTRCMP(name, "EXPORT") == 0) {
/* wolfSSL doesn't support "export" ciphers. We can skip this */
continue;
}
#endif /* OPENSSL_EXTRA */
for (i = 0; i < suiteSz; i++) {
if (XSTRNCMP(name, cipher_names[i].name, sizeof(name)) == 0
#ifndef NO_ERROR_STRINGS
|| XSTRNCMP(name, cipher_names[i].name_iana, sizeof(name)) == 0
#endif
) {
int j;
#ifdef WOLFSSL_DTLS
/* don't allow stream ciphers with DTLS */
if (ctx->method->version.major == DTLS_MAJOR) {
if (XSTRSTR(name, "RC4"))
{
WOLFSSL_MSG("Stream ciphers not supported with DTLS");
continue;
}
}
#endif /* WOLFSSL_DTLS */
for (j = 0; j < idx; j += 2) {
if ((suites->suites[j+0] == cipher_names[i].cipherSuite0) &&
(suites->suites[j+1] == cipher_names[i].cipherSuite)) {
break;
}
}
/* Silently drop duplicates from list. */
if (j != idx) {
break;
}
if (idx + 1 >= WOLFSSL_MAX_SUITE_SZ) {
WOLFSSL_MSG("WOLFSSL_MAX_SUITE_SZ set too low");
return 0; /* suites buffer not large enough, error out */
}
suites->suites[idx++] = cipher_names[i].cipherSuite0;
suites->suites[idx++] = cipher_names[i].cipherSuite;
/* The suites are either ECDSA, RSA, PSK, or Anon. The RSA
* suites don't necessarily have RSA in the name. */
#ifdef WOLFSSL_TLS13
if (cipher_names[i].cipherSuite0 == TLS13_BYTE ||
(cipher_names[i].cipherSuite0 == ECC_BYTE &&
(cipher_names[i].cipherSuite == TLS_SHA256_SHA256 ||
cipher_names[i].cipherSuite == TLS_SHA384_SHA384))) {
#ifndef NO_RSA
haveSig |= SIG_RSA;
#endif
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || \
defined(HAVE_ED448)
haveSig |= SIG_ECDSA;
#endif
#if defined(HAVE_PQC)
#ifdef HAVE_FALCON
haveSig |= SIG_FALCON;
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
haveSig |= SIG_DILITHIUM;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
}
else
#ifdef BUILD_TLS_SM4_GCM_SM3
if ((cipher_names[i].cipherSuite0 == CIPHER_BYTE) &&
(cipher_names[i].cipherSuite == TLS_SM4_GCM_SM3)) {
haveSig |= SIG_SM2;
}
else
#endif
#ifdef BUILD_TLS_SM4_CCM_SM3
if ((cipher_names[i].cipherSuite0 == CIPHER_BYTE) &&
(cipher_names[i].cipherSuite == TLS_SM4_CCM_SM3)) {
haveSig |= SIG_SM2;
}
else
#endif
#endif /* WOLFSSL_TLS13 */
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3) && \
(defined(WOLFSSL_SM4_CBC) || defined(WOLFSSL_SM4_GCM) || \
defined(WOLFSSL_SM4_CCM))
if ((cipher_names[i].cipherSuite0 == SM_BYTE) && (0
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3
|| (cipher_names[i].cipherSuite ==
TLS_ECDHE_ECDSA_WITH_SM4_CBC_SM3)
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3
|| (cipher_names[i].cipherSuite ==
TLS_ECDHE_ECDSA_WITH_SM4_GCM_SM3)
#endif
#ifdef BUILD_TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3
|| (cipher_names[i].cipherSuite ==
TLS_ECDHE_ECDSA_WITH_SM4_CCM_SM3)
#endif
)) {
haveSig |= SIG_SM2;
}
else
#endif
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || \
defined(HAVE_ED448)
if (XSTRSTR(name, "ECDSA"))
haveSig |= SIG_ECDSA;
else
#endif
#ifdef HAVE_ANON
if (XSTRSTR(name, "ADH"))
haveSig |= SIG_ANON;
else
#endif
#ifndef NO_PSK
if (XSTRSTR(name, "PSK") == NULL)
#endif
{
/* Fall back to RSA */
haveSig |= SIG_RSA;
}
ret = 1; /* found at least one */
break;
}
}
}
while (next++); /* ++ needed to skip ':' */
if (ret) {
int keySz = 0;
#ifndef NO_CERTS
keySz = ctx->privateKeySz;
#endif
#ifdef OPENSSL_EXTRA
if (callInitSuites) {
suites->setSuites = 0; /* Force InitSuites */
suites->hashSigAlgoSz = 0; /* Force InitSuitesHashSigAlgo call
* inside InitSuites */
InitSuites(suites, ctx->method->version, keySz, (word16)haveRSA,
(word16)havePSK, (word16)haveDH,
(word16)((haveSig & SIG_ECDSA) != 0),
(word16)haveECC, (word16)haveStaticRSA,
(word16)haveStaticECC,
(word16)((haveSig & SIG_FALCON) != 0),
(word16)((haveSig & SIG_DILITHIUM) != 0),
(word16)((haveSig & SIG_ANON) != 0),
(word16)haveNull, ctx->method->side);
/* Restore user ciphers ahead of defaults */
XMEMMOVE(suites->suites + idx, suites->suites,
min(suites->suiteSz, WOLFSSL_MAX_SUITE_SZ-idx));
suites->suiteSz += (word16)idx;
}
else
#endif
{
suites->suiteSz = (word16)idx;
InitSuitesHashSigAlgo_ex2(suites->hashSigAlgo, haveSig, 1, keySz,
&suites->hashSigAlgoSz);
}
#ifdef HAVE_RENEGOTIATION_INDICATION
if (ctx->method->side == WOLFSSL_CLIENT_END) {
if (suites->suiteSz > WOLFSSL_MAX_SUITE_SZ - 2) {
WOLFSSL_MSG("Too many ciphersuites");
return 0;
}
suites->suites[suites->suiteSz] = CIPHER_BYTE;
suites->suites[suites->suiteSz+1] =
TLS_EMPTY_RENEGOTIATION_INFO_SCSV;
suites->suiteSz += 2;
}
#endif
suites->setSuites = 1;
}
(void)ctx;
return ret;
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_SET_CIPHER_BYTES)
int SetCipherListFromBytes(WOLFSSL_CTX* ctx, Suites* suites, const byte* list,
const int listSz)
{
int ret = 0;
int idx = 0;
int i;
int haveRSAsig = 0;
int haveECDSAsig = 0;
int haveFalconSig = 0;
int haveDilithiumSig = 0;
int haveAnon = 0;
if (suites == NULL || list == NULL) {
WOLFSSL_MSG("SetCipherListFromBytes parameter error");
return 0;
}
if ((listSz % 2) != 0) {
return 0;
}
for (i = 0; (i + 1) < listSz; i += 2) {
const byte firstByte = list[i];
const byte secondByte = list[i + 1];
const char* name = NULL;
int j;
name = GetCipherNameInternal(firstByte, secondByte);
if (XSTRCMP(name, "None") == 0) {
/* bytes don't match any known cipher */
continue;
}
#ifdef WOLFSSL_DTLS
/* don't allow stream ciphers with DTLS */
if (ctx->method->version.major == DTLS_MAJOR) {
if (XSTRSTR(name, "RC4")) {
WOLFSSL_MSG("Stream ciphers not supported with DTLS");
continue;
}
}
#endif /* WOLFSSL_DTLS */
for (j = 0; j < idx; j += 2) {
if ((suites->suites[j+0] == firstByte) &&
(suites->suites[j+1] == secondByte)) {
break;
}
}
/* Silently drop duplicates from list. */
if (j != idx) {
continue;
}
if (idx + 1 >= WOLFSSL_MAX_SUITE_SZ) {
WOLFSSL_MSG("WOLFSSL_MAX_SUITE_SZ set too low");
return 0; /* suites buffer not large enough, error out */
}
suites->suites[idx++] = firstByte;
suites->suites[idx++] = secondByte;
/* The suites are either ECDSA, RSA, PSK, or Anon. The RSA
* suites don't necessarily have RSA in the name. */
#ifdef WOLFSSL_TLS13
if (firstByte == TLS13_BYTE || (firstByte == ECC_BYTE &&
(secondByte == TLS_SHA256_SHA256 ||
secondByte == TLS_SHA384_SHA384)) ||
(firstByte == CIPHER_BYTE && (secondByte == TLS_SM4_GCM_SM3 ||
secondByte == TLS_SM4_CCM_SM3))) {
#ifndef NO_RSA
haveRSAsig = 1;
#endif
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
haveECDSAsig = 1;
#endif
#if defined(HAVE_PQC)
#ifdef HAVE_FALCON
haveFalconSig = 1;
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
haveDilithiumSig = 1;
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
}
else
#endif /* WOLFSSL_TLS13 */
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
if ((haveECDSAsig == 0) && XSTRSTR(name, "ECDSA"))
haveECDSAsig = 1;
else
#endif
#ifdef HAVE_ANON
if (XSTRSTR(name, "ADH"))
haveAnon = 1;
else
#endif
if (haveRSAsig == 0
#ifndef NO_PSK
&& (XSTRSTR(name, "PSK") == NULL)
#endif
) {
haveRSAsig = 1;
}
ret = 1; /* found at least one */
}
if (ret) {
int keySz = 0;
int haveSig = 0;
#ifndef NO_CERTS
keySz = ctx->privateKeySz;
#endif
suites->suiteSz = (word16)idx;
haveSig |= haveECDSAsig ? SIG_ECDSA : 0;
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
haveSig |= haveECDSAsig ? SIG_SM2 : 0;
#endif
haveSig |= haveRSAsig ? SIG_RSA : 0;
haveSig |= haveFalconSig ? SIG_FALCON : 0;
haveSig |= haveDilithiumSig ? SIG_DILITHIUM : 0;
haveSig |= haveAnon ? SIG_ANON : 0;
InitSuitesHashSigAlgo_ex2(suites->hashSigAlgo, haveSig, 1, keySz,
&suites->hashSigAlgoSz);
#ifdef HAVE_RENEGOTIATION_INDICATION
if (ctx->method->side == WOLFSSL_CLIENT_END) {
if (suites->suiteSz > WOLFSSL_MAX_SUITE_SZ - 2) {
WOLFSSL_MSG("Too many ciphersuites");
return 0;
}
suites->suites[suites->suiteSz] = CIPHER_BYTE;
suites->suites[suites->suiteSz+1] =
TLS_EMPTY_RENEGOTIATION_INFO_SCSV;
suites->suiteSz += 2;
}
#endif
suites->setSuites = 1;
}
(void)ctx;
return ret;
}
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
struct mac_algs {
byte alg;
const char* name;
} mac_names[] = {
#ifndef NO_SHA256
{ sha256_mac, "SHA256" },
#endif
#ifdef WOLFSSL_SHA384
{ sha384_mac, "SHA384" },
#endif
#ifdef WOLFSSL_SHA512
{ sha512_mac, "SHA512" },
#endif
#ifdef WOLFSSL_SHA224
{ sha224_mac, "SHA224" },
#endif
#ifdef WOLFSSL_SM3
{ sm3_mac, "SM3" },
#endif
#if !defined(NO_SHA) && (!defined(NO_OLD_TLS) || \
defined(WOLFSSL_ALLOW_TLS_SHA1))
{ sha_mac, "SHA1" },
#endif
};
#define MAC_NAMES_SZ (int)(sizeof(mac_names)/sizeof(*mac_names))
/* Convert the hash algorithm string to a TLS MAC algorithm num. */
static byte GetMacAlgFromName(const char* name, int len)
{
byte alg = no_mac;
int i;
for (i = 0; i < MAC_NAMES_SZ; i++) {
if (((int)XSTRLEN(mac_names[i].name) == len) &&
(XMEMCMP(mac_names[i].name, name, len) == 0)) {
alg = mac_names[i].alg;
break;
}
}
return alg;
}
struct sig_algs {
byte alg;
const char* name;
} sig_names[] = {
#ifndef NO_RSA
{ rsa_sa_algo, "RSA" },
#ifdef WC_RSA_PSS
{ rsa_pss_sa_algo, "RSA-PSS" },
{ rsa_pss_sa_algo, "PSS" },
#endif
#endif
#ifdef HAVE_ECC
{ ecc_dsa_sa_algo, "ECDSA" },
#endif
#ifdef HAVE_ED25519
{ ed25519_sa_algo, "ED25519" },
#endif
#ifdef HAVE_ED448
{ ed448_sa_algo, "ED448" },
#endif
#ifndef NO_DSA
{ dsa_sa_algo, "DSA" },
#endif
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
{ sm2_sa_algo, "SM2" },
#endif
};
#define SIG_NAMES_SZ (int)(sizeof(sig_names)/sizeof(*sig_names))
/* Convert the signature algorithm string to a TLS signature algorithm num. */
static byte GetSigAlgFromName(const char* name, int len)
{
byte alg = anonymous_sa_algo;
int i;
for (i = 0; i < SIG_NAMES_SZ; i++) {
if (((int)XSTRLEN(sig_names[i].name) == len) &&
(XMEMCMP(sig_names[i].name, name, len) == 0)) {
alg = sig_names[i].alg;
break;
}
}
return alg;
}
/* Set the hash/signature algorithms that are supported for certificate signing.
*
* suites [in,out] Cipher suites and signature algorithms.
* list [in] String representing hash/signature algorithms to set.
* returns 0 on failure.
* 1 on success.
*/
int SetSuitesHashSigAlgo(Suites* suites, const char* list)
{
int ret = 1;
word16 idx = 0;
const char* s = list;
byte sig_alg = 0;
byte mac_alg = no_mac;
/* Setting is destructive on error. */
suites->hashSigAlgoSz = 0;
do {
if (*list == '+') {
if (mac_alg != 0) {
ret = 0;
break;
}
sig_alg = GetSigAlgFromName(s, (int)(list - s));
if (sig_alg == 0) {
ret = 0;
break;
}
s = list + 1;
}
else if (*list == ':' || *list == '\0') {
if (sig_alg == 0) {
/* No signature algorithm set yet.
* Ed25519 and Ed448 have implied MAC algorithm.
*/
sig_alg = GetSigAlgFromName(s, (int)(list - s));
if (sig_alg != ed25519_sa_algo && sig_alg != ed448_sa_algo) {
ret = 0;
break;
}
}
else {
mac_alg = GetMacAlgFromName(s, (int)(list - s));
if (mac_alg == 0) {
ret = 0;
break;
}
}
AddSuiteHashSigAlgo(suites->hashSigAlgo, mac_alg, sig_alg, 0, &idx);
sig_alg = 0;
mac_alg = no_mac;
s = list + 1;
}
list++;
}
while (*(list-1) != '\0');
if (s != list && (sig_alg != 0 || mac_alg != 0)) {
ret = 0;
}
else {
suites->hashSigAlgoSz = idx;
}
return ret;
}
#endif /* OPENSSL_EXTRA */
#if !defined(NO_WOLFSSL_SERVER) || !defined(NO_CERTS)
static int MatchSigAlgo(WOLFSSL* ssl, int sigAlgo)
{
#ifdef HAVE_ED25519
if (ssl->pkCurveOID == ECC_ED25519_OID) {
/* Certificate has Ed25519 key, only match with Ed25519 sig alg */
return sigAlgo == ed25519_sa_algo;
}
#endif
#ifdef HAVE_ED448
if (ssl->pkCurveOID == ECC_ED448_OID) {
/* Certificate has Ed448 key, only match with Ed448 sig alg */
return sigAlgo == ed448_sa_algo;
}
#endif
#ifdef HAVE_PQC
#ifdef HAVE_FALCON
if (ssl->pkCurveOID == CTC_FALCON_LEVEL1) {
/* Certificate has Falcon level 1 key, only match with Falcon level 1
* sig alg */
return sigAlgo == falcon_level1_sa_algo;
}
if (ssl->pkCurveOID == CTC_FALCON_LEVEL5) {
/* Certificate has Falcon level 5 key, only match with Falcon level 5
* sig alg */
return sigAlgo == falcon_level5_sa_algo;
}
#endif /* HAVE_FALCON */
#ifdef HAVE_DILITHIUM
if (ssl->pkCurveOID == CTC_DILITHIUM_LEVEL2) {
/* Certificate has Dilithium level 2 key, only match with it. */
return sigAlgo == dilithium_level2_sa_algo;
}
if (ssl->pkCurveOID == CTC_DILITHIUM_LEVEL3) {
/* Certificate has Dilithium level 3 key, only match with it. */
return sigAlgo == dilithium_level3_sa_algo;
}
if (ssl->pkCurveOID == CTC_DILITHIUM_LEVEL5) {
/* Certificate has Dilithium level 5 key, only match with it. */
return sigAlgo == dilithium_level5_sa_algo;
}
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#ifdef WC_RSA_PSS
/* RSA certificate and PSS sig alg. */
if (ssl->options.sigAlgo == rsa_sa_algo) {
#if defined(WOLFSSL_TLS13)
/* TLS 1.3 only supports RSA-PSS. */
if (IsAtLeastTLSv1_3(ssl->version))
return sigAlgo == rsa_pss_sa_algo;
#endif
/* TLS 1.2 and below - RSA-PSS allowed. */
if (sigAlgo == rsa_pss_sa_algo)
return 1;
}
#endif
/* Signature algorithm matches certificate. */
return sigAlgo == ssl->options.sigAlgo;
}
#if defined(HAVE_ECC) && defined(WOLFSSL_TLS13) || \
defined(USE_ECDSA_KEYSZ_HASH_ALGO)
static int CmpEccStrength(int hashAlgo, int curveSz)
{
int dgstSz = GetMacDigestSize((byte)hashAlgo);
if (dgstSz <= 0)
return -1;
return dgstSz - (curveSz & (~0x3));
}
#endif
static byte MinHashAlgo(WOLFSSL* ssl)
{
#ifdef WOLFSSL_TLS13
#ifndef NO_SHA256
if (IsAtLeastTLSv1_3(ssl->version)) {
return sha256_mac;
}
#elif defined(WOLFSSL_SM3)
if (IsAtLeastTLSv1_3(ssl->version)) {
return sm3_mac;
}
#endif
#endif
#if !defined(WOLFSSL_NO_TLS12) && !defined(WOLFSSL_ALLOW_TLS_SHA1)
if (IsAtLeastTLSv1_2(ssl)) {
return sha256_mac;
}
#endif /* WOLFSSL_NO_TLS12 */
(void)ssl;
return sha_mac;
}
int PickHashSigAlgo(WOLFSSL* ssl, const byte* hashSigAlgo, word32 hashSigAlgoSz)
{
word32 i;
int ret = MATCH_SUITE_ERROR;
byte minHash;
/* set defaults */
if (IsAtLeastTLSv1_3(ssl->version)) {
#ifndef NO_CERTS
/* TLS 1.3 cipher suites don't have public key algorithms in them.
* Using the one in the certificate - if any.
*/
ssl->options.sigAlgo = ssl->buffers.keyType;
#endif
}
else {
ssl->options.sigAlgo = ssl->specs.sig_algo;
}
if (ssl->options.sigAlgo == anonymous_sa_algo) {
/* PSK ciphersuite - get digest to use from cipher suite */
ssl->options.hashAlgo = ssl->specs.mac_algorithm;
return 0;
}
ssl->options.hashAlgo = minHash = MinHashAlgo(ssl);
/* No list means go with the defaults. */
if (hashSigAlgoSz == 0)
return 0;
/* i+1 since two bytes used to describe hash and signature algorithm */
for (i = 0; (i+1) < hashSigAlgoSz; i += HELLO_EXT_SIGALGO_SZ) {
byte hashAlgo = 0, sigAlgo = 0;
DecodeSigAlg(&hashSigAlgo[i], &hashAlgo, &sigAlgo);
/* Keep looking if hash algorithm not strong enough. */
if (hashAlgo < minHash)
continue;
/* Keep looking if signature algorithm isn't supported by cert. */
if (!MatchSigAlgo(ssl, sigAlgo))
continue;
#ifdef HAVE_ED25519
if (ssl->pkCurveOID == ECC_ED25519_OID) {
/* Matched Ed25519 - set chosen and finished. */
ssl->options.sigAlgo = sigAlgo;
ssl->options.hashAlgo = hashAlgo;
ret = 0;
break;
}
#endif
#ifdef HAVE_ED448
if (ssl->pkCurveOID == ECC_ED448_OID) {
/* Matched Ed448 - set chosen and finished. */
ssl->options.sigAlgo = sigAlgo;
ssl->options.hashAlgo = hashAlgo;
ret = 0;
break;
}
#endif
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
if (ssl->pkCurveOID == CTC_FALCON_LEVEL1 ||
ssl->pkCurveOID == CTC_FALCON_LEVEL5 ) {
/* Matched Falcon - set chosen and finished. */
ssl->options.sigAlgo = sigAlgo;
ssl->options.hashAlgo = hashAlgo;
ret = 0;
break;
}
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
if (ssl->pkCurveOID == CTC_DILITHIUM_LEVEL2 ||
ssl->pkCurveOID == CTC_DILITHIUM_LEVEL3 ||
ssl->pkCurveOID == CTC_DILITHIUM_LEVEL5) {
/* Matched Dilithium - set chosen and finished. */
ssl->options.sigAlgo = sigAlgo;
ssl->options.hashAlgo = hashAlgo;
ret = 0;
break;
}
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
#if defined(WOLFSSL_ECDSA_MATCH_HASH) && defined(USE_ECDSA_KEYSZ_HASH_ALGO)
#error "WOLFSSL_ECDSA_MATCH_HASH and USE_ECDSA_KEYSZ_HASH_ALGO cannot "
"be used together"
#endif
#if defined(HAVE_ECC) && (defined(WOLFSSL_TLS13) || \
defined(WOLFSSL_ECDSA_MATCH_HASH))
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (sigAlgo == sm2_sa_algo && hashAlgo == sm3_mac
#ifndef WOLFSSL_ECDSA_MATCH_HASH
&& IsAtLeastTLSv1_3(ssl->version)
#endif
) {
/* Must be exact match. */
if (CmpEccStrength(hashAlgo, ssl->buffers.keySz) != 0)
continue;
/* Matched SM2-SM3 - set chosen and finished. */
ssl->options.sigAlgo = sigAlgo;
ssl->options.hashAlgo = hashAlgo;
ret = 0;
break;
}
else
#endif
if (sigAlgo == ecc_dsa_sa_algo
#ifndef WOLFSSL_ECDSA_MATCH_HASH
&& IsAtLeastTLSv1_3(ssl->version)
#endif
) {
/* Must be exact match. */
if (CmpEccStrength(hashAlgo, ssl->buffers.keySz) != 0)
continue;
/* Matched ECDSA exactly - set chosen and finished. */
ssl->options.hashAlgo = hashAlgo;
ssl->options.sigAlgo = sigAlgo;
ret = 0;
break;
}
#endif
/* For ECDSA the `USE_ECDSA_KEYSZ_HASH_ALGO` build option will choose a hash
* algorithm that matches the ephemeral ECDHE key size or the next highest
* available. This workaround resolves issue with some peer's that do not
* properly support scenarios such as a P-256 key hashed with SHA512.
*/
#if defined(HAVE_ECC) && defined(USE_ECDSA_KEYSZ_HASH_ALGO)
if (sigAlgo == ecc_dsa_sa_algo) {
int cmp = CmpEccStrength(hashAlgo, ssl->eccTempKeySz);
/* Keep looking if digest not strong enough. */
if (cmp < 0)
continue;
/* Looking for exact match or next highest. */
if (ret != 0 || hashAlgo <= ssl->options.hashAlgo) {
ssl->options.hashAlgo = hashAlgo;
ssl->options.sigAlgo = sigAlgo;
#if defined(WOLFSSL_TLS13) || defined(HAVE_FFDHE)
ssl->namedGroup = 0;
#endif
ret = 0;
}
/* Continue looking if not the same strength. */
if (cmp > 0)
continue;
/* Exact match - finished. */
break;
}
#endif
switch (hashAlgo) {
#ifndef NO_SHA
case sha_mac:
#endif
#ifdef WOLFSSL_SHA224
case sha224_mac:
#endif
#ifndef NO_SHA256
case sha256_mac:
#endif
#ifdef WOLFSSL_SHA384
case sha384_mac:
#endif
#ifdef WOLFSSL_SHA512
case sha512_mac:
#endif
#ifdef WOLFSSL_SM3
case sm3_mac:
#endif
#ifdef WOLFSSL_STRONGEST_HASH_SIG
/* Is hash algorithm weaker than chosen/min? */
if (hashAlgo < ssl->options.hashAlgo)
break;
#else
/* Is hash algorithm stronger than last chosen? */
if (ret == 0 && hashAlgo > ssl->options.hashAlgo)
break;
#endif
if (IsAtLeastTLSv1_2(ssl) && !IsAtLeastTLSv1_3(ssl->version) &&
(ssl->options.side == WOLFSSL_CLIENT_END)) {
/* TLS 1.2 client deciding hash algorithm for
* CertificateVerify. Hash must be one of the handshake
* hashes being maintained. */
if (1
#ifndef NO_SHA
&& (hashAlgo != sha_mac)
#endif
#ifndef NO_SHA256
&& (hashAlgo != sha256_mac)
#endif
#ifdef WOLFSSL_SHA384
&& (hashAlgo != sha384_mac)
#endif
#ifdef WOLFSSL_SHA512
&& (hashAlgo != sha512_mac)
#endif
#ifdef WOLFSSL_SM3
&& (hashAlgo != sm3_mac)
#endif
)
{
break;
}
}
/* The chosen one - but keep looking. */
ssl->options.hashAlgo = hashAlgo;
ssl->options.sigAlgo = sigAlgo;
ret = 0;
break;
default:
/* Support for hash algorithm not compiled in. */
break;
}
}
return ret;
}
#endif /* !defined(NO_WOLFSSL_SERVER) || !defined(NO_CERTS) */
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
/* Initialize HandShakeInfo */
void InitHandShakeInfo(HandShakeInfo* info, WOLFSSL* ssl)
{
int i;
info->ssl = ssl;
info->cipherName[0] = 0;
for (i = 0; i < MAX_PACKETS_HANDSHAKE; i++)
info->packetNames[i][0] = 0;
info->numberPackets = 0;
info->negotiationError = 0;
}
/* Set Final HandShakeInfo parameters */
void FinishHandShakeInfo(HandShakeInfo* info)
{
int i;
int sz = GetCipherNamesSize();
for (i = 0; i < sz; i++) {
#ifndef NO_CIPHER_SUITE_ALIASES
if (cipher_names[i].flags & WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS)
continue;
#endif
if (info->ssl->options.cipherSuite ==
(byte)cipher_names[i].cipherSuite) {
if (info->ssl->options.cipherSuite0 == ECC_BYTE)
continue; /* ECC suites at end */
XSTRNCPY(info->cipherName, cipher_names[i].name, MAX_CIPHERNAME_SZ);
info->cipherName[MAX_CIPHERNAME_SZ] = '\0';
break;
}
}
/* error max and min are negative numbers */
if (info->ssl->error <= MIN_PARAM_ERR && info->ssl->error >= MAX_PARAM_ERR)
info->negotiationError = info->ssl->error;
}
/* Add name to info packet names, increase packet name count */
void AddPacketName(WOLFSSL* ssl, const char* name)
{
#ifdef WOLFSSL_CALLBACKS
HandShakeInfo* info = &ssl->handShakeInfo;
if (info->numberPackets < MAX_PACKETS_HANDSHAKE) {
char* packetName = info->packetNames[info->numberPackets];
XSTRNCPY(packetName, name, MAX_PACKETNAME_SZ);
packetName[MAX_PACKETNAME_SZ] = '\0';
info->numberPackets++;
}
#endif
(void)ssl;
(void)name;
}
#ifdef WOLFSSL_CALLBACKS
/* Initialize TimeoutInfo */
void InitTimeoutInfo(TimeoutInfo* info)
{
XMEMSET(info, 0, sizeof(TimeoutInfo));
}
/* Free TimeoutInfo */
void FreeTimeoutInfo(TimeoutInfo* info, void* heap)
{
int i;
(void)heap;
for (i = 0; i < MAX_PACKETS_HANDSHAKE; i++) {
if (info->packets[i].bufferValue) {
XFREE(info->packets[i].bufferValue, heap, DYNAMIC_TYPE_INFO);
info->packets[i].bufferValue = NULL;
}
}
}
/* Add packet name to previously added packet info */
void AddLateName(const char* name, TimeoutInfo* info)
{
/* make sure we have a valid previous one */
if (info->numberPackets > 0 && info->numberPackets <
MAX_PACKETS_HANDSHAKE) {
char* packetName = info->packets[info->numberPackets-1].packetName;
XSTRNCPY(packetName, name, MAX_PACKETNAME_SZ);
packetName[MAX_PACKETNAME_SZ] = '\0';
}
}
/* Add record header to previously added packet info */
void AddLateRecordHeader(const RecordLayerHeader* rl, TimeoutInfo* info)
{
/* make sure we have a valid previous one */
if (info->numberPackets > 0 && info->numberPackets <
MAX_PACKETS_HANDSHAKE) {
if (info->packets[info->numberPackets - 1].bufferValue)
XMEMCPY(info->packets[info->numberPackets - 1].bufferValue, rl,
RECORD_HEADER_SZ);
else
XMEMCPY(info->packets[info->numberPackets - 1].value, rl,
RECORD_HEADER_SZ);
}
}
#endif /* WOLFSSL_CALLBACKS */
/* Add PacketInfo to TimeoutInfo
*
* ssl WOLFSSL structure sending or receiving packet
* name name of packet being sent
* type type of packet being sent
* data data bing sent with packet
* sz size of data buffer
* lateRL save space for record layer in TimoutInfo struct
* written 1 if this packet is being written to wire, 0 if being read
* heap custom heap to use for mallocs/frees
*/
int AddPacketInfo(WOLFSSL* ssl, const char* name, int type,
const byte* data, int sz, int written, int lateRL, void* heap)
{
#ifdef WOLFSSL_CALLBACKS
TimeoutInfo* info = &ssl->timeoutInfo;
if (info->numberPackets < (MAX_PACKETS_HANDSHAKE - 1)) {
WOLFSSL_TIMEVAL currTime;
int totalSz;
/* add in space for post record layer */
totalSz = sz + lateRL;
/* may add name after */
if (name) {
char* packetName = info->packets[info->numberPackets].packetName;
XSTRNCPY(packetName, name, MAX_PACKETNAME_SZ);
packetName[MAX_PACKETNAME_SZ] = '\0';
}
/* add data, put in buffer if bigger than static buffer */
info->packets[info->numberPackets].valueSz = totalSz;
if (totalSz < MAX_VALUE_SZ) {
XMEMCPY(info->packets[info->numberPackets].value + lateRL, data,
sz);
}
else {
info->packets[info->numberPackets].bufferValue =
(byte*)XMALLOC(totalSz, heap, DYNAMIC_TYPE_INFO);
if (!info->packets[info->numberPackets].bufferValue) {
/* let next alloc catch, just don't fill, not fatal here */
info->packets[info->numberPackets].valueSz = 0;
}
else {
/* copy over data (which has the handshake header), leaving
* room for post record layer header if set */
XMEMCPY(info->packets[info->numberPackets].bufferValue +
lateRL, data, sz);
}
}
if (gettimeofday(&currTime, 0) < 0)
return SYSLIB_FAILED_E;
info->packets[info->numberPackets].timestamp.tv_sec =
currTime.tv_sec;
info->packets[info->numberPackets].timestamp.tv_usec =
currTime.tv_usec;
info->numberPackets++;
}
#endif /* WOLFSSL_CALLBACKS */
#ifdef OPENSSL_EXTRA
if ((ssl->protoMsgCb != NULL) && (sz > 0) &&
(ssl->keys.encryptionOn != 1)) {
/* version from hex to dec 16 is 16^1, 256 from 16^2 and
4096 from 16^3 */
int version = (ssl->version.minor & 0x0F) +
((ssl->version.minor & 0xF0) << 4) +
((ssl->version.major & 0x0F) << 8) +
((ssl->version.major & 0xF0) << 12);
ssl->protoMsgCb(written, version, type,
(const void *)data, (size_t)sz,
ssl, ssl->protoMsgCtx);
}
#endif /* OPENSSL_EXTRA */
(void)written;
(void)name;
(void)heap;
(void)type;
(void)ssl;
(void)lateRL;
return 0;
}
#endif /* WOLFSSL_CALLBACKS */
#if !defined(NO_CERTS)
#if defined(WOLF_PRIVATE_KEY_ID) && !defined(NO_CHECK_PRIVATE_KEY)
/* Create a private key for a device.
*
* pkey Key object.
* data Data to identify key.
* length Length of data.
* hsType Type of the key to create.
* heap Custom heap to use for mallocs/frees
* devId Id for device.
* return 0 on success.
* return NOT_COMPILED_IN if algorithm type not supported.
* return MEMORY_E on memory allocation failure.
* return other internal error
*/
int CreateDevPrivateKey(void** pkey, byte* data, word32 length, int hsType,
int label, int id, void* heap, int devId)
{
int ret = NOT_COMPILED_IN;
if (hsType == DYNAMIC_TYPE_RSA) {
#ifndef NO_RSA
RsaKey* rsaKey;
rsaKey = (RsaKey*)XMALLOC(sizeof(RsaKey), heap, DYNAMIC_TYPE_RSA);
if (rsaKey == NULL) {
return MEMORY_E;
}
if (label) {
ret = wc_InitRsaKey_Label(rsaKey, (char*)data, heap, devId);
}
else if (id) {
ret = wc_InitRsaKey_Id(rsaKey, data, length, heap, devId);
}
if (ret == 0) {
*pkey = (void*)rsaKey;
}
else {
XFREE(rsaKey, heap, DYNAMIC_TYPE_RSA);
}
#endif
}
else if (hsType == DYNAMIC_TYPE_ECC) {
#ifdef HAVE_ECC
ecc_key* ecKey;
ecKey = (ecc_key*)XMALLOC(sizeof(ecc_key), heap, DYNAMIC_TYPE_ECC);
if (ecKey == NULL) {
return MEMORY_E;
}
if (label) {
ret = wc_ecc_init_label(ecKey, (char*)data, heap, devId);
}
else if (id) {
ret = wc_ecc_init_id(ecKey, data, length, heap, devId);
}
if (ret == 0) {
*pkey = (void*)ecKey;
}
else {
XFREE(ecKey, heap, DYNAMIC_TYPE_ECC);
}
#endif
}
return ret;
}
#endif /* WOLF_PRIVATE_KEY_ID && !NO_CHECK_PRIVATE_KEY */
/* Decode the private key - RSA/ECC/Ed25519/Ed448/Falcon/Dilithium - and
* creates a key object.
*
* The signature type is set as well.
* The maximum length of a signature is returned.
*
* ssl The SSL/TLS object.
* length The length of a signature.
* returns 0 on success, otherwise failure.
*/
int DecodePrivateKey(WOLFSSL *ssl, word16* length)
{
int ret = BAD_FUNC_ARG;
int keySz;
word32 idx;
/* make sure private key exists */
if (ssl->buffers.key == NULL || ssl->buffers.key->buffer == NULL) {
/* allow no private key if using external */
#ifdef WOLF_PRIVATE_KEY_ID
if (ssl->devId != INVALID_DEVID
#ifdef HAVE_PK_CALLBACKS
|| wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)
#endif
) {
*length = (word16)GetPrivateKeySigSize(ssl);
return 0;
}
else
#endif
{
WOLFSSL_MSG("Private key missing!");
ERROR_OUT(NO_PRIVATE_KEY, exit_dpk);
}
}
#ifdef WOLF_PRIVATE_KEY_ID
if (ssl->buffers.keyDevId != INVALID_DEVID && (ssl->buffers.keyId ||
ssl->buffers.keyLabel)) {
if (ssl->buffers.keyType == rsa_sa_algo)
ssl->hsType = DYNAMIC_TYPE_RSA;
else if (ssl->buffers.keyType == ecc_dsa_sa_algo)
ssl->hsType = DYNAMIC_TYPE_ECC;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_dpk;
}
if (ssl->buffers.keyType == rsa_sa_algo) {
#ifndef NO_RSA
if (ssl->buffers.keyLabel) {
ret = wc_InitRsaKey_Label((RsaKey*)ssl->hsKey,
(char*)ssl->buffers.key->buffer,
ssl->heap, ssl->buffers.keyDevId);
}
else if (ssl->buffers.keyId) {
ret = wc_InitRsaKey_Id((RsaKey*)ssl->hsKey,
ssl->buffers.key->buffer,
ssl->buffers.key->length, ssl->heap,
ssl->buffers.keyDevId);
}
if (ret == 0) {
if (ssl->buffers.keySz < ssl->options.minRsaKeySz) {
WOLFSSL_MSG("RSA key size too small");
ERROR_OUT(RSA_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = (word16)ssl->buffers.keySz;
}
#else
ret = NOT_COMPILED_IN;
#endif
}
else if (ssl->buffers.keyType == ecc_dsa_sa_algo) {
#ifdef HAVE_ECC
if (ssl->buffers.keyLabel) {
ret = wc_ecc_init_label((ecc_key*)ssl->hsKey,
(char*)ssl->buffers.key->buffer,
ssl->heap, ssl->buffers.keyDevId);
}
else if (ssl->buffers.keyId) {
ret = wc_ecc_init_id((ecc_key*)ssl->hsKey,
ssl->buffers.key->buffer,
ssl->buffers.key->length, ssl->heap,
ssl->buffers.keyDevId);
}
if (ret == 0) {
if (ssl->buffers.keySz < ssl->options.minEccKeySz) {
WOLFSSL_MSG("ECC key size too small");
ERROR_OUT(ECC_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = (word16)wc_ecc_sig_size_calc(ssl->buffers.keySz);
}
#else
ret = NOT_COMPILED_IN;
#endif
}
goto exit_dpk;
}
#endif /* WOLF_PRIVATE_KEY_ID */
#ifndef NO_RSA
if (ssl->buffers.keyType == rsa_sa_algo || ssl->buffers.keyType == 0) {
ssl->hsType = DYNAMIC_TYPE_RSA;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_dpk;
}
WOLFSSL_MSG("Trying RSA private key");
/* Set start of data to beginning of buffer. */
idx = 0;
/* Decode the key assuming it is an RSA private key. */
ret = wc_RsaPrivateKeyDecode(ssl->buffers.key->buffer, &idx,
(RsaKey*)ssl->hsKey, ssl->buffers.key->length);
#ifdef WOLF_PRIVATE_KEY_ID
/* if using external key then allow using a public key */
if (ret != 0 && (ssl->devId != INVALID_DEVID
#ifdef HAVE_PK_CALLBACKS
|| wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)
#endif
)) {
WOLFSSL_MSG("Trying RSA public key with crypto callbacks");
idx = 0;
ret = wc_RsaPublicKeyDecode(ssl->buffers.key->buffer, &idx,
(RsaKey*)ssl->hsKey, ssl->buffers.key->length);
}
#endif
if (ret == 0) {
WOLFSSL_MSG("Using RSA private key");
/* It worked so check it meets minimum key size requirements. */
keySz = wc_RsaEncryptSize((RsaKey*)ssl->hsKey);
if (keySz < 0) { /* check if keySz has error case */
ERROR_OUT(keySz, exit_dpk);
}
if (keySz < ssl->options.minRsaKeySz) {
WOLFSSL_MSG("RSA key size too small");
ERROR_OUT(RSA_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = (word16)keySz;
goto exit_dpk;
}
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
#ifndef NO_RSA
FreeKey(ssl, ssl->hsType, (void**)&ssl->hsKey);
#endif /* !NO_RSA */
if (ssl->buffers.keyType == ecc_dsa_sa_algo || ssl->buffers.keyType == 0
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
|| ssl->buffers.keyType == sm2_sa_algo
#endif
) {
ssl->hsType = DYNAMIC_TYPE_ECC;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_dpk;
}
#ifndef NO_RSA
WOLFSSL_MSG("Trying ECC private key, RSA didn't work");
#else
WOLFSSL_MSG("Trying ECC private key");
#endif
/* Set start of data to beginning of buffer. */
idx = 0;
/* Decode the key assuming it is an ECC private key. */
ret = wc_EccPrivateKeyDecode(ssl->buffers.key->buffer, &idx,
(ecc_key*)ssl->hsKey,
ssl->buffers.key->length);
#ifdef WOLF_PRIVATE_KEY_ID
/* if using external key then allow using a public key */
if (ret != 0 && (ssl->devId != INVALID_DEVID
#ifdef HAVE_PK_CALLBACKS
|| wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)
#endif
)) {
WOLFSSL_MSG("Trying ECC public key with crypto callbacks");
idx = 0;
ret = wc_EccPublicKeyDecode(ssl->buffers.key->buffer, &idx,
(ecc_key*)ssl->hsKey,
ssl->buffers.key->length);
}
#endif
if (ret == 0) {
WOLFSSL_MSG("Using ECC private key");
/* Check it meets the minimum ECC key size requirements. */
keySz = wc_ecc_size((ecc_key*)ssl->hsKey);
if (keySz < ssl->options.minEccKeySz) {
WOLFSSL_MSG("ECC key size too small");
ERROR_OUT(ECC_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = (word16)wc_ecc_sig_size((ecc_key*)ssl->hsKey);
goto exit_dpk;
}
}
#endif
#if defined(HAVE_ED25519) && defined(HAVE_ED25519_KEY_IMPORT)
#if !defined(NO_RSA) || defined(HAVE_ECC)
FreeKey(ssl, ssl->hsType, (void**)&ssl->hsKey);
#endif
if (ssl->buffers.keyType == ed25519_sa_algo || ssl->buffers.keyType == 0) {
ssl->hsType = DYNAMIC_TYPE_ED25519;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_dpk;
}
#ifdef HAVE_ECC
WOLFSSL_MSG("Trying ED25519 private key, ECC didn't work");
#elif !defined(NO_RSA)
WOLFSSL_MSG("Trying ED25519 private key, RSA didn't work");
#else
WOLFSSL_MSG("Trying ED25519 private key");
#endif
/* Set start of data to beginning of buffer. */
idx = 0;
/* Decode the key assuming it is an ED25519 private key. */
ret = wc_Ed25519PrivateKeyDecode(ssl->buffers.key->buffer, &idx,
(ed25519_key*)ssl->hsKey,
ssl->buffers.key->length);
#ifdef WOLF_PRIVATE_KEY_ID
/* if using external key then allow using a public key */
if (ret != 0 && (ssl->devId != INVALID_DEVID
#ifdef HAVE_PK_CALLBACKS
|| wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)
#endif
)) {
WOLFSSL_MSG("Trying ED25519 public key with crypto callbacks");
idx = 0;
ret = wc_Ed25519PublicKeyDecode(ssl->buffers.key->buffer, &idx,
(ed25519_key*)ssl->hsKey,
ssl->buffers.key->length);
}
#endif
if (ret == 0) {
WOLFSSL_MSG("Using ED25519 private key");
/* Check it meets the minimum ECC key size requirements. */
if (ED25519_KEY_SIZE < ssl->options.minEccKeySz) {
WOLFSSL_MSG("ED25519 key size too small");
ERROR_OUT(ECC_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = ED25519_SIG_SIZE;
goto exit_dpk;
}
}
#endif /* HAVE_ED25519 && HAVE_ED25519_KEY_IMPORT */
#if defined(HAVE_ED448) && defined(HAVE_ED448_KEY_IMPORT)
#if !defined(NO_RSA) || defined(HAVE_ECC)
FreeKey(ssl, ssl->hsType, (void**)&ssl->hsKey);
#endif
if (ssl->buffers.keyType == ed448_sa_algo || ssl->buffers.keyType == 0) {
ssl->hsType = DYNAMIC_TYPE_ED448;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_dpk;
}
#ifdef HAVE_ED25519
WOLFSSL_MSG("Trying ED448 private key, ED25519 didn't work");
#elif defined(HAVE_ECC)
WOLFSSL_MSG("Trying ED448 private key, ECC didn't work");
#elif !defined(NO_RSA)
WOLFSSL_MSG("Trying ED448 private key, RSA didn't work");
#else
WOLFSSL_MSG("Trying ED448 private key");
#endif
/* Set start of data to beginning of buffer. */
idx = 0;
/* Decode the key assuming it is an ED448 private key. */
ret = wc_Ed448PrivateKeyDecode(ssl->buffers.key->buffer, &idx,
(ed448_key*)ssl->hsKey,
ssl->buffers.key->length);
#ifdef WOLF_PRIVATE_KEY_ID
/* if using external key then allow using a public key */
if (ret != 0 && (ssl->devId != INVALID_DEVID
#ifdef HAVE_PK_CALLBACKS
|| wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)
#endif
)) {
WOLFSSL_MSG("Trying ED25519 public key with crypto callbacks");
idx = 0;
ret = wc_Ed448PublicKeyDecode(ssl->buffers.key->buffer, &idx,
(ed448_key*)ssl->hsKey,
ssl->buffers.key->length);
}
#endif
if (ret == 0) {
WOLFSSL_MSG("Using ED448 private key");
/* Check it meets the minimum ECC key size requirements. */
if (ED448_KEY_SIZE < ssl->options.minEccKeySz) {
WOLFSSL_MSG("ED448 key size too small");
ERROR_OUT(ECC_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = ED448_SIG_SIZE;
goto exit_dpk;
}
}
#endif /* HAVE_ED448 && HAVE_ED448_KEY_IMPORT */
#if defined(HAVE_PQC)
#if defined(HAVE_FALCON)
if (ssl->buffers.keyType == falcon_level1_sa_algo ||
ssl->buffers.keyType == falcon_level5_sa_algo ||
ssl->buffers.keyType == 0) {
ssl->hsType = DYNAMIC_TYPE_FALCON;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_dpk;
}
if (ssl->buffers.keyType == falcon_level1_sa_algo) {
ret = wc_falcon_set_level((falcon_key*)ssl->hsKey, 1);
}
else if (ssl->buffers.keyType == falcon_level5_sa_algo) {
ret = wc_falcon_set_level((falcon_key*)ssl->hsKey, 5);
}
else {
/* What if ssl->buffers.keyType is 0? We might want to do something
* more graceful here. */
ret = ALGO_ID_E;
}
if (ret != 0) {
goto exit_dpk;
}
#if defined(HAVE_ED448)
WOLFSSL_MSG("Trying Falcon private key, ED448 didn't work");
#elif defined(HAVE_ED25519)
WOLFSSL_MSG("Trying Falcon private key, ED25519 didn't work");
#elif defined(HAVE_ECC)
WOLFSSL_MSG("Trying Falcon private key, ECC didn't work");
#elif !defined(NO_RSA)
WOLFSSL_MSG("Trying Falcon private key, RSA didn't work");
#else
WOLFSSL_MSG("Trying Falcon private key");
#endif
/* Set start of data to beginning of buffer. */
idx = 0;
/* Decode the key assuming it is a Falcon private key. */
ret = wc_falcon_import_private_only(ssl->buffers.key->buffer,
ssl->buffers.key->length,
(falcon_key*)ssl->hsKey);
if (ret == 0) {
WOLFSSL_MSG("Using Falcon private key");
/* Check it meets the minimum Falcon key size requirements. */
if (FALCON_MAX_KEY_SIZE < ssl->options.minFalconKeySz) {
WOLFSSL_MSG("Falcon key size too small");
ERROR_OUT(FALCON_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = FALCON_MAX_SIG_SIZE;
goto exit_dpk;
}
}
#endif /* HAVE_FALCON */
#if defined(HAVE_DILITHIUM)
if (ssl->buffers.keyType == dilithium_level2_sa_algo ||
ssl->buffers.keyType == dilithium_level3_sa_algo ||
ssl->buffers.keyType == dilithium_level5_sa_algo ||
ssl->buffers.keyType == 0) {
ssl->hsType = DYNAMIC_TYPE_DILITHIUM;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_dpk;
}
if (ssl->buffers.keyType == dilithium_level2_sa_algo) {
ret = wc_dilithium_set_level((dilithium_key*)ssl->hsKey, 2);
}
else if (ssl->buffers.keyType == dilithium_level3_sa_algo) {
ret = wc_dilithium_set_level((dilithium_key*)ssl->hsKey, 3);
}
else if (ssl->buffers.keyType == dilithium_level5_sa_algo) {
ret = wc_dilithium_set_level((dilithium_key*)ssl->hsKey, 5);
}
else {
/* What if ssl->buffers.keyType is 0? We might want to do something
* more graceful here. */
ret = ALGO_ID_E;
}
if (ret != 0) {
goto exit_dpk;
}
#if defined(HAVE_ED448)
WOLFSSL_MSG("Trying Dilithium private key, ED448 didn't work");
#elif defined(HAVE_ED25519)
WOLFSSL_MSG("Trying Dilithium private key, ED25519 didn't work");
#elif defined(HAVE_ECC)
WOLFSSL_MSG("Trying Dilithium private key, ECC didn't work");
#elif !defined(NO_RSA)
WOLFSSL_MSG("Trying Dilithium private key, RSA didn't work");
#elif defined(HAVE_FALCON)
WOLFSSL_MSG("Trying Dilithium private key, Falcon didn't work");
#else
WOLFSSL_MSG("Trying Dilithium private key");
#endif
/* Set start of data to beginning of buffer. */
idx = 0;
/* Decode the key assuming it is a Dilithium private key. */
ret = wc_dilithium_import_private_only(ssl->buffers.key->buffer,
ssl->buffers.key->length,
(dilithium_key*)ssl->hsKey);
if (ret == 0) {
WOLFSSL_MSG("Using Dilithium private key");
/* Check it meets the minimum Dilithium key size requirements. */
if (DILITHIUM_MAX_KEY_SIZE < ssl->options.minDilithiumKeySz) {
WOLFSSL_MSG("Dilithium key size too small");
ERROR_OUT(DILITHIUM_KEY_SIZE_E, exit_dpk);
}
/* Return the maximum signature length. */
*length = DILITHIUM_MAX_SIG_SIZE;
goto exit_dpk;
}
}
#endif /* HAVE_DILITHIUM */
#endif /* HAVE_PQC */
(void)idx;
(void)keySz;
(void)length;
exit_dpk:
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#endif /* WOLFSSL_TLS13 || !NO_WOLFSSL_CLIENT */
#if defined(WOLFSSL_TLS13) && !defined(WOLFSSL_NO_TLS12)
/* returns 1 if able to do TLS 1.3 otherwise 0 */
int TLSv1_3_Capable(WOLFSSL* ssl)
{
#ifndef WOLFSSL_TLS13
return 0;
#else
int ret = 0;
if (IsAtLeastTLSv1_3(ssl->ctx->method->version)) {
ret = 1;
}
if ((wolfSSL_get_options(ssl) & WOLFSSL_OP_NO_TLSv1_3)) {
/* option set at run time to disable TLS 1.3 */
ret = 0;
}
return ret;
#endif
}
#endif /* WOLFSSL_TLS13 */
#ifndef WOLFSSL_NO_TLS12
#if (!defined(NO_WOLFSSL_CLIENT) && (!defined(NO_DH) || defined(HAVE_ECC) || \
defined(HAVE_CURVE25519) || defined(HAVE_CURVE448))) || \
(!defined(NO_WOLFSSL_SERVER) && (defined(HAVE_ECC) || \
((defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)) && \
(defined(HAVE_ED25519) || defined(HAVE_ED448) || !defined(NO_RSA)))) || \
(!defined(NO_DH) && (!defined(NO_RSA) || defined(HAVE_ANON))))
/* Returns whether the signature algorithm requires caching of messages.
*
* @param [in] sigAlgo Signature algorithm.
* @return 1 when caching required.
* @return 0 when caching not required.
*/
static int SigAlgoCachesMsgs(int sigAlgo)
{
int ret;
(void)sigAlgo;
#ifdef HAVE_ED25519
if (sigAlgo == ed25519_sa_algo) {
ret = 1;
}
else
#endif
#ifdef HAVE_ED448
if (sigAlgo == ed448_sa_algo) {
ret = 1;
}
else
#endif
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (sigAlgo == sm2_sa_algo) {
ret = 1;
}
else
#endif
{
ret = 0;
}
return ret;
}
static int HashSkeData(WOLFSSL* ssl, enum wc_HashType hashType,
const byte* data, int sz, byte sigAlgo)
{
int ret = 0;
int digest_sz = wc_HashGetDigestSize(hashType);
if (digest_sz <= 0) {
ret = BUFFER_ERROR;
}
if (ret == 0) {
/* buffer for signature */
ssl->buffers.sig.buffer = (byte*)XMALLOC(SEED_LEN + sz, ssl->heap,
DYNAMIC_TYPE_SIGNATURE);
if (ssl->buffers.sig.buffer == NULL) {
ret = MEMORY_E;
}
}
if (ret == 0) {
ssl->buffers.sig.length = SEED_LEN + sz;
/* build message to hash */
XMEMCPY(ssl->buffers.sig.buffer, ssl->arrays->clientRandom, RAN_LEN);
XMEMCPY(&ssl->buffers.sig.buffer[RAN_LEN], ssl->arrays->serverRandom,
RAN_LEN);
/* message */
XMEMCPY(&ssl->buffers.sig.buffer[RAN_LEN * 2], data, sz);
}
if (ret == 0 && !SigAlgoCachesMsgs(sigAlgo)) {
ssl->buffers.digest.length = (unsigned int)digest_sz;
/* buffer for hash */
if (!ssl->buffers.digest.buffer) {
if (!ssl->options.dontFreeDigest) {
XFREE(ssl->buffers.digest.buffer, ssl->heap,
DYNAMIC_TYPE_DIGEST);
}
}
ssl->options.dontFreeDigest = 0;
ssl->buffers.digest.buffer = (byte*)XMALLOC(ssl->buffers.digest.length,
ssl->heap, DYNAMIC_TYPE_DIGEST);
if (ssl->buffers.digest.buffer == NULL) {
ret = MEMORY_E;
}
}
if (ret == 0 && !SigAlgoCachesMsgs(sigAlgo)) {
/* Perform hash. Only wc_Hash supports MD5_SHA1. */
ret = wc_Hash(hashType, ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length);
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->ProcessServerSigKexCb == NULL)
#endif
{
/* No further processing will be done. It can be freed. */
XFREE(ssl->buffers.sig.buffer, ssl->heap, DYNAMIC_TYPE_SIGNATURE);
ssl->buffers.sig.buffer = NULL;
}
}
return ret;
}
#endif
#endif /* !WOLFSSL_NO_TLS12 */
/* client only parts */
#ifndef NO_WOLFSSL_CLIENT
int HaveUniqueSessionObj(WOLFSSL* ssl)
{
if (ssl->session->ref.count > 1) {
WOLFSSL_SESSION* newSession = wolfSSL_SESSION_dup(ssl->session);
if (newSession == NULL) {
WOLFSSL_MSG("Session duplicate failed");
return 0;
}
wolfSSL_FreeSession(ssl->ctx, ssl->session);
ssl->session = newSession;
}
return 1;
}
#ifndef WOLFSSL_NO_TLS12
/* handle generation of client_hello (1) */
int SendClientHello(WOLFSSL* ssl)
{
byte *output;
word32 length, idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
int sendSz;
int idSz;
int ret;
word16 extSz = 0;
const Suites* suites;
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
return SendTls13ClientHello(ssl);
#endif
#ifdef HAVE_SECURE_RENEGOTIATION
/* We don't want to resume in SCR */
if (IsSCR(ssl))
ssl->options.resuming = 0;
#endif
idSz = ssl->options.resuming ? ssl->session->sessionIDSz : 0;
WOLFSSL_START(WC_FUNC_CLIENT_HELLO_SEND);
WOLFSSL_ENTER("SendClientHello");
suites = WOLFSSL_SUITES(ssl);
if (suites == NULL) {
WOLFSSL_MSG("Bad suites pointer in SendClientHello");
return SUITES_ERROR;
}
#ifdef HAVE_SESSION_TICKET
if (ssl->options.resuming && ssl->session->ticketLen > 0) {
SessionTicket* ticket;
ticket = TLSX_SessionTicket_Create(0, ssl->session->ticket,
ssl->session->ticketLen, ssl->heap);
if (ticket == NULL) return MEMORY_E;
ret = TLSX_UseSessionTicket(&ssl->extensions, ticket, ssl->heap);
if (ret != WOLFSSL_SUCCESS) {
TLSX_SessionTicket_Free(ticket, ssl->heap);
return ret;
}
idSz = 0;
}
#endif
length = VERSION_SZ + RAN_LEN
+ idSz + ENUM_LEN
+ SUITE_LEN
+ COMP_LEN + ENUM_LEN;
#ifndef NO_FORCE_SCR_SAME_SUITE
if (IsSCR(ssl))
length += SUITE_LEN;
else
#endif
length += suites->suiteSz;
#ifdef HAVE_TLS_EXTENSIONS
/* auto populate extensions supported unless user defined */
if ((ret = TLSX_PopulateExtensions(ssl, 0)) != 0)
return ret;
extSz = 0;
ret = TLSX_GetRequestSize(ssl, client_hello, &extSz);
if (ret != 0)
return ret;
length += extSz;
#else
if (IsAtLeastTLSv1_2(ssl) && suites->hashSigAlgoSz)
extSz += HELLO_EXT_SZ + HELLO_EXT_SIGALGO_SZ
+ suites->hashSigAlgoSz;
#ifdef HAVE_EXTENDED_MASTER
if (ssl->options.haveEMS)
extSz += HELLO_EXT_SZ;
#endif
if (extSz != 0)
length += extSz + HELLO_EXT_SZ_SZ;
#endif
sendSz = length + HANDSHAKE_HEADER_SZ + RECORD_HEADER_SZ;
if (ssl->arrays == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
length += ENUM_LEN; /* cookie */
if (ssl->arrays->cookieSz != 0) length += ssl->arrays->cookieSz;
sendSz = length + DTLS_HANDSHAKE_HEADER_SZ + DTLS_RECORD_HEADER_SZ;
idx += DTLS_HANDSHAKE_EXTRA + DTLS_RECORD_EXTRA;
}
#endif
if (IsEncryptionOn(ssl, 1))
sendSz += MAX_MSG_EXTRA;
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
AddHeaders(output, length, client_hello, ssl);
/* client hello, first version */
output[idx++] = ssl->version.major;
output[idx++] = ssl->version.minor;
ssl->chVersion = ssl->version; /* store in case changed */
/* then random */
if (ssl->options.connectState == CONNECT_BEGIN) {
ret = wc_RNG_GenerateBlock(ssl->rng, output + idx, RAN_LEN);
if (ret != 0)
return ret;
/* store random */
XMEMCPY(ssl->arrays->clientRandom, output + idx, RAN_LEN);
} else {
#ifdef WOLFSSL_DTLS
/* send same random on hello again */
XMEMCPY(output + idx, ssl->arrays->clientRandom, RAN_LEN);
#endif
}
idx += RAN_LEN;
/* then session id */
output[idx++] = (byte)idSz;
if (idSz) {
XMEMCPY(output + idx, ssl->session->sessionID,
ssl->session->sessionIDSz);
idx += ssl->session->sessionIDSz;
}
/* then DTLS cookie */
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
byte cookieSz = ssl->arrays->cookieSz;
output[idx++] = cookieSz;
if (cookieSz) {
XMEMCPY(&output[idx], ssl->arrays->cookie, cookieSz);
idx += cookieSz;
}
}
#endif
#ifndef NO_FORCE_SCR_SAME_SUITE
if (IsSCR(ssl)) {
c16toa(SUITE_LEN, output + idx);
idx += OPAQUE16_LEN;
output[idx++] = ssl->options.cipherSuite0;
output[idx++] = ssl->options.cipherSuite;
}
else
#endif
{
/* then cipher suites */
c16toa(suites->suiteSz, output + idx);
idx += OPAQUE16_LEN;
XMEMCPY(output + idx, &suites->suites, suites->suiteSz);
idx += suites->suiteSz;
}
/* last, compression */
output[idx++] = COMP_LEN;
if (ssl->options.usingCompression)
output[idx++] = ZLIB_COMPRESSION;
else
output[idx++] = NO_COMPRESSION;
#ifdef HAVE_TLS_EXTENSIONS
extSz = 0;
ret = TLSX_WriteRequest(ssl, output + idx, client_hello, &extSz);
if (ret != 0)
return ret;
idx += extSz;
(void)idx; /* suppress analyzer warning, keep idx current */
#else
if (extSz != 0) {
c16toa(extSz, output + idx);
idx += HELLO_EXT_SZ_SZ;
if (IsAtLeastTLSv1_2(ssl)) {
if (suites->hashSigAlgoSz) {
word16 i;
/* extension type */
c16toa(HELLO_EXT_SIG_ALGO, output + idx);
idx += HELLO_EXT_TYPE_SZ;
/* extension data length */
c16toa(HELLO_EXT_SIGALGO_SZ + suites->hashSigAlgoSz,
output + idx);
idx += HELLO_EXT_SZ_SZ;
/* sig algos length */
c16toa(suites->hashSigAlgoSz, output + idx);
idx += HELLO_EXT_SIGALGO_SZ;
for (i=0; i < suites->hashSigAlgoSz; i++, idx++) {
output[idx] = suites->hashSigAlgo[i];
}
}
}
#ifdef HAVE_EXTENDED_MASTER
if (ssl->options.haveEMS) {
c16toa(HELLO_EXT_EXTMS, output + idx);
idx += HELLO_EXT_TYPE_SZ;
c16toa(0, output + idx);
idx += HELLO_EXT_SZ_SZ;
}
#endif
}
#endif
if (IsEncryptionOn(ssl, 1)) {
byte* input;
int inputSz = idx; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls)
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz -= recordHeaderSz;
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, input, inputSz, client_hello)) != 0) {
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
return ret;
}
#endif
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
} else {
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, output, sendSz, client_hello)) != 0)
return ret;
}
if (ssl->options.dtls)
DtlsSEQIncrement(ssl, CUR_ORDER);
#endif
ret = HashOutput(ssl, output, sendSz, 0);
if (ret != 0)
return ret;
}
ssl->options.clientState = CLIENT_HELLO_COMPLETE;
#ifdef OPENSSL_EXTRA
ssl->cbmode = SSL_CB_MODE_WRITE;
if (ssl->CBIS != NULL)
ssl->CBIS(ssl, SSL_CB_CONNECT_LOOP, WOLFSSL_SUCCESS);
#endif
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn) AddPacketName(ssl, "ClientHello");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "ClientHello", handshake, output, sendSz,
WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->options.buildingMsg = 0;
ssl->buffers.outputBuffer.length += sendSz;
ret = SendBuffered(ssl);
WOLFSSL_LEAVE("SendClientHello", ret);
WOLFSSL_END(WC_FUNC_CLIENT_HELLO_SEND);
return ret;
}
/* handle processing of DTLS hello_verify_request (3) */
int DoHelloVerifyRequest(WOLFSSL* ssl, const byte* input, word32* inOutIdx,
word32 size)
{
ProtocolVersion pv;
byte cookieSz;
word32 begin = *inOutIdx;
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn) AddPacketName(ssl, "HelloVerifyRequest");
if (ssl->toInfoOn) AddLateName("HelloVerifyRequest", &ssl->timeoutInfo);
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
DtlsMsgPoolReset(ssl);
}
#endif
if (OPAQUE16_LEN + OPAQUE8_LEN > size)
return BUFFER_ERROR;
XMEMCPY(&pv, input + *inOutIdx, OPAQUE16_LEN);
*inOutIdx += OPAQUE16_LEN;
if (pv.major != DTLS_MAJOR ||
(pv.minor != DTLS_MINOR && pv.minor != DTLSv1_2_MINOR))
return VERSION_ERROR;
cookieSz = input[(*inOutIdx)++];
if (cookieSz) {
if ((*inOutIdx - begin) + cookieSz > size)
return BUFFER_ERROR;
#ifdef WOLFSSL_DTLS
if (cookieSz <= MAX_COOKIE_LEN) {
XMEMCPY(ssl->arrays->cookie, input + *inOutIdx, cookieSz);
ssl->arrays->cookieSz = cookieSz;
}
#endif
*inOutIdx += cookieSz;
}
#if defined(WOLFSSL_DTLS13) && defined(WOLFSSL_TLS13)
if (IsAtLeastTLSv1_3(ssl->version) && ssl->options.dtls) {
/* we sent a TLSv1.3 ClientHello but received a
* HELLO_VERIFY_REQUEST. We only check if DTLSv1_3_MINOR is the
* min downgrade option as per the server_version field comments in
* https://www.rfc-editor.org/rfc/rfc6347#section-4.2.1 */
if (!ssl->options.downgrade ||
ssl->options.minDowngrade <= DTLSv1_3_MINOR)
return VERSION_ERROR;
}
#endif /* defined(WOLFSSL_DTLS13) && defined(WOLFSSL_TLS13) */
ssl->options.serverState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
return 0;
}
static WC_INLINE int DSH_CheckSessionId(WOLFSSL* ssl)
{
int ret = 0;
#ifdef HAVE_SECRET_CALLBACK
/* If a session secret callback exists, we are using that
* key instead of the saved session key. Requires a ticket. */
ret = ret || (ssl->sessionSecretCb != NULL
#ifdef HAVE_SESSION_TICKET
&& ssl->session->ticketLen > 0
#endif
);
#endif
#ifdef HAVE_SESSION_TICKET
/* server may send blank ticket which may not be expected to indicate
* existing one ok but will also be sending a new one */
ret = ret || (ssl->session->ticketLen > 0);
#endif
ret = ret ||
(ssl->options.haveSessionId && XMEMCMP(ssl->arrays->sessionID,
ssl->session->sessionID, ID_LEN) == 0);
return ret;
}
/* Check the version in the received message is valid and set protocol
* version to use.
*
* ssl The SSL/TLS object.
* pv The protocol version from the packet.
* returns 0 on success, otherwise failure.
*/
int CheckVersion(WOLFSSL *ssl, ProtocolVersion pv)
{
byte lowerVersion, higherVersion;
#ifdef WOLFSSL_TLS13_DRAFT
if (pv.major == TLS_DRAFT_MAJOR) {
pv.major = SSLv3_MAJOR;
pv.minor = TLSv1_3_MINOR;
}
#endif
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_HANDSHAKE_START, WOLFSSL_SUCCESS);
}
#endif
if (ssl->options.dtls) {
if (pv.major != DTLS_MAJOR || pv.minor == DTLS_BOGUS_MINOR) {
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
lowerVersion = pv.minor > ssl->version.minor;
higherVersion = pv.minor < ssl->version.minor;
}
else {
if (pv.major != SSLv3_MAJOR) {
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
lowerVersion = pv.minor < ssl->version.minor;
higherVersion = pv.minor > ssl->version.minor;
}
if (higherVersion) {
WOLFSSL_MSG("Server using higher version, fatal error");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
if (lowerVersion) {
WOLFSSL_MSG("server using lower version");
/* Check for downgrade attack. */
if (!ssl->options.downgrade) {
WOLFSSL_MSG("\tno downgrade allowed, fatal error");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
if ((!ssl->options.dtls && pv.minor < ssl->options.minDowngrade) ||
(ssl->options.dtls && pv.minor > ssl->options.minDowngrade)) {
WOLFSSL_MSG("\tversion below minimum allowed, fatal error");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
#ifdef HAVE_SECURE_RENEGOTIATION
if (ssl->secure_renegotiation &&
ssl->secure_renegotiation->enabled &&
ssl->options.handShakeDone) {
WOLFSSL_MSG("Server changed version during scr");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
#endif
/* Checks made - OK to downgrade. */
ssl->version.minor = pv.minor;
switch(pv.minor) {
case SSLv3_MINOR:
/* turn off tls */
WOLFSSL_MSG("\tdowngrading to SSLv3");
ssl->options.tls = 0;
ssl->options.tls1_1 = 0;
break;
case TLSv1_MINOR:
/* turn off tls 1.1+ */
WOLFSSL_MSG("\tdowngrading to TLSv1");
ssl->options.tls1_1 = 0;
break;
case TLSv1_1_MINOR:
WOLFSSL_MSG("\tdowngrading to TLSv1.1");
break;
case DTLS_MINOR:
WOLFSSL_MSG("\tdowngrading to DTLSv1.1");
break;
case TLSv1_2_MINOR:
WOLFSSL_MSG("\tdowngrading to TLSv1.2");
break;
case DTLSv1_2_MINOR:
WOLFSSL_MSG("\tdowngrading to DTLSv1.2");
break;
default:
WOLFSSL_MSG("\tbad minor version");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
}
/* check if option is set to not allow the current version
* set from either wolfSSL_set_options or wolfSSL_CTX_set_options */
if (!ssl->options.dtls && ssl->options.downgrade &&
ssl->options.mask > 0) {
if (ssl->version.minor == TLSv1_2_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2) ==
WOLFSSL_OP_NO_TLSv1_2) {
WOLFSSL_MSG("\tOption set to not allow TLSv1.2, Downgrading");
ssl->version.minor = TLSv1_1_MINOR;
}
if (ssl->version.minor == TLSv1_1_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1) ==
WOLFSSL_OP_NO_TLSv1_1) {
WOLFSSL_MSG("\tOption set to not allow TLSv1.1, Downgrading");
ssl->options.tls1_1 = 0;
ssl->version.minor = TLSv1_MINOR;
}
if (ssl->version.minor == TLSv1_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_TLSv1) ==
WOLFSSL_OP_NO_TLSv1) {
WOLFSSL_MSG("\tOption set to not allow TLSv1, Downgrading");
ssl->options.tls = 0;
ssl->options.tls1_1 = 0;
ssl->version.minor = SSLv3_MINOR;
}
if (ssl->version.minor == SSLv3_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_SSLv3) ==
WOLFSSL_OP_NO_SSLv3) {
WOLFSSL_MSG("\tError, option set to not allow SSLv3");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
if (ssl->version.minor < ssl->options.minDowngrade) {
WOLFSSL_MSG("\tversion below minimum allowed, fatal error");
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
}
return 0;
}
/* handle processing of server_hello (2) */
int DoServerHello(WOLFSSL* ssl, const byte* input, word32* inOutIdx,
word32 helloSz)
{
byte cs0; /* cipher suite bytes 0, 1 */
byte cs1;
ProtocolVersion pv;
byte compression;
word32 i = *inOutIdx;
word32 begin = i;
int ret;
WOLFSSL_START(WC_FUNC_SERVER_HELLO_DO);
WOLFSSL_ENTER("DoServerHello");
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn) AddPacketName(ssl, "ServerHello");
if (ssl->toInfoOn) AddLateName("ServerHello", &ssl->timeoutInfo);
#endif
/* protocol version, random and session id length check */
if (OPAQUE16_LEN + RAN_LEN + OPAQUE8_LEN > helloSz)
return BUFFER_ERROR;
/* protocol version */
XMEMCPY(&pv, input + i, OPAQUE16_LEN);
i += OPAQUE16_LEN;
ret = CheckVersion(ssl, pv);
if (ret != 0) {
SendAlert(ssl, alert_fatal, wolfssl_alert_protocol_version);
return ret;
}
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(pv)) {
byte type = server_hello;
return DoTls13ServerHello(ssl, input, inOutIdx, helloSz, &type);
}
#endif
/* random */
XMEMCPY(ssl->arrays->serverRandom, input + i, RAN_LEN);
i += RAN_LEN;
/* session id */
ssl->arrays->sessionIDSz = input[i++];
if (ssl->arrays->sessionIDSz > ID_LEN) {
WOLFSSL_MSG("Invalid session ID size");
ssl->arrays->sessionIDSz = 0;
return BUFFER_ERROR;
}
else if (ssl->arrays->sessionIDSz) {
if ((i - begin) + ssl->arrays->sessionIDSz > helloSz)
return BUFFER_ERROR;
XMEMCPY(ssl->arrays->sessionID, input + i,
ssl->arrays->sessionIDSz);
i += ssl->arrays->sessionIDSz;
ssl->options.haveSessionId = 1;
}
/* suite and compression */
if ((i - begin) + OPAQUE16_LEN + OPAQUE8_LEN > helloSz)
return BUFFER_ERROR;
cs0 = input[i++];
cs1 = input[i++];
#ifndef WOLFSSL_NO_STRICT_CIPHER_SUITE
#if defined(HAVE_SECURE_RENEGOTIATION) && !defined(NO_FORCE_SCR_SAME_SUITE)
if (IsSCR(ssl)) {
if (ssl->options.cipherSuite0 != cs0 ||
ssl->options.cipherSuite != cs1) {
WOLFSSL_MSG("Server changed cipher suite during scr");
WOLFSSL_ERROR_VERBOSE(MATCH_SUITE_ERROR);
return MATCH_SUITE_ERROR;
}
}
else
#endif
{
word32 idx, found = 0;
const Suites* suites = WOLFSSL_SUITES(ssl);
/* confirm server_hello cipher suite is one sent in client_hello */
for (idx = 0; idx < suites->suiteSz; idx += 2) {
if (suites->suites[idx] == cs0 &&
suites->suites[idx+1] == cs1) {
found = 1;
break;
}
}
if (!found) {
WOLFSSL_MSG("ServerHello did not use cipher suite from ClientHello");
WOLFSSL_ERROR_VERBOSE(MATCH_SUITE_ERROR);
return MATCH_SUITE_ERROR;
}
}
#endif /* !WOLFSSL_NO_STRICT_CIPHER_SUITE */
ssl->options.cipherSuite0 = cs0;
ssl->options.cipherSuite = cs1;
#ifdef WOLFSSL_DEBUG_TLS
WOLFSSL_MSG("Chosen cipher suite:");
WOLFSSL_MSG(GetCipherNameInternal(ssl->options.cipherSuite0,
ssl->options.cipherSuite));
#endif
compression = input[i++];
if (compression != NO_COMPRESSION && !ssl->options.usingCompression) {
WOLFSSL_MSG("Server forcing compression w/o support");
WOLFSSL_ERROR_VERBOSE(COMPRESSION_ERROR);
return COMPRESSION_ERROR;
}
if (compression != ZLIB_COMPRESSION && ssl->options.usingCompression) {
WOLFSSL_MSG("Server refused compression, turning off");
ssl->options.usingCompression = 0; /* turn off if server refused */
}
*inOutIdx = i;
#ifdef HAVE_TLS_EXTENSIONS
if ( (i - begin) < helloSz) {
if (TLSX_SupportExtensions(ssl)) {
word16 totalExtSz;
if ((i - begin) + OPAQUE16_LEN > helloSz)
return BUFFER_ERROR;
ato16(&input[i], &totalExtSz);
i += OPAQUE16_LEN;
if ((i - begin) + totalExtSz > helloSz)
return BUFFER_ERROR;
if ((ret = TLSX_Parse(ssl, (byte *) input + i, totalExtSz,
server_hello, NULL)))
return ret;
i += totalExtSz;
*inOutIdx = i;
}
else
*inOutIdx = begin + helloSz; /* skip extensions */
}
else
ssl->options.haveEMS = 0; /* If no extensions, no EMS */
#else
{
byte pendingEMS = 0;
if ( (i - begin) < helloSz) {
int allowExt = 0;
if (ssl->version.major == SSLv3_MAJOR &&
ssl->version.minor >= TLSv1_MINOR) {
allowExt = 1;
}
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR)
allowExt = 1;
#endif
if (allowExt) {
word16 totalExtSz;
if ((i - begin) + OPAQUE16_LEN > helloSz)
return BUFFER_ERROR;
ato16(&input[i], &totalExtSz);
i += OPAQUE16_LEN;
if ((i - begin) + totalExtSz > helloSz)
return BUFFER_ERROR;
while (totalExtSz) {
word16 extId, extSz;
if (OPAQUE16_LEN + OPAQUE16_LEN > totalExtSz)
return BUFFER_ERROR;
ato16(&input[i], &extId);
i += OPAQUE16_LEN;
ato16(&input[i], &extSz);
i += OPAQUE16_LEN;
if (OPAQUE16_LEN + OPAQUE16_LEN + extSz > totalExtSz)
return BUFFER_ERROR;
if (extId == HELLO_EXT_EXTMS)
pendingEMS = 1;
else
i += extSz;
totalExtSz -= OPAQUE16_LEN + OPAQUE16_LEN + extSz;
}
*inOutIdx = i;
}
else
*inOutIdx = begin + helloSz; /* skip extensions */
}
if (!pendingEMS && ssl->options.haveEMS)
ssl->options.haveEMS = 0;
}
#endif
#if defined(WOLFSSL_HARDEN_TLS) && !defined(WOLFSSL_HARDEN_TLS_NO_SCR_CHECK)
if (ssl->secure_renegotiation == NULL ||
!ssl->secure_renegotiation->enabled) {
/* If the server does not acknowledge the extension, the client
* MUST generate a fatal handshake_failure alert prior to
* terminating the connection.
* https://www.rfc-editor.org/rfc/rfc9325#name-renegotiation-in-tls-12 */
WOLFSSL_MSG("ServerHello did not contain SCR extension");
return SECURE_RENEGOTIATION_E;
}
#endif
ssl->options.serverState = SERVER_HELLO_COMPLETE;
if (IsEncryptionOn(ssl, 0)) {
*inOutIdx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMWrite &&
ssl->specs.cipher_type == block) {
*inOutIdx += MacSize(ssl);
}
#endif
}
#ifdef HAVE_SECRET_CALLBACK
if (ssl->sessionSecretCb != NULL
#ifdef HAVE_SESSION_TICKET
&& ssl->session->ticketLen > 0
#endif
) {
int secretSz = SECRET_LEN;
ret = ssl->sessionSecretCb(ssl, ssl->session->masterSecret,
&secretSz, ssl->sessionSecretCtx);
if (ret != 0 || secretSz != SECRET_LEN) {
WOLFSSL_ERROR_VERBOSE(SESSION_SECRET_CB_E);
return SESSION_SECRET_CB_E;
}
}
#endif /* HAVE_SECRET_CALLBACK */
ret = CompleteServerHello(ssl);
WOLFSSL_LEAVE("DoServerHello", ret);
WOLFSSL_END(WC_FUNC_SERVER_HELLO_DO);
return ret;
}
int CompleteServerHello(WOLFSSL* ssl)
{
int ret;
if (!ssl->options.resuming) {
byte* down = ssl->arrays->serverRandom + RAN_LEN -
TLS13_DOWNGRADE_SZ - 1;
byte vers = ssl->arrays->serverRandom[RAN_LEN - 1];
#ifdef WOLFSSL_TLS13
if (TLSv1_3_Capable(ssl)) {
/* TLS v1.3 capable client not allowed to downgrade when
* connecting to TLS v1.3 capable server unless cipher suite
* demands it.
*/
if (XMEMCMP(down, tls13Downgrade, TLS13_DOWNGRADE_SZ) == 0 &&
(vers == 0 || vers == 1)) {
SendAlert(ssl, alert_fatal, illegal_parameter);
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
}
else
#endif
if (ssl->ctx->method->version.major == SSLv3_MAJOR &&
ssl->ctx->method->version.minor == TLSv1_2_MINOR &&
(wolfSSL_get_options(ssl) & WOLFSSL_OP_NO_TLSv1_2) == 0) {
/* TLS v1.2 capable client not allowed to downgrade when
* connecting to TLS v1.2 capable server.
*/
if (XMEMCMP(down, tls13Downgrade, TLS13_DOWNGRADE_SZ) == 0 &&
vers == 0) {
SendAlert(ssl, alert_fatal, illegal_parameter);
WOLFSSL_ERROR_VERBOSE(VERSION_ERROR);
return VERSION_ERROR;
}
}
}
else {
if (DSH_CheckSessionId(ssl)) {
if (SetCipherSpecs(ssl) == 0) {
if (!HaveUniqueSessionObj(ssl)) {
WOLFSSL_MSG("Unable to have unique session object");
WOLFSSL_ERROR_VERBOSE(MEMORY_ERROR);
return MEMORY_ERROR;
}
XMEMCPY(ssl->arrays->masterSecret,
ssl->session->masterSecret, SECRET_LEN);
#ifdef NO_OLD_TLS
ret = DeriveTlsKeys(ssl);
#else
ret = -1; /* default value */
#ifndef NO_TLS
if (ssl->options.tls)
ret = DeriveTlsKeys(ssl);
#endif
if (!ssl->options.tls)
ret = DeriveKeys(ssl);
#endif /* NO_OLD_TLS */
/* SERVER: peer auth based on session secret. */
ssl->options.peerAuthGood = (ret == 0);
ssl->options.serverState = SERVER_HELLODONE_COMPLETE;
return ret;
}
else {
WOLFSSL_MSG("Unsupported cipher suite, DoServerHello");
WOLFSSL_ERROR_VERBOSE(UNSUPPORTED_SUITE);
return UNSUPPORTED_SUITE;
}
}
else {
WOLFSSL_MSG("Server denied resumption attempt");
ssl->options.resuming = 0; /* server denied resumption try */
}
}
return SetCipherSpecs(ssl);
}
#endif /* !WOLFSSL_NO_TLS12 */
/* Make sure client setup is valid for this suite, true on success */
int VerifyClientSuite(word16 havePSK, byte cipherSuite0, byte cipherSuite)
{
(void)havePSK;
WOLFSSL_ENTER("VerifyClientSuite");
if (CipherRequires(cipherSuite0, cipherSuite, REQUIRES_PSK)) {
WOLFSSL_MSG("Requires PSK");
#ifndef NO_PSK
if (havePSK == 0)
#endif
{
WOLFSSL_MSG("Don't have PSK");
return 0;
}
}
return 1; /* success */
}
#ifndef WOLFSSL_NO_TLS12
#ifndef NO_CERTS
/* handle processing of certificate_request (13) */
static int DoCertificateRequest(WOLFSSL* ssl, const byte* input, word32*
inOutIdx, word32 size)
{
word16 len;
word32 begin = *inOutIdx;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY)
int ret;
#endif
#ifdef OPENSSL_EXTRA
WOLFSSL_X509* x509 = NULL;
WOLFSSL_EVP_PKEY* pkey = NULL;
#endif
WOLFSSL_START(WC_FUNC_CERTIFICATE_REQUEST_DO);
WOLFSSL_ENTER("DoCertificateRequest");
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn)
AddPacketName(ssl, "CertificateRequest");
if (ssl->toInfoOn)
AddLateName("CertificateRequest", &ssl->timeoutInfo);
#endif
if (OPAQUE8_LEN > size)
return BUFFER_ERROR;
len = input[(*inOutIdx)++];
if ((*inOutIdx - begin) + len > size)
return BUFFER_ERROR;
/* types, read in here */
*inOutIdx += len;
/* signature and hash signature algorithm */
if (IsAtLeastTLSv1_2(ssl)) {
if ((*inOutIdx - begin) + OPAQUE16_LEN > size)
return BUFFER_ERROR;
ato16(input + *inOutIdx, &len);
*inOutIdx += OPAQUE16_LEN;
if ((len > size) || ((*inOutIdx - begin) + len > size))
return BUFFER_ERROR;
if (PickHashSigAlgo(ssl, input + *inOutIdx, len) != 0 &&
ssl->buffers.certificate &&
ssl->buffers.certificate->buffer) {
#ifdef HAVE_PK_CALLBACKS
if (wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)) {
WOLFSSL_MSG("Using PK for client private key");
WOLFSSL_ERROR_VERBOSE(INVALID_PARAMETER);
return INVALID_PARAMETER;
}
#endif
if (ssl->buffers.key && ssl->buffers.key->buffer) {
WOLFSSL_ERROR_VERBOSE(INVALID_PARAMETER);
return INVALID_PARAMETER;
}
}
*inOutIdx += len;
#ifdef WC_RSA_PSS
ssl->pssAlgo = 0;
if (ssl->options.sigAlgo == rsa_pss_sa_algo)
ssl->pssAlgo |= 1 << ssl->options.hashAlgo;
#endif
}
/* authorities */
if ((*inOutIdx - begin) + OPAQUE16_LEN > size)
return BUFFER_ERROR;
/* DN seq length */
ato16(input + *inOutIdx, &len);
*inOutIdx += OPAQUE16_LEN;
if ((*inOutIdx - begin) + len > size)
return BUFFER_ERROR;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY)
if (ssl->client_ca_names != ssl->ctx->client_ca_names)
wolfSSL_sk_X509_NAME_pop_free(ssl->client_ca_names, NULL);
ssl->client_ca_names = wolfSSL_sk_X509_NAME_new(NULL);
if (ssl->client_ca_names == NULL) {
return MEMORY_ERROR;
}
#endif
while (len) {
word16 dnSz;
if ((*inOutIdx - begin) + OPAQUE16_LEN > size)
return BUFFER_ERROR;
ato16(input + *inOutIdx, &dnSz);
*inOutIdx += OPAQUE16_LEN;
if ((*inOutIdx - begin) + dnSz > size)
return BUFFER_ERROR;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY)
{
WOLFSSL_X509_NAME* name = NULL;
/* Use a DecodedCert struct to get access to GetName to
* parse DN name */
#ifdef WOLFSSL_SMALL_STACK
DecodedCert *cert = (DecodedCert *)XMALLOC(
sizeof(*cert), ssl->heap, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_ERROR;
#else
DecodedCert cert[1];
#endif
InitDecodedCert(cert, input + *inOutIdx, dnSz, ssl->heap);
ret = GetName(cert, SUBJECT, dnSz);
if (ret == 0) {
if ((name = wolfSSL_X509_NAME_new_ex(cert->heap)) == NULL)
ret = MEMORY_ERROR;
}
if (ret == 0) {
CopyDecodedName(name, cert, SUBJECT);
}
if (ret == 0) {
if (wolfSSL_sk_X509_NAME_push(ssl->client_ca_names, name)
== WOLFSSL_FAILURE)
{
ret = MEMORY_ERROR;
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, ssl->heap, DYNAMIC_TYPE_DCERT);
#endif
if (ret != 0) {
if (name != NULL)
wolfSSL_X509_NAME_free(name);
return ret;
}
}
#endif
*inOutIdx += dnSz;
len -= OPAQUE16_LEN + dnSz;
}
#ifdef OPENSSL_EXTRA
/* call client cert callback if no cert has been loaded */
if ((ssl->ctx->CBClientCert != NULL) &&
(!ssl->buffers.certificate || !ssl->buffers.certificate->buffer)) {
ret = ssl->ctx->CBClientCert(ssl, &x509, &pkey);
if (ret == 1) {
if ((wolfSSL_use_certificate(ssl, x509) != WOLFSSL_SUCCESS) ||
(wolfSSL_use_PrivateKey(ssl, pkey) != WOLFSSL_SUCCESS)) {
WOLFSSL_ERROR_VERBOSE(CLIENT_CERT_CB_ERROR);
return CLIENT_CERT_CB_ERROR;
}
wolfSSL_X509_free(x509);
wolfSSL_EVP_PKEY_free(pkey);
}
else if (ret < 0) {
return WOLFSSL_ERROR_WANT_X509_LOOKUP;
}
}
if ((ret = CertSetupCbWrapper(ssl)) != 0)
return ret;
#endif
/* don't send client cert or cert verify if user hasn't provided
cert and private key */
if (ssl->buffers.certificate && ssl->buffers.certificate->buffer) {
#ifdef HAVE_PK_CALLBACKS
if (wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)) {
WOLFSSL_MSG("Using PK for client private key");
ssl->options.sendVerify = SEND_CERT;
}
#endif
if (ssl->buffers.key && ssl->buffers.key->buffer) {
ssl->options.sendVerify = SEND_CERT;
}
}
#ifdef OPENSSL_EXTRA
else
#else
else if (IsTLS(ssl) || ssl->options.dtls)
#endif
{
ssl->options.sendVerify = SEND_BLANK_CERT;
}
if (IsEncryptionOn(ssl, 0)) {
*inOutIdx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
*inOutIdx += MacSize(ssl);
#endif
}
WOLFSSL_LEAVE("DoCertificateRequest", 0);
WOLFSSL_END(WC_FUNC_CERTIFICATE_REQUEST_DO);
return 0;
}
#endif /* !NO_CERTS */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
static int CheckCurveId(int tlsCurveId)
{
int ret = ECC_CURVE_ERROR;
switch (tlsCurveId) {
#if (defined(HAVE_ECC160) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 160
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP160R1: return ECC_SECP160R1_OID;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_SECPR2
case WOLFSSL_ECC_SECP160R2: return ECC_SECP160R2_OID;
#endif /* HAVE_ECC_SECPR2 */
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP160K1: return ECC_SECP160K1_OID;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (defined(HAVE_ECC192) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 192
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP192R1: return ECC_SECP192R1_OID;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP192K1: return ECC_SECP192K1_OID;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (defined(HAVE_ECC224) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 224
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP224R1: return ECC_SECP224R1_OID;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP224K1: return ECC_SECP224K1_OID;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if defined(HAVE_CURVE25519) && ECC_MIN_KEY_SZ <= 256
case WOLFSSL_ECC_X25519: return ECC_X25519_OID;
#endif
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP256R1: return ECC_SECP256R1_OID;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case WOLFSSL_ECC_SECP256K1: return ECC_SECP256K1_OID;
#endif /* HAVE_ECC_KOBLITZ */
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP256R1: return ECC_BRAINPOOLP256R1_OID;
#endif /* HAVE_ECC_BRAINPOOL */
#ifdef WOLFSSL_SM2
case WOLFSSL_ECC_SM2P256V1: return ECC_SM2P256V1_OID;
#endif /* WOLFSSL_SM2 */
#endif
#if defined(HAVE_CURVE448) && ECC_MIN_KEY_SZ <= 448
case WOLFSSL_ECC_X448: return ECC_X448_OID;
#endif
#if (defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 384
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP384R1: return ECC_SECP384R1_OID;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP384R1: return ECC_BRAINPOOLP384R1_OID;
#endif /* HAVE_ECC_BRAINPOOL */
#endif
#if (defined(HAVE_ECC512) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 512
#ifdef HAVE_ECC_BRAINPOOL
case WOLFSSL_ECC_BRAINPOOLP512R1: return ECC_BRAINPOOLP512R1_OID;
#endif /* HAVE_ECC_BRAINPOOL */
#endif
#if (defined(HAVE_ECC521) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 521
#ifndef NO_ECC_SECP
case WOLFSSL_ECC_SECP521R1: return ECC_SECP521R1_OID;
#endif /* !NO_ECC_SECP */
#endif
default: break;
}
return ret;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
/* Persistable DoServerKeyExchange arguments */
typedef struct DskeArgs {
byte* output; /* not allocated */
#if !defined(NO_DH) || defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
byte* verifySig;
#endif
word32 idx;
word32 begin;
#if !defined(NO_DH) || defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
word16 verifySigSz;
#endif
word16 sigSz;
byte sigAlgo;
byte hashAlgo;
#if !defined(NO_RSA) && defined(WC_RSA_PSS)
int bits;
#endif
} DskeArgs;
static void FreeDskeArgs(WOLFSSL* ssl, void* pArgs)
{
DskeArgs* args = (DskeArgs*)pArgs;
(void)ssl;
(void)args;
#if !defined(NO_DH) || defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
if (args->verifySig) {
XFREE(args->verifySig, ssl->heap, DYNAMIC_TYPE_SIGNATURE);
args->verifySig = NULL;
}
#endif
}
#ifndef NO_DH
static int GetDhPublicKey(WOLFSSL* ssl, const byte* input, word32 size,
DskeArgs* args)
{
int ret = 0;
word16 length;
#ifdef HAVE_FFDHE
#ifdef HAVE_PUBLIC_FFDHE
const DhParams* params = NULL;
#endif
word16 group = 0;
#endif
if (ssl->buffers.weOwnDH) {
if (ssl->buffers.serverDH_P.buffer) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
}
if (ssl->buffers.serverDH_G.buffer) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
}
}
if (ssl->buffers.serverDH_Pub.buffer) {
XFREE(ssl->buffers.serverDH_Pub.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_Pub.buffer = NULL;
}
/* p */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_gdpk);
}
ato16(input + args->idx, &length);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + length > size) {
ERROR_OUT(BUFFER_ERROR, exit_gdpk);
}
if (length < ssl->options.minDhKeySz) {
WOLFSSL_MSG("Server using a DH key that is too small");
SendAlert(ssl, alert_fatal, handshake_failure);
ERROR_OUT(DH_KEY_SIZE_E, exit_gdpk);
}
if (length > ssl->options.maxDhKeySz) {
WOLFSSL_MSG("Server using a DH key that is too big");
SendAlert(ssl, alert_fatal, handshake_failure);
ERROR_OUT(DH_KEY_SIZE_E, exit_gdpk);
}
ssl->buffers.serverDH_P.buffer =
(byte*)XMALLOC(length, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_P.buffer) {
ssl->buffers.serverDH_P.length = length;
}
else {
ERROR_OUT(MEMORY_ERROR, exit_gdpk);
}
XMEMCPY(ssl->buffers.serverDH_P.buffer, input + args->idx,
length);
args->idx += length;
ssl->options.dhKeySz = length;
/* g */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
ERROR_OUT(BUFFER_ERROR, exit_gdpk);
}
ato16(input + args->idx, &length);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + length > size) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
ERROR_OUT(BUFFER_ERROR, exit_gdpk);
}
if (length > ssl->options.maxDhKeySz) {
WOLFSSL_MSG("Server using a DH key generator that is too big");
SendAlert(ssl, alert_fatal, handshake_failure);
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
ERROR_OUT(DH_KEY_SIZE_E, exit_gdpk);
}
ssl->buffers.serverDH_G.buffer =
(byte*)XMALLOC(length, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_G.buffer) {
ssl->buffers.serverDH_G.length = length;
}
else {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
ERROR_OUT(MEMORY_ERROR, exit_gdpk);
}
XMEMCPY(ssl->buffers.serverDH_G.buffer, input + args->idx,
length);
args->idx += length;
/* pub */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
ERROR_OUT(BUFFER_ERROR, exit_gdpk);
}
ato16(input + args->idx, &length);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + length > size) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
ERROR_OUT(BUFFER_ERROR, exit_gdpk);
}
if (length > ssl->options.maxDhKeySz) {
WOLFSSL_MSG("Server using a public DH key that is too big");
SendAlert(ssl, alert_fatal, handshake_failure);
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
ERROR_OUT(DH_KEY_SIZE_E, exit_gdpk);
}
ssl->buffers.serverDH_Pub.buffer =
(byte*)XMALLOC(length, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_Pub.buffer) {
ssl->buffers.serverDH_Pub.length = length;
}
else {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
ERROR_OUT(MEMORY_ERROR, exit_gdpk);
}
XMEMCPY(ssl->buffers.serverDH_Pub.buffer, input + args->idx,
length);
ssl->buffers.weOwnDH = 1;
args->idx += length;
#ifdef HAVE_FFDHE
switch (ssl->options.dhKeySz) {
#ifdef HAVE_FFDHE_2048
case 2048/8:
#ifdef HAVE_PUBLIC_FFDHE
params = wc_Dh_ffdhe2048_Get();
#endif
group = WOLFSSL_FFDHE_2048;
break;
#endif
#ifdef HAVE_FFDHE_3072
case 3072/8:
#ifdef HAVE_PUBLIC_FFDHE
params = wc_Dh_ffdhe3072_Get();
#endif
group = WOLFSSL_FFDHE_3072;
break;
#endif
#ifdef HAVE_FFDHE_4096
case 4096/8:
#ifdef HAVE_PUBLIC_FFDHE
params = wc_Dh_ffdhe4096_Get();
#endif
group = WOLFSSL_FFDHE_4096;
break;
#endif
#ifdef HAVE_FFDHE_6144
case 6144/8:
#ifdef HAVE_PUBLIC_FFDHE
params = wc_Dh_ffdhe6144_Get();
#endif
group = WOLFSSL_FFDHE_6144;
break;
#endif
#ifdef HAVE_FFDHE_8192
case 8192/8:
#ifdef HAVE_PUBLIC_FFDHE
params = wc_Dh_ffdhe8192_Get();
#endif
group = WOLFSSL_FFDHE_8192;
break;
#endif
default:
break;
}
#ifdef HAVE_PUBLIC_FFDHE
if (params == NULL || params->g_len != ssl->buffers.serverDH_G.length ||
(XMEMCMP(ssl->buffers.serverDH_G.buffer, params->g,
params->g_len) != 0) ||
(XMEMCMP(ssl->buffers.serverDH_P.buffer, params->p,
params->p_len) != 0))
#else
if (!wc_DhCmpNamedKey(group, 1,
ssl->buffers.serverDH_P.buffer, ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer, ssl->buffers.serverDH_G.length,
NULL, 0))
#endif
{
WOLFSSL_MSG("Server not using FFDHE parameters");
#ifdef WOLFSSL_REQUIRE_FFDHE
SendAlert(ssl, alert_fatal, handshake_failure);
ERROR_OUT(DH_PARAMS_NOT_FFDHE_E, exit_gdpk);
#endif
}
else {
ssl->namedGroup = group;
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
ssl->options.dhDoKeyTest = 0;
#endif
}
#endif /* HAVE_FFDHE */
exit_gdpk:
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#endif
/* handle processing of server_key_exchange (12) */
static int DoServerKeyExchange(WOLFSSL* ssl, const byte* input,
word32* inOutIdx, word32 size)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_CRYPT
DskeArgs* args = NULL;
WOLFSSL_ASSERT_SIZEOF_GE(ssl->async->args, *args);
#else
DskeArgs args[1];
#endif
(void)input;
(void)size;
WOLFSSL_START(WC_FUNC_SERVER_KEY_EXCHANGE_DO);
WOLFSSL_ENTER("DoServerKeyExchange");
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
ERROR_OUT(MEMORY_E, exit_dske);
}
args = (DskeArgs*)ssl->async->args;
ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_dske;
}
else
#endif
{
/* Reset state */
ret = 0;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
XMEMSET(args, 0, sizeof(DskeArgs));
args->idx = *inOutIdx;
args->begin = *inOutIdx;
args->sigAlgo = ssl->specs.sig_algo;
args->hashAlgo = sha_mac;
#ifdef WOLFSSL_ASYNC_CRYPT
ssl->async->freeArgs = FreeDskeArgs;
#endif
}
switch(ssl->options.asyncState)
{
case TLS_ASYNC_BEGIN:
{
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn)
AddPacketName(ssl, "ServerKeyExchange");
if (ssl->toInfoOn)
AddLateName("ServerKeyExchange", &ssl->timeoutInfo);
#endif
switch(ssl->specs.kea)
{
#ifndef NO_PSK
case psk_kea:
{
int srvHintLen;
word16 length;
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
ato16(input + args->idx, &length);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + length > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
/* get PSK server hint from the wire */
srvHintLen = min(length, MAX_PSK_ID_LEN);
XMEMCPY(ssl->arrays->server_hint, input + args->idx,
srvHintLen);
ssl->arrays->server_hint[srvHintLen] = '\0'; /* null term */
args->idx += length;
break;
}
#endif /* !NO_PSK */
#ifndef NO_DH
case diffie_hellman_kea:
{
ret = GetDhPublicKey(ssl, input, size, args);
if (ret != 0)
goto exit_dske;
break;
}
#endif /* !NO_DH */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
byte b;
#ifdef HAVE_ECC
int curveId;
#endif
int curveOid;
word16 length;
if ((args->idx - args->begin) + ENUM_LEN + OPAQUE16_LEN +
OPAQUE8_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
b = input[args->idx++];
if (b != named_curve) {
ERROR_OUT(ECC_CURVETYPE_ERROR, exit_dske);
}
args->idx += 1; /* curve type, eat leading 0 */
b = input[args->idx++];
if ((curveOid = CheckCurveId(b)) < 0) {
ERROR_OUT(ECC_CURVE_ERROR, exit_dske);
}
ssl->ecdhCurveOID = curveOid;
#if defined(WOLFSSL_TLS13) || defined(HAVE_FFDHE)
ssl->namedGroup = 0;
#endif
length = input[args->idx++];
if ((args->idx - args->begin) + length > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
if (ssl->peerX25519Key == NULL) {
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->peerX25519Key);
if (ret != 0) {
goto exit_dske;
}
} else if (ssl->peerX25519KeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE25519,
ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
if (ret != 0) {
goto exit_dske;
}
}
if ((ret = wc_curve25519_check_public(
input + args->idx, length,
EC25519_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal, illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
if (wc_curve25519_import_public_ex(input + args->idx,
length, ssl->peerX25519Key,
EC25519_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
args->idx += length;
ssl->peerX25519KeyPresent = 1;
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
if (ssl->peerX448Key == NULL) {
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->peerX448Key);
if (ret != 0) {
goto exit_dske;
}
} else if (ssl->peerX448KeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE448,
ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
if (ret != 0) {
goto exit_dske;
}
}
if ((ret = wc_curve448_check_public(
input + args->idx, length,
EC448_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal, illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
if (wc_curve448_import_public_ex(input + args->idx,
length, ssl->peerX448Key,
EC448_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
args->idx += length;
ssl->peerX448KeyPresent = 1;
break;
}
#endif
#ifdef HAVE_ECC
if (ssl->peerEccKey == NULL) {
ret = AllocKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
if (ret != 0) {
goto exit_dske;
}
} else if (ssl->peerEccKeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_ECC, ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
if (ret != 0) {
goto exit_dske;
}
}
curveId = wc_ecc_get_oid(curveOid, NULL, NULL);
if (wc_ecc_import_x963_ex(input + args->idx, length,
ssl->peerEccKey, curveId) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, illegal_parameter);
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
args->idx += length;
ssl->peerEccKeyPresent = 1;
#endif
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
int srvHintLen;
word16 length;
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
ato16(input + args->idx, &length);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + length > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
/* get PSK server hint from the wire */
srvHintLen = min(length, MAX_PSK_ID_LEN);
XMEMCPY(ssl->arrays->server_hint, input + args->idx,
srvHintLen);
ssl->arrays->server_hint[srvHintLen] = '\0'; /* null term */
args->idx += length;
ret = GetDhPublicKey(ssl, input, size, args);
if (ret != 0)
goto exit_dske;
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
byte b;
int curveOid, curveId;
int srvHintLen;
word16 length;
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
ato16(input + args->idx, &length);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + length > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
/* get PSK server hint from the wire */
srvHintLen = min(length, MAX_PSK_ID_LEN);
XMEMCPY(ssl->arrays->server_hint, input + args->idx,
srvHintLen);
ssl->arrays->server_hint[srvHintLen] = '\0'; /* null term */
args->idx += length;
if ((args->idx - args->begin) + ENUM_LEN + OPAQUE16_LEN +
OPAQUE8_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
/* Check curve name and ID */
b = input[args->idx++];
if (b != named_curve) {
ERROR_OUT(ECC_CURVETYPE_ERROR, exit_dske);
}
args->idx += 1; /* curve type, eat leading 0 */
b = input[args->idx++];
if ((curveOid = CheckCurveId(b)) < 0) {
ERROR_OUT(ECC_CURVE_ERROR, exit_dske);
}
length = input[args->idx++];
if ((args->idx - args->begin) + length > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
if (ssl->peerX25519Key == NULL) {
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->peerX25519Key);
if (ret != 0) {
goto exit_dske;
}
} else if (ssl->peerEccKeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE25519,
ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
if (ret != 0) {
goto exit_dske;
}
}
if ((ret = wc_curve25519_check_public(
input + args->idx, length,
EC25519_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal, illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
if (wc_curve25519_import_public_ex(input + args->idx,
length, ssl->peerX25519Key,
EC25519_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
args->idx += length;
ssl->peerX25519KeyPresent = 1;
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
if (ssl->peerX448Key == NULL) {
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->peerX448Key);
if (ret != 0) {
goto exit_dske;
}
} else if (ssl->peerEccKeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE448,
ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
if (ret != 0) {
goto exit_dske;
}
}
if ((ret = wc_curve448_check_public(
input + args->idx, length,
EC448_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal, illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
if (wc_curve448_import_public_ex(input + args->idx,
length, ssl->peerX448Key,
EC448_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
args->idx += length;
ssl->peerX448KeyPresent = 1;
break;
}
#endif
if (ssl->peerEccKey == NULL) {
ret = AllocKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
if (ret != 0) {
goto exit_dske;
}
} else if (ssl->peerEccKeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_ECC, ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
if (ret != 0) {
goto exit_dske;
}
}
curveId = wc_ecc_get_oid(curveOid, NULL, NULL);
if (wc_ecc_import_x963_ex(input + args->idx, length,
ssl->peerEccKey, curveId) != 0) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dske);
}
args->idx += length;
ssl->peerEccKeyPresent = 1;
break;
}
#endif /* (HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448) && !NO_PSK */
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_BUILD;
} /* case TLS_ASYNC_BEGIN */
FALL_THROUGH;
case TLS_ASYNC_BUILD:
{
switch(ssl->specs.kea)
{
case psk_kea:
case dhe_psk_kea:
case ecdhe_psk_kea:
{
/* Nothing to do in this sub-state */
break;
}
case diffie_hellman_kea:
case ecc_diffie_hellman_kea:
{
#if defined(NO_DH) && !defined(HAVE_ECC) && \
!defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448)
ERROR_OUT(NOT_COMPILED_IN, exit_dske);
#else
enum wc_HashType hashType;
word16 verifySz;
byte sigAlgo;
if (ssl->options.usingAnon_cipher) {
break;
}
verifySz = (word16)(args->idx - args->begin);
if (verifySz > MAX_DH_SZ) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
if (IsAtLeastTLSv1_2(ssl)) {
if ((args->idx - args->begin) + ENUM_LEN + ENUM_LEN >
size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
DecodeSigAlg(&input[args->idx], &args->hashAlgo,
&sigAlgo);
#ifndef NO_RSA
if (sigAlgo == rsa_pss_sa_algo &&
args->sigAlgo == rsa_sa_algo) {
args->sigAlgo = sigAlgo;
}
else
#endif
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (sigAlgo == sm2_sa_algo &&
args->sigAlgo == ecc_dsa_sa_algo) {
args->sigAlgo = sigAlgo;
}
else
#endif
#ifdef HAVE_ED25519
if (sigAlgo == ed25519_sa_algo &&
args->sigAlgo == ecc_dsa_sa_algo) {
args->sigAlgo = sigAlgo;
}
else
#endif
#ifdef HAVE_ED448
if (sigAlgo == ed448_sa_algo &&
args->sigAlgo == ecc_dsa_sa_algo) {
args->sigAlgo = sigAlgo;
}
else
#endif
/* Signature algorithm from message must match signature
* algorithm in cipher suite. */
if (sigAlgo != args->sigAlgo) {
ERROR_OUT(ALGO_ID_E, exit_dske);
}
args->idx += 2;
hashType = HashAlgoToType(args->hashAlgo);
if (hashType == WC_HASH_TYPE_NONE) {
ERROR_OUT(ALGO_ID_E, exit_dske);
}
} else {
/* only using sha and md5 for rsa */
#ifndef NO_OLD_TLS
hashType = WC_HASH_TYPE_SHA;
if (args->sigAlgo == rsa_sa_algo) {
hashType = WC_HASH_TYPE_MD5_SHA;
}
#else
ERROR_OUT(ALGO_ID_E, exit_dske);
#endif
}
/* signature */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
ato16(input + args->idx, &args->verifySigSz);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + args->verifySigSz > size) {
ERROR_OUT(BUFFER_ERROR, exit_dske);
}
ret = HashSkeData(ssl, hashType, input + args->begin,
verifySz, args->sigAlgo);
if (ret != 0) {
goto exit_dske;
}
switch (args->sigAlgo)
{
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
{
if (ssl->peerRsaKey == NULL ||
!ssl->peerRsaKeyPresent) {
ERROR_OUT(NO_PEER_KEY, exit_dske);
}
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
#endif
case ecc_dsa_sa_algo:
{
if (!ssl->peerEccDsaKeyPresent) {
ERROR_OUT(NO_PEER_KEY, exit_dske);
}
break;
}
#endif /* HAVE_ECC */
#if defined(HAVE_ED25519)
case ed25519_sa_algo:
{
if (!ssl->peerEd25519KeyPresent) {
ERROR_OUT(NO_PEER_KEY, exit_dske);
}
break;
}
#endif /* HAVE_ED25519 */
#if defined(HAVE_ED448)
case ed448_sa_algo:
{
if (!ssl->peerEd448KeyPresent) {
ERROR_OUT(NO_PEER_KEY, exit_dske);
}
break;
}
#endif /* HAVE_ED448 */
default:
ret = ALGO_ID_E;
} /* switch (args->sigAlgo) */
#endif /* NO_DH && !HAVE_ECC && !HAVE_ED25519 && !HAVE_ED448 */
break;
}
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_DO;
} /* case TLS_ASYNC_BUILD */
FALL_THROUGH;
case TLS_ASYNC_DO:
{
switch(ssl->specs.kea)
{
case psk_kea:
case dhe_psk_kea:
case ecdhe_psk_kea:
{
/* Nothing to do in this sub-state */
break;
}
case diffie_hellman_kea:
case ecc_diffie_hellman_kea:
{
#if defined(NO_DH) && !defined(HAVE_ECC) && \
!defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448)
ERROR_OUT(NOT_COMPILED_IN, exit_dske);
#else
if (ssl->options.usingAnon_cipher) {
break;
}
if (args->verifySig == NULL) {
args->verifySig = (byte*)XMALLOC(args->verifySigSz,
ssl->heap, DYNAMIC_TYPE_SIGNATURE);
if (args->verifySig == NULL) {
ERROR_OUT(MEMORY_E, exit_dske);
}
XMEMCPY(args->verifySig, input + args->idx,
args->verifySigSz);
}
switch (args->sigAlgo)
{
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
{
ret = RsaVerify(ssl,
args->verifySig, args->verifySigSz,
&args->output,
args->sigAlgo, args->hashAlgo,
ssl->peerRsaKey,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerRsaKey
#else
NULL
#endif
);
if (ret >= 0) {
args->sigSz = (word16)ret;
#ifdef WC_RSA_PSS
args->bits = mp_count_bits(&ssl->peerRsaKey->n);
#endif
ret = 0;
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
/* peerRsaKey */
FreeKey(ssl, DYNAMIC_TYPE_RSA,
(void**)&ssl->peerRsaKey);
ssl->peerRsaKeyPresent = 0;
}
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
#endif
case ecc_dsa_sa_algo:
{
ret = NOT_COMPILED_IN;
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx && ssl->ctx->ProcessServerSigKexCb) {
ret = ssl->ctx->ProcessServerSigKexCb(ssl,
args->sigAlgo,
args->verifySig, args->verifySigSz,
ssl->buffers.sig.buffer, SEED_LEN,
&ssl->buffers.sig.buffer[SEED_LEN],
(ssl->buffers.sig.length - SEED_LEN));
}
#endif /* HAVE_PK_CALLBACKS */
if (ret == NOT_COMPILED_IN) {
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (args->sigAlgo == sm2_sa_algo) {
ret = Sm2wSm3Verify(ssl,
TLS12_SM2_SIG_ID, TLS12_SM2_SIG_ID_SZ,
args->verifySig, args->verifySigSz,
ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
ssl->peerEccDsaKey,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEccDsaKey
#else
NULL
#endif
);
}
else
#endif
{
ret = EccVerify(ssl,
args->verifySig, args->verifySigSz,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
ssl->peerEccDsaKey,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEccDsaKey
#else
NULL
#endif
);
}
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
/* peerEccDsaKey */
FreeKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccDsaKey);
ssl->peerEccDsaKeyPresent = 0;
}
/* CLIENT: Data verified with cert's public key. */
ssl->options.peerAuthGood =
ssl->options.havePeerCert && (ret == 0);
break;
}
#endif /* HAVE_ECC */
#if defined(HAVE_ED25519)
case ed25519_sa_algo:
{
ret = Ed25519Verify(ssl,
args->verifySig, args->verifySigSz,
ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
ssl->peerEd25519Key,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEd25519Key
#else
NULL
#endif
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
/* peerEccDsaKey */
FreeKey(ssl, DYNAMIC_TYPE_ED25519,
(void**)&ssl->peerEd25519Key);
ssl->peerEd25519KeyPresent = 0;
}
/* CLIENT: Data verified with cert's public key. */
ssl->options.peerAuthGood =
ssl->options.havePeerCert && (ret == 0);
break;
}
#endif /* HAVE_ED25519 */
#if defined(HAVE_ED448)
case ed448_sa_algo:
{
ret = Ed448Verify(ssl,
args->verifySig, args->verifySigSz,
ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
ssl->peerEd448Key,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEd448Key
#else
NULL
#endif
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
/* peerEccDsaKey */
FreeKey(ssl, DYNAMIC_TYPE_ED448,
(void**)&ssl->peerEd448Key);
ssl->peerEd448KeyPresent = 0;
}
/* CLIENT: Data verified with cert's public key. */
ssl->options.peerAuthGood =
ssl->options.havePeerCert && (ret == 0);
break;
}
#endif /* HAVE_ED448 */
default:
ret = ALGO_ID_E;
} /* switch (sigAlgo) */
#endif /* NO_DH && !HAVE_ECC && !HAVE_ED25519 && !HAVE_ED448 */
break;
}
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_VERIFY;
} /* case TLS_ASYNC_DO */
FALL_THROUGH;
case TLS_ASYNC_VERIFY:
{
switch(ssl->specs.kea)
{
case psk_kea:
case dhe_psk_kea:
case ecdhe_psk_kea:
{
/* Nothing to do in this sub-state */
break;
}
case diffie_hellman_kea:
case ecc_diffie_hellman_kea:
{
#if defined(NO_DH) && !defined(HAVE_ECC) && \
!defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448)
ERROR_OUT(NOT_COMPILED_IN, exit_dske);
#else
if (ssl->options.usingAnon_cipher) {
break;
}
/* increment index after verify is done */
args->idx += args->verifySigSz;
switch(args->sigAlgo)
{
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#ifdef HAVE_SELFTEST
ret = wc_RsaPSS_CheckPadding(
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
args->output, args->sigSz,
HashAlgoToType(args->hashAlgo));
#else
ret = wc_RsaPSS_CheckPadding_ex(
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
args->output, args->sigSz,
HashAlgoToType(args->hashAlgo),
-1, args->bits);
#endif
if (ret != 0)
goto exit_dske;
/* CLIENT: Data verified with cert's public key. */
ssl->options.peerAuthGood =
ssl->options.havePeerCert;
break;
#endif
case rsa_sa_algo:
{
#if (defined(WOLFSSL_RENESAS_FSPSM_TLS) && \
defined(WOLFSSL_RENESAS_FSPSM_ECC)) || \
defined(WOLFSSL_RENESAS_TSIP_TLS)
/* already checked signature result by SCE */
/* skip the sign checks below */
if (Renesas_cmn_usable(ssl, 0)) {
break;
}
#endif
if (IsAtLeastTLSv1_2(ssl)) {
#ifdef WOLFSSL_SMALL_STACK
byte* encodedSig;
#else
byte encodedSig[MAX_ENCODED_SIG_SZ];
#endif
word32 encSigSz;
#ifdef WOLFSSL_SMALL_STACK
encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ,
ssl->heap, DYNAMIC_TYPE_SIGNATURE);
if (encodedSig == NULL) {
ERROR_OUT(MEMORY_E, exit_dske);
}
#endif
encSigSz = wc_EncodeSignature(encodedSig,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
TypeHash(args->hashAlgo));
if (encSigSz != args->sigSz || !args->output ||
XMEMCMP(args->output, encodedSig,
min(encSigSz, MAX_ENCODED_SIG_SZ)) != 0) {
ret = VERIFY_SIGN_ERROR;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(encodedSig, ssl->heap, DYNAMIC_TYPE_SIGNATURE);
#endif
if (ret != 0) {
goto exit_dske;
}
}
else if (args->sigSz != FINISHED_SZ ||
!args->output ||
XMEMCMP(args->output,
ssl->buffers.digest.buffer,
FINISHED_SZ) != 0) {
ERROR_OUT(VERIFY_SIGN_ERROR, exit_dske);
}
/* CLIENT: Data verified with cert's public key. */
ssl->options.peerAuthGood =
ssl->options.havePeerCert;
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ecc_dsa_sa_algo:
/* Nothing to do in this algo */
break;
#endif /* HAVE_ECC */
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
/* Nothing to do in this algo */
break;
#endif /* WOLFSSL_SM2 && WOLFSSL_SM3 */
#if defined(HAVE_ED25519)
case ed25519_sa_algo:
/* Nothing to do in this algo */
break;
#endif /* HAVE_ED25519 */
#if defined(HAVE_ED448)
case ed448_sa_algo:
/* Nothing to do in this algo */
break;
#endif /* HAVE_ED448 */
default:
ret = ALGO_ID_E;
} /* switch (sigAlgo) */
#endif /* NO_DH && !HAVE_ECC && !HAVE_ED25519 && !HAVE_ED448 */
break;
}
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_FINALIZE;
} /* case TLS_ASYNC_VERIFY */
FALL_THROUGH;
case TLS_ASYNC_FINALIZE:
{
if (IsEncryptionOn(ssl, 0)) {
args->idx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
args->idx += MacSize(ssl);
#endif
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_END;
} /* case TLS_ASYNC_FINALIZE */
FALL_THROUGH;
case TLS_ASYNC_END:
{
/* return index */
*inOutIdx = args->idx;
ssl->options.serverState = SERVER_KEYEXCHANGE_COMPLETE;
break;
}
default:
ret = INPUT_CASE_ERROR;
} /* switch(ssl->options.asyncState) */
exit_dske:
WOLFSSL_LEAVE("DoServerKeyExchange", ret);
WOLFSSL_END(WC_FUNC_SERVER_KEY_EXCHANGE_DO);
#ifdef WOLFSSL_ASYNC_CRYPT
/* Handle async operation */
if (ret == WC_PENDING_E) {
/* Mark message as not received so it can process again */
ssl->msgsReceived.got_server_key_exchange = 0;
return ret;
}
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#else
FreeDskeArgs(ssl, args);
#endif /* WOLFSSL_ASYNC_CRYPT */
/* Final cleanup */
FreeKeyExchange(ssl);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
typedef struct SckeArgs {
byte* output; /* not allocated */
byte* encSecret;
byte* input;
word32 encSz;
word32 length;
int sendSz;
int inputSz;
} SckeArgs;
static void FreeSckeArgs(WOLFSSL* ssl, void* pArgs)
{
SckeArgs* args = (SckeArgs*)pArgs;
(void)ssl;
if (args->encSecret) {
XFREE(args->encSecret, ssl->heap, DYNAMIC_TYPE_SECRET);
args->encSecret = NULL;
}
if (args->input) {
XFREE(args->input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
args->input = NULL;
}
}
/* handle generation client_key_exchange (16) */
int SendClientKeyExchange(WOLFSSL* ssl)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_IO
SckeArgs* args = NULL;
WOLFSSL_ASSERT_SIZEOF_GE(ssl->async->args, *args);
#else
SckeArgs args[1];
#endif
WOLFSSL_START(WC_FUNC_CLIENT_KEY_EXCHANGE_SEND);
WOLFSSL_ENTER("SendClientKeyExchange");
#ifdef OPENSSL_EXTRA
ssl->options.clientState = CLIENT_KEYEXCHANGE_COMPLETE;
ssl->cbmode = SSL_CB_MODE_WRITE;
if (ssl->CBIS != NULL)
ssl->CBIS(ssl, SSL_CB_CONNECT_LOOP, WOLFSSL_SUCCESS);
#endif
#ifdef WOLFSSL_ASYNC_IO
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
ERROR_OUT(MEMORY_E, exit_scke);
XMEMSET(ssl->async, 0, sizeof(struct WOLFSSL_ASYNC));
}
args = (SckeArgs*)ssl->async->args;
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_scke;
}
else
#endif
if (ssl->options.buildingMsg) {
/* Continue building the message */
}
else
#endif
{
/* Reset state */
ret = 0;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
XMEMSET(args, 0, sizeof(SckeArgs));
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
#ifdef WOLFSSL_ASYNC_IO
ssl->async->freeArgs = FreeSckeArgs;
#endif
}
switch(ssl->options.asyncState)
{
case TLS_ASYNC_BEGIN:
{
switch (ssl->specs.kea) {
#ifndef NO_RSA
case rsa_kea:
if (ssl->peerRsaKey == NULL ||
ssl->peerRsaKeyPresent == 0) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
break;
#endif
#ifndef NO_DH
case diffie_hellman_kea:
if (ssl->buffers.serverDH_P.buffer == NULL ||
ssl->buffers.serverDH_G.buffer == NULL ||
ssl->buffers.serverDH_Pub.buffer == NULL) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
break;
#endif /* NO_DH */
#ifndef NO_PSK
case psk_kea:
/* sanity check that PSK client callback has been set */
if (ssl->options.client_psk_cb == NULL) {
WOLFSSL_MSG("No client PSK callback set");
ERROR_OUT(PSK_KEY_ERROR, exit_scke);
}
break;
#endif /* NO_PSK */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
if (ssl->buffers.serverDH_P.buffer == NULL ||
ssl->buffers.serverDH_G.buffer == NULL ||
ssl->buffers.serverDH_Pub.buffer == NULL) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
/* sanity check that PSK client callback has been set */
if (ssl->options.client_psk_cb == NULL) {
WOLFSSL_MSG("No client PSK callback set");
ERROR_OUT(PSK_KEY_ERROR, exit_scke);
}
break;
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
/* sanity check that PSK client callback has been set */
if (ssl->options.client_psk_cb == NULL) {
WOLFSSL_MSG("No client PSK callback set");
ERROR_OUT(PSK_KEY_ERROR, exit_scke);
}
#ifdef HAVE_CURVE25519
if (ssl->peerX25519KeyPresent) {
/* Check client ECC public key */
if (!ssl->peerX25519Key || !ssl->peerX25519Key->dp) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X25519SharedSecretCb != NULL) {
break;
}
#endif
/* create private key */
ssl->hsType = DYNAMIC_TYPE_CURVE25519;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_scke;
}
ret = X25519MakeKey(ssl, (curve25519_key*)ssl->hsKey,
ssl->peerX25519Key);
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->peerX448KeyPresent) {
/* Check client ECC public key */
if (!ssl->peerX448Key) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X448SharedSecretCb != NULL) {
break;
}
#endif
/* create private key */
ssl->hsType = DYNAMIC_TYPE_CURVE448;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_scke;
}
ret = X448MakeKey(ssl, (curve448_key*)ssl->hsKey,
ssl->peerX448Key);
break;
}
#endif
/* Check client ECC public key */
if (!ssl->peerEccKey || !ssl->peerEccKeyPresent ||
!ssl->peerEccKey->dp) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->EccSharedSecretCb != NULL) {
break;
}
#endif
/* create ephemeral private key */
ssl->hsType = DYNAMIC_TYPE_ECC;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_scke;
}
ret = EccMakeKey(ssl, (ecc_key*)ssl->hsKey, ssl->peerEccKey);
break;
#endif /* (HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
#ifdef HAVE_ECC
ecc_key* peerKey;
#endif
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
if (ssl->ctx->X25519SharedSecretCb != NULL)
break;
}
else
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
if (ssl->ctx->X448SharedSecretCb != NULL)
break;
}
else
#endif
#ifdef HAVE_ECC
if (ssl->ctx->EccSharedSecretCb != NULL) {
break;
}
else
#endif
{
}
#endif /* HAVE_PK_CALLBACKS */
#ifdef HAVE_CURVE25519
if (ssl->peerX25519KeyPresent) {
if (!ssl->peerX25519Key || !ssl->peerX25519Key->dp) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
/* create private key */
ssl->hsType = DYNAMIC_TYPE_CURVE25519;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_scke;
}
ret = X25519MakeKey(ssl, (curve25519_key*)ssl->hsKey,
ssl->peerX25519Key);
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->peerX448KeyPresent) {
if (!ssl->peerX448Key) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
/* create private key */
ssl->hsType = DYNAMIC_TYPE_CURVE448;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_scke;
}
ret = X448MakeKey(ssl, (curve448_key*)ssl->hsKey,
ssl->peerX448Key);
break;
}
#endif
#ifdef HAVE_ECC
if (ssl->specs.static_ecdh) {
/* Note: EccDsa is really fixed Ecc key here */
if (!ssl->peerEccDsaKey || !ssl->peerEccDsaKeyPresent) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
peerKey = ssl->peerEccDsaKey;
}
else {
if (!ssl->peerEccKey || !ssl->peerEccKeyPresent) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
peerKey = ssl->peerEccKey;
}
if (peerKey == NULL) {
ERROR_OUT(NO_PEER_KEY, exit_scke);
}
/* create ephemeral private key */
ssl->hsType = DYNAMIC_TYPE_ECC;
ret = AllocKey(ssl, ssl->hsType, &ssl->hsKey);
if (ret != 0) {
goto exit_scke;
}
ret = EccMakeKey(ssl, (ecc_key*)ssl->hsKey, peerKey);
#endif /* HAVE_ECC */
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_scke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_BUILD;
} /* case TLS_ASYNC_BEGIN */
FALL_THROUGH;
case TLS_ASYNC_BUILD:
{
args->encSz = MAX_ENCRYPT_SZ;
args->encSecret = (byte*)XMALLOC(MAX_ENCRYPT_SZ, ssl->heap,
DYNAMIC_TYPE_SECRET);
if (args->encSecret == NULL) {
ERROR_OUT(MEMORY_E, exit_scke);
}
if (ssl->arrays->preMasterSecret == NULL) {
ssl->arrays->preMasterSz = ENCRYPT_LEN;
ssl->arrays->preMasterSecret = (byte*)XMALLOC(ENCRYPT_LEN,
ssl->heap, DYNAMIC_TYPE_SECRET);
if (ssl->arrays->preMasterSecret == NULL) {
ERROR_OUT(MEMORY_E, exit_scke);
}
XMEMSET(ssl->arrays->preMasterSecret, 0, ENCRYPT_LEN);
}
switch(ssl->specs.kea)
{
#ifndef NO_RSA
case rsa_kea:
{
#ifdef HAVE_PK_CALLBACKS
if (ssl->ctx->GenPreMasterCb) {
void* ctx = wolfSSL_GetGenPreMasterCtx(ssl);
ret = ssl->ctx->GenPreMasterCb(ssl,
ssl->arrays->preMasterSecret, ENCRYPT_LEN, ctx);
if (ret != 0 && ret != PROTOCOLCB_UNAVAILABLE) {
goto exit_scke;
}
}
if (!ssl->ctx->GenPreMasterCb || ret == PROTOCOLCB_UNAVAILABLE)
#endif
{
/* build PreMasterSecret with RNG data */
ret = wc_RNG_GenerateBlock(ssl->rng,
&ssl->arrays->preMasterSecret[VERSION_SZ],
SECRET_LEN - VERSION_SZ);
if (ret != 0) {
goto exit_scke;
}
ssl->arrays->preMasterSecret[0] = ssl->chVersion.major;
ssl->arrays->preMasterSecret[1] = ssl->chVersion.minor;
ssl->arrays->preMasterSz = SECRET_LEN;
}
break;
}
#endif /* !NO_RSA */
#ifndef NO_DH
case diffie_hellman_kea:
{
ssl->buffers.sig.length = ENCRYPT_LEN;
ssl->buffers.sig.buffer = (byte*)XMALLOC(ENCRYPT_LEN,
ssl->heap, DYNAMIC_TYPE_SIGNATURE);
if (ssl->buffers.sig.buffer == NULL) {
ERROR_OUT(MEMORY_E, exit_scke);
}
ret = AllocKey(ssl, DYNAMIC_TYPE_DH,
(void**)&ssl->buffers.serverDH_Key);
if (ret != 0) {
goto exit_scke;
}
#if defined(HAVE_FFDHE) && !defined(HAVE_PUBLIC_FFDHE)
if (ssl->namedGroup) {
ret = wc_DhSetNamedKey(ssl->buffers.serverDH_Key,
ssl->namedGroup);
if (ret != 0) {
goto exit_scke;
}
ssl->buffers.sig.length =
wc_DhGetNamedKeyMinSize(ssl->namedGroup);
}
else
#endif
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) && \
!defined(WOLFSSL_OLD_PRIME_CHECK)
if (ssl->options.dhDoKeyTest &&
!ssl->options.dhKeyTested)
{
ret = wc_DhSetCheckKey(ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length,
NULL, 0, 0, ssl->rng);
if (ret != 0) {
goto exit_scke;
}
ssl->options.dhKeyTested = 1;
}
else
#endif
{
ret = wc_DhSetKey(ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length);
if (ret != 0) {
goto exit_scke;
}
}
/* for DH, encSecret is Yc, agree is pre-master */
ret = DhGenKeyPair(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.sig.buffer, (word32*)&ssl->buffers.sig.length,
args->encSecret, &args->encSz);
/* set the max agree result size */
ssl->arrays->preMasterSz = ENCRYPT_LEN;
break;
}
#endif /* !NO_DH */
#ifndef NO_PSK
case psk_kea:
{
byte* pms = ssl->arrays->preMasterSecret;
int cbret = (int)ssl->options.client_psk_cb(ssl,
ssl->arrays->server_hint, ssl->arrays->client_identity,
MAX_PSK_ID_LEN, ssl->arrays->psk_key, MAX_PSK_KEY_LEN);
if (cbret == 0 || cbret > MAX_PSK_KEY_LEN) {
if (cbret != USE_HW_PSK) {
ERROR_OUT(PSK_KEY_ERROR, exit_scke);
}
}
if (cbret == USE_HW_PSK) {
/* USE_HW_PSK indicates that the hardware has the PSK
* and generates the premaster secret. */
ssl->arrays->psk_keySz = 0;
}
else {
ssl->arrays->psk_keySz = (word32)cbret;
}
/* Ensure the buffer is null-terminated. */
ssl->arrays->client_identity[MAX_PSK_ID_LEN] = '\0';
args->encSz = (word32)XSTRLEN(ssl->arrays->client_identity);
if (args->encSz > MAX_PSK_ID_LEN) {
ERROR_OUT(CLIENT_ID_ERROR, exit_scke);
}
XMEMCPY(args->encSecret, ssl->arrays->client_identity,
args->encSz);
ssl->options.peerAuthGood = 1;
if (cbret != USE_HW_PSK) {
/* CLIENT: Pre-shared Key for peer authentication. */
/* make psk pre master secret */
/* length of key + length 0s + length of key + key */
c16toa((word16)ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMSET(pms, 0, ssl->arrays->psk_keySz);
pms += ssl->arrays->psk_keySz;
c16toa((word16)ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMCPY(pms, ssl->arrays->psk_key,
ssl->arrays->psk_keySz);
ssl->arrays->preMasterSz = (ssl->arrays->psk_keySz * 2)
+ (2 * OPAQUE16_LEN);
ForceZero(ssl->arrays->psk_key, ssl->arrays->psk_keySz);
ssl->arrays->psk_keySz = 0; /* No further need */
}
break;
}
#endif /* !NO_PSK */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
word32 esSz = 0;
args->output = args->encSecret;
ssl->arrays->psk_keySz = ssl->options.client_psk_cb(ssl,
ssl->arrays->server_hint, ssl->arrays->client_identity,
MAX_PSK_ID_LEN, ssl->arrays->psk_key, MAX_PSK_KEY_LEN);
if (ssl->arrays->psk_keySz == 0 ||
ssl->arrays->psk_keySz > MAX_PSK_KEY_LEN) {
ERROR_OUT(PSK_KEY_ERROR, exit_scke);
}
ssl->arrays->client_identity[MAX_PSK_ID_LEN] = '\0'; /* null term */
esSz = (word32)XSTRLEN(ssl->arrays->client_identity);
if (esSz > MAX_PSK_ID_LEN) {
ERROR_OUT(CLIENT_ID_ERROR, exit_scke);
}
/* CLIENT: Pre-shared Key for peer authentication. */
ssl->options.peerAuthGood = 1;
ssl->buffers.sig.length = ENCRYPT_LEN;
ssl->buffers.sig.buffer = (byte*)XMALLOC(ENCRYPT_LEN,
ssl->heap, DYNAMIC_TYPE_SIGNATURE);
if (ssl->buffers.sig.buffer == NULL) {
ERROR_OUT(MEMORY_E, exit_scke);
}
c16toa((word16)esSz, args->output);
args->output += OPAQUE16_LEN;
XMEMCPY(args->output, ssl->arrays->client_identity, esSz);
args->output += esSz;
args->length = args->encSz - esSz - OPAQUE16_LEN;
args->encSz = esSz + OPAQUE16_LEN;
ret = AllocKey(ssl, DYNAMIC_TYPE_DH,
(void**)&ssl->buffers.serverDH_Key);
if (ret != 0) {
goto exit_scke;
}
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) && \
!defined(WOLFSSL_OLD_PRIME_CHECK)
if (ssl->options.dhDoKeyTest &&
!ssl->options.dhKeyTested)
{
ret = wc_DhSetCheckKey(ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length,
NULL, 0, 0, ssl->rng);
if (ret != 0) {
goto exit_scke;
}
ssl->options.dhKeyTested = 1;
}
else
#endif
{
ret = wc_DhSetKey(ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length);
if (ret != 0) {
goto exit_scke;
}
}
/* for DH, encSecret is Yc, agree is pre-master */
ret = DhGenKeyPair(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.sig.buffer,
(word32*)&ssl->buffers.sig.length,
args->output + OPAQUE16_LEN, &args->length);
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
word32 esSz = 0;
args->output = args->encSecret;
/* Send PSK client identity */
ssl->arrays->psk_keySz = ssl->options.client_psk_cb(ssl,
ssl->arrays->server_hint, ssl->arrays->client_identity,
MAX_PSK_ID_LEN, ssl->arrays->psk_key, MAX_PSK_KEY_LEN);
if (ssl->arrays->psk_keySz == 0 ||
ssl->arrays->psk_keySz > MAX_PSK_KEY_LEN) {
ERROR_OUT(PSK_KEY_ERROR, exit_scke);
}
ssl->arrays->client_identity[MAX_PSK_ID_LEN] = '\0'; /* null term */
esSz = (word32)XSTRLEN(ssl->arrays->client_identity);
if (esSz > MAX_PSK_ID_LEN) {
ERROR_OUT(CLIENT_ID_ERROR, exit_scke);
}
/* CLIENT: Pre-shared Key for peer authentication. */
ssl->options.peerAuthGood = 1;
/* place size and identity in output buffer sz:identity */
c16toa((word16)esSz, args->output);
args->output += OPAQUE16_LEN;
XMEMCPY(args->output, ssl->arrays->client_identity, esSz);
args->output += esSz;
args->encSz = esSz + OPAQUE16_LEN;
/* length is used for public key size */
args->length = MAX_ENCRYPT_SZ;
/* Create shared ECC key leaving room at the beginning
of buffer for size of shared key. */
ssl->arrays->preMasterSz = ENCRYPT_LEN - OPAQUE16_LEN;
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X25519SharedSecretCb != NULL) {
break;
}
#endif
ret = wc_curve25519_export_public_ex(
(curve25519_key*)ssl->hsKey,
args->output + OPAQUE8_LEN, &args->length,
EC25519_LITTLE_ENDIAN);
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_scke);
}
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X448SharedSecretCb != NULL) {
break;
}
#endif
ret = wc_curve448_export_public_ex(
(curve448_key*)ssl->hsKey,
args->output + OPAQUE8_LEN, &args->length,
EC448_LITTLE_ENDIAN);
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_scke);
}
break;
}
#endif
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->EccSharedSecretCb != NULL) {
break;
}
#endif
/* Place ECC key in output buffer, leaving room for size */
PRIVATE_KEY_UNLOCK();
ret = wc_ecc_export_x963((ecc_key*)ssl->hsKey,
args->output + OPAQUE8_LEN, &args->length);
PRIVATE_KEY_LOCK();
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_scke);
}
break;
}
#endif /* (HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
ssl->arrays->preMasterSz = ENCRYPT_LEN;
#ifdef HAVE_CURVE25519
if (ssl->hsType == DYNAMIC_TYPE_CURVE25519) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X25519SharedSecretCb != NULL) {
break;
}
#endif
ret = wc_curve25519_export_public_ex(
(curve25519_key*)ssl->hsKey,
args->encSecret + OPAQUE8_LEN, &args->encSz,
EC25519_LITTLE_ENDIAN);
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_scke);
}
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->hsType == DYNAMIC_TYPE_CURVE448) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X448SharedSecretCb != NULL) {
break;
}
#endif
ret = wc_curve448_export_public_ex(
(curve448_key*)ssl->hsKey,
args->encSecret + OPAQUE8_LEN, &args->encSz,
EC448_LITTLE_ENDIAN);
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_scke);
}
break;
}
#endif
#if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_EXPORT)
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->EccSharedSecretCb != NULL) {
break;
}
#endif
/* Place ECC key in buffer, leaving room for size */
PRIVATE_KEY_UNLOCK();
ret = wc_ecc_export_x963((ecc_key*)ssl->hsKey,
args->encSecret + OPAQUE8_LEN, &args->encSz);
PRIVATE_KEY_LOCK();
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_scke);
}
#endif /* HAVE_ECC */
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_scke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_DO;
} /* case TLS_ASYNC_BUILD */
FALL_THROUGH;
case TLS_ASYNC_DO:
{
switch(ssl->specs.kea)
{
#ifndef NO_RSA
case rsa_kea:
{
ret = RsaEnc(ssl,
ssl->arrays->preMasterSecret, SECRET_LEN,
args->encSecret, &args->encSz,
ssl->peerRsaKey,
#if defined(HAVE_PK_CALLBACKS)
&ssl->buffers.peerRsaKey
#else
NULL
#endif
);
break;
}
#endif /* !NO_RSA */
#ifndef NO_DH
case diffie_hellman_kea:
{
ret = DhAgree(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.sig.buffer, ssl->buffers.sig.length,
ssl->buffers.serverDH_Pub.buffer,
ssl->buffers.serverDH_Pub.length,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length);
break;
}
#endif /* !NO_DH */
#ifndef NO_PSK
case psk_kea:
{
break;
}
#endif /* !NO_PSK */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
ret = DhAgree(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.sig.buffer, ssl->buffers.sig.length,
ssl->buffers.serverDH_Pub.buffer,
ssl->buffers.serverDH_Pub.length,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&ssl->arrays->preMasterSz,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length);
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
#ifdef HAVE_CURVE25519
if (ssl->peerX25519KeyPresent) {
ret = X25519SharedSecret(ssl,
(curve25519_key*)ssl->hsKey, ssl->peerX25519Key,
args->output + OPAQUE8_LEN, &args->length,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&ssl->arrays->preMasterSz,
WOLFSSL_CLIENT_END
);
if (!ssl->specs.static_ecdh
#ifdef WOLFSSL_ASYNC_CRYPT
&& ret != WC_PENDING_E
#endif
) {
FreeKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
}
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->peerX448KeyPresent) {
ret = X448SharedSecret(ssl,
(curve448_key*)ssl->hsKey, ssl->peerX448Key,
args->output + OPAQUE8_LEN, &args->length,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&ssl->arrays->preMasterSz,
WOLFSSL_CLIENT_END
);
if (!ssl->specs.static_ecdh
#ifdef WOLFSSL_ASYNC_CRYPT
&& ret != WC_PENDING_E
#endif
) {
FreeKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
}
break;
}
#endif
ret = EccSharedSecret(ssl,
(ecc_key*)ssl->hsKey, ssl->peerEccKey,
args->output + OPAQUE8_LEN, &args->length,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&ssl->arrays->preMasterSz,
WOLFSSL_CLIENT_END
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
FreeKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
}
break;
}
#endif /* (HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
#ifdef HAVE_ECC
ecc_key* peerKey;
#endif
#ifdef HAVE_CURVE25519
if (ssl->peerX25519KeyPresent) {
ret = X25519SharedSecret(ssl,
(curve25519_key*)ssl->hsKey, ssl->peerX25519Key,
args->encSecret + OPAQUE8_LEN, &args->encSz,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
WOLFSSL_CLIENT_END
);
if (!ssl->specs.static_ecdh
#ifdef WOLFSSL_ASYNC_CRYPT
&& ret != WC_PENDING_E
#endif
) {
FreeKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
}
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->peerX448KeyPresent) {
ret = X448SharedSecret(ssl,
(curve448_key*)ssl->hsKey, ssl->peerX448Key,
args->encSecret + OPAQUE8_LEN, &args->encSz,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
WOLFSSL_CLIENT_END
);
if (!ssl->specs.static_ecdh
#ifdef WOLFSSL_ASYNC_CRYPT
&& ret != WC_PENDING_E
#endif
) {
FreeKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
}
break;
}
#endif
#ifdef HAVE_ECC
peerKey = (ssl->specs.static_ecdh) ?
ssl->peerEccDsaKey : ssl->peerEccKey;
ret = EccSharedSecret(ssl,
(ecc_key*)ssl->hsKey, peerKey,
args->encSecret + OPAQUE8_LEN, &args->encSz,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
WOLFSSL_CLIENT_END);
if (!ssl->specs.static_ecdh
#ifdef WOLFSSL_ASYNC_CRYPT
&& ret != WC_PENDING_E
#endif
&& !ssl->options.keepResources) {
FreeKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
}
#endif
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_scke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_VERIFY;
} /* case TLS_ASYNC_DO */
FALL_THROUGH;
case TLS_ASYNC_VERIFY:
{
switch(ssl->specs.kea)
{
#ifndef NO_RSA
case rsa_kea:
{
break;
}
#endif /* !NO_RSA */
#ifndef NO_DH
case diffie_hellman_kea:
{
break;
}
#endif /* !NO_DH */
#ifndef NO_PSK
case psk_kea:
{
break;
}
#endif /* !NO_PSK */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
byte* pms = ssl->arrays->preMasterSecret;
/* validate args */
if (args->output == NULL || args->length == 0) {
ERROR_OUT(BAD_FUNC_ARG, exit_scke);
}
c16toa((word16)args->length, args->output);
args->encSz += args->length + OPAQUE16_LEN;
c16toa((word16)ssl->arrays->preMasterSz, pms);
ssl->arrays->preMasterSz += OPAQUE16_LEN;
pms += ssl->arrays->preMasterSz;
/* make psk pre master secret */
/* length of key + length 0s + length of key + key */
c16toa((word16)ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMCPY(pms, ssl->arrays->psk_key, ssl->arrays->psk_keySz);
ssl->arrays->preMasterSz +=
ssl->arrays->psk_keySz + OPAQUE16_LEN;
ForceZero(ssl->arrays->psk_key, ssl->arrays->psk_keySz);
ssl->arrays->psk_keySz = 0; /* No further need */
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
byte* pms = ssl->arrays->preMasterSecret;
/* validate args */
if (args->output == NULL || args->length > ENCRYPT_LEN) {
ERROR_OUT(BAD_FUNC_ARG, exit_scke);
}
/* place size of public key in output buffer */
*args->output = (byte)args->length;
args->encSz += args->length + OPAQUE8_LEN;
/* Create pre master secret is the concatenation of
eccSize + eccSharedKey + pskSize + pskKey */
c16toa((word16)ssl->arrays->preMasterSz, pms);
ssl->arrays->preMasterSz += OPAQUE16_LEN;
pms += ssl->arrays->preMasterSz;
c16toa((word16)ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMCPY(pms, ssl->arrays->psk_key, ssl->arrays->psk_keySz);
ssl->arrays->preMasterSz +=
ssl->arrays->psk_keySz + OPAQUE16_LEN;
ForceZero(ssl->arrays->psk_key, ssl->arrays->psk_keySz);
ssl->arrays->psk_keySz = 0; /* No further need */
break;
}
#endif /* (HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
if (args->encSecret == NULL) {
ret = BAD_STATE_E;
goto exit_scke;
}
else {
/* place size of public key in buffer */
*args->encSecret = (byte)args->encSz;
args->encSz += OPAQUE8_LEN;
}
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
default:
ret = BAD_KEA_TYPE_E;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_scke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_FINALIZE;
} /* case TLS_ASYNC_VERIFY */
FALL_THROUGH;
case TLS_ASYNC_FINALIZE:
{
word32 tlsSz = 0;
word32 idx = 0;
if (ssl->options.tls || ssl->specs.kea == diffie_hellman_kea) {
tlsSz = 2;
}
if (ssl->specs.kea == ecc_diffie_hellman_kea ||
ssl->specs.kea == dhe_psk_kea ||
ssl->specs.kea == ecdhe_psk_kea) { /* always off */
tlsSz = 0;
}
idx = HANDSHAKE_HEADER_SZ + RECORD_HEADER_SZ;
args->sendSz = args->encSz + tlsSz + idx;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
idx += DTLS_HANDSHAKE_EXTRA + DTLS_RECORD_EXTRA;
args->sendSz += DTLS_HANDSHAKE_EXTRA + DTLS_RECORD_EXTRA;
}
#endif
if (IsEncryptionOn(ssl, 1)) {
args->sendSz += MAX_MSG_EXTRA;
}
/* check for available size */
if ((ret = CheckAvailableSize(ssl, args->sendSz)) != 0)
goto exit_scke;
/* get output buffer */
args->output = GetOutputBuffer(ssl);
AddHeaders(args->output, args->encSz + tlsSz, client_key_exchange, ssl);
if (tlsSz) {
c16toa((word16)args->encSz, &args->output[idx]);
idx += OPAQUE16_LEN;
}
XMEMCPY(args->output + idx, args->encSecret, args->encSz);
idx += args->encSz;
if (IsEncryptionOn(ssl, 1)) {
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls)
recordHeaderSz += DTLS_RECORD_EXTRA;
args->inputSz = idx - recordHeaderSz; /* buildmsg adds rechdr */
args->input = (byte*)XMALLOC(args->inputSz, ssl->heap,
DYNAMIC_TYPE_IN_BUFFER);
if (args->input == NULL) {
ERROR_OUT(MEMORY_E, exit_scke);
}
XMEMCPY(args->input, args->output + recordHeaderSz,
args->inputSz);
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_END;
} /* case TLS_ASYNC_FINALIZE */
FALL_THROUGH;
case TLS_ASYNC_END:
{
if (IsEncryptionOn(ssl, 1)) {
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, args->input, args->inputSz, client_key_exchange)) != 0) {
goto exit_scke;
}
#endif
ret = BuildMessage(ssl, args->output, args->sendSz,
args->input, args->inputSz, handshake, 1, 0, 0, CUR_ORDER);
XFREE(args->input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
args->input = NULL; /* make sure its not double free'd on cleanup */
if (ret >= 0) {
args->sendSz = ret;
ret = 0;
}
}
else {
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, args->output, args->sendSz, client_key_exchange)) != 0) {
goto exit_scke;
}
}
if (ssl->options.dtls)
DtlsSEQIncrement(ssl, CUR_ORDER);
#endif
ret = HashOutput(ssl, args->output, args->sendSz, 0);
}
if (ret != 0) {
goto exit_scke;
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "ClientKeyExchange");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "ClientKeyExchange", handshake,
args->output, args->sendSz, WRITE_PROTO, 0, ssl->heap);
if (ret != 0) {
goto exit_scke;
}
}
#endif
ssl->buffers.outputBuffer.length += args->sendSz;
if (!ssl->options.groupMessages) {
ret = SendBuffered(ssl);
}
if (ret == 0 || ret == WANT_WRITE) {
int tmpRet = MakeMasterSecret(ssl);
if (tmpRet != 0) {
ret = tmpRet; /* save WANT_WRITE unless more serious */
}
ssl->options.clientState = CLIENT_KEYEXCHANGE_COMPLETE;
ssl->options.buildingMsg = 0;
}
#if defined(OPENSSL_EXTRA) && defined(HAVE_SECRET_CALLBACK)
if (ssl->keyLogCb != NULL) {
int secretSz = SECRET_LEN;
ret = ssl->keyLogCb(ssl, ssl->arrays->masterSecret, &secretSz,
NULL);
if (ret != 0 || secretSz != SECRET_LEN)
return SESSION_SECRET_CB_E;
}
#endif /* OPENSSL_EXTRA && HAVE_SECRET_CALLBACK */
break;
}
default:
ret = INPUT_CASE_ERROR;
} /* switch(ssl->options.asyncState) */
exit_scke:
WOLFSSL_LEAVE("SendClientKeyExchange", ret);
WOLFSSL_END(WC_FUNC_CLIENT_KEY_EXCHANGE_SEND);
#ifdef WOLFSSL_ASYNC_IO
/* Handle async operation */
if (ret == WC_PENDING_E || ret == WANT_WRITE) {
if (ssl->options.buildingMsg)
return ret;
/* If we have completed all states then we will not enter this function
* again. We need to do clean up now. */
}
#endif
/* No further need for PMS */
if (ssl->arrays->preMasterSecret != NULL) {
ForceZero(ssl->arrays->preMasterSecret, ssl->arrays->preMasterSz);
}
ssl->arrays->preMasterSz = 0;
/* Final cleanup */
#ifdef WOLFSSL_ASYNC_IO
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#else
FreeSckeArgs(ssl, args);
#endif
FreeKeyExchange(ssl);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifndef NO_CERTS
#ifndef WOLFSSL_NO_TLS12
#ifndef WOLFSSL_NO_CLIENT_AUTH
typedef struct ScvArgs {
byte* output; /* not allocated */
#ifndef NO_RSA
byte* verifySig;
#endif
byte* verify; /* not allocated */
byte* input;
word32 idx;
word32 extraSz;
word32 sigSz;
int sendSz;
int inputSz;
word16 length;
byte sigAlgo;
} ScvArgs;
static void FreeScvArgs(WOLFSSL* ssl, void* pArgs)
{
ScvArgs* args = (ScvArgs*)pArgs;
(void)ssl;
#ifndef NO_RSA
if (args->verifySig) {
XFREE(args->verifySig, ssl->heap, DYNAMIC_TYPE_SIGNATURE);
args->verifySig = NULL;
}
#endif
if (args->input) {
XFREE(args->input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
args->input = NULL;
}
}
/* handle generation of certificate_verify (15) */
int SendCertificateVerify(WOLFSSL* ssl)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_IO
ScvArgs* args = NULL;
WOLFSSL_ASSERT_SIZEOF_GE(ssl->async->args, *args);
#else
ScvArgs args[1];
#endif
WOLFSSL_START(WC_FUNC_CERTIFICATE_VERIFY_SEND);
WOLFSSL_ENTER("SendCertificateVerify");
#ifdef WOLFSSL_ASYNC_IO
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
ERROR_OUT(MEMORY_E, exit_scv);
XMEMSET(ssl->async, 0, sizeof(struct WOLFSSL_ASYNC));
}
args = (ScvArgs*)ssl->async->args;
#ifdef WOLFSSL_ASYNC_CRYPT
/* BuildMessage does its own Pop */
if (ssl->error != WC_PENDING_E ||
ssl->options.asyncState != TLS_ASYNC_END)
ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_scv;
}
else
#endif
if (ssl->options.buildingMsg) {
/* We should be in the sending state. */
if (ssl->options.asyncState != TLS_ASYNC_END) {
ret = BAD_STATE_E;
goto exit_scv;
}
}
else
#endif
{
/* Reset state */
ret = 0;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
XMEMSET(args, 0, sizeof(ScvArgs));
#ifdef WOLFSSL_ASYNC_IO
ssl->async->freeArgs = FreeScvArgs;
#endif
}
switch(ssl->options.asyncState)
{
case TLS_ASYNC_BEGIN:
{
if (ssl->options.sendVerify == SEND_BLANK_CERT) {
return 0; /* sent blank cert, can't verify */
}
args->sendSz = MAX_CERT_VERIFY_SZ + MAX_MSG_EXTRA;
if (IsEncryptionOn(ssl, 1)) {
args->sendSz += MAX_MSG_EXTRA;
}
/* Use tmp buffer */
args->input = (byte*)XMALLOC(args->sendSz,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (args->input == NULL)
ERROR_OUT(MEMORY_E, exit_scv);
args->output = args->input;
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_BUILD;
} /* case TLS_ASYNC_BEGIN */
FALL_THROUGH;
case TLS_ASYNC_BUILD:
{
ret = BuildCertHashes(ssl, &ssl->hsHashes->certHashes);
if (ret != 0) {
goto exit_scv;
}
if (ssl->buffers.key == NULL) {
#ifdef HAVE_PK_CALLBACKS
if (wolfSSL_CTX_IsPrivatePkSet(ssl->ctx))
args->length = (word16)GetPrivateKeySigSize(ssl);
else
#endif
ERROR_OUT(NO_PRIVATE_KEY, exit_scv);
}
else {
/* Decode private key. */
ret = DecodePrivateKey(ssl, &args->length);
if (ret != 0) {
goto exit_scv;
}
}
if (args->length == 0) {
ERROR_OUT(NO_PRIVATE_KEY, exit_scv);
}
/* idx is used to track verify pointer offset to output */
args->idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
args->verify = &args->output[RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ];
args->extraSz = 0; /* tls 1.2 hash/sig */
/* build encoded signature buffer */
ssl->buffers.sig.length = MAX_ENCODED_SIG_SZ;
ssl->buffers.sig.buffer = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ,
ssl->heap, DYNAMIC_TYPE_SIGNATURE);
if (ssl->buffers.sig.buffer == NULL) {
ERROR_OUT(MEMORY_E, exit_scv);
}
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
args->idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
args->verify += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
}
#endif
if (!IsAtLeastTLSv1_2(ssl)) {
#ifndef NO_OLD_TLS
#ifndef NO_SHA
/* old tls default */
SetDigest(ssl, sha_mac);
#endif
#else
#ifndef NO_SHA256
/* new tls default */
SetDigest(ssl, sha256_mac);
#endif
#endif /* !NO_OLD_TLS */
}
else {
SetDigest(ssl, ssl->options.hashAlgo);
}
if (ssl->hsType == DYNAMIC_TYPE_RSA) {
#ifdef WC_RSA_PSS
if (IsAtLeastTLSv1_2(ssl) &&
(ssl->pssAlgo & (1 << ssl->options.hashAlgo))) {
args->sigAlgo = rsa_pss_sa_algo;
}
else
#endif
args->sigAlgo = rsa_sa_algo;
}
else if (ssl->hsType == DYNAMIC_TYPE_ECC)
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (ssl->buffers.keyType == sm2_sa_algo) {
args->sigAlgo = sm2_sa_algo;
}
else
#endif
{
args->sigAlgo = ecc_dsa_sa_algo;
}
else if (ssl->hsType == DYNAMIC_TYPE_ED25519)
args->sigAlgo = ed25519_sa_algo;
else if (ssl->hsType == DYNAMIC_TYPE_ED448)
args->sigAlgo = ed448_sa_algo;
if (IsAtLeastTLSv1_2(ssl)) {
EncodeSigAlg(ssl->options.hashAlgo, args->sigAlgo,
args->verify);
args->extraSz = HASH_SIG_SIZE;
SetDigest(ssl, ssl->options.hashAlgo);
}
#ifndef NO_OLD_TLS
else {
/* if old TLS load MD5 and SHA hash as value to sign
* MD5 and SHA must be first two buffers in structure */
XMEMCPY(ssl->buffers.sig.buffer,
(byte*)&ssl->hsHashes->certHashes, FINISHED_SZ);
}
#endif
#ifndef NO_RSA
if (args->sigAlgo == rsa_sa_algo) {
ssl->buffers.sig.length = FINISHED_SZ;
args->sigSz = ENCRYPT_LEN;
if (IsAtLeastTLSv1_2(ssl)) {
ssl->buffers.sig.length = wc_EncodeSignature(
ssl->buffers.sig.buffer, ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
TypeHash(ssl->options.hashAlgo));
}
/* prepend hdr */
c16toa(args->length, args->verify + args->extraSz);
}
#ifdef WC_RSA_PSS
else if (args->sigAlgo == rsa_pss_sa_algo) {
XMEMCPY(ssl->buffers.sig.buffer, ssl->buffers.digest.buffer,
ssl->buffers.digest.length);
ssl->buffers.sig.length = ssl->buffers.digest.length;
args->sigSz = ENCRYPT_LEN;
/* prepend hdr */
c16toa(args->length, args->verify + args->extraSz);
}
#endif
#endif /* !NO_RSA */
#if defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)
if (args->sigAlgo == ed25519_sa_algo) {
ret = Ed25519CheckPubKey(ssl);
if (ret != 0)
goto exit_scv;
}
#endif /* HAVE_ED25519 && !NO_ED25519_CLIENT_AUTH */
#if defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)
if (args->sigAlgo == ed448_sa_algo) {
ret = Ed448CheckPubKey(ssl);
if (ret != 0)
goto exit_scv;
}
#endif /* HAVE_ED448 && !NO_ED448_CLIENT_AUTH */
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_DO;
} /* case TLS_ASYNC_BUILD */
FALL_THROUGH;
case TLS_ASYNC_DO:
{
#ifdef HAVE_ECC
if (ssl->hsType == DYNAMIC_TYPE_ECC) {
ecc_key* key = (ecc_key*)ssl->hsKey;
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (args->sigAlgo == sm2_sa_algo) {
ret = Sm2wSm3Sign(ssl,
TLS12_SM2_SIG_ID, TLS12_SM2_SIG_ID_SZ,
ssl->hsHashes->messages, ssl->hsHashes->length,
ssl->buffers.sig.buffer,
(word32*)&ssl->buffers.sig.length,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
else
#endif
{
ret = EccSign(ssl,
ssl->buffers.digest.buffer, ssl->buffers.digest.length,
ssl->buffers.sig.buffer,
(word32*)&ssl->buffers.sig.length,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
}
#endif /* HAVE_ECC */
#if defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)
if (ssl->hsType == DYNAMIC_TYPE_ED25519) {
ed25519_key* key = (ed25519_key*)ssl->hsKey;
ret = Ed25519Sign(ssl,
ssl->hsHashes->messages, ssl->hsHashes->length,
ssl->buffers.sig.buffer, (word32*)&ssl->buffers.sig.length,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
#endif /* HAVE_ED25519 && !NO_ED25519_CLIENT_AUTH */
#if defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)
if (ssl->hsType == DYNAMIC_TYPE_ED448) {
ed448_key* key = (ed448_key*)ssl->hsKey;
ret = Ed448Sign(ssl,
ssl->hsHashes->messages, ssl->hsHashes->length,
ssl->buffers.sig.buffer, (word32*)&ssl->buffers.sig.length,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
#endif /* HAVE_ED448 && !NO_ED448_CLIENT_AUTH */
#ifndef NO_RSA
if (ssl->hsType == DYNAMIC_TYPE_RSA) {
RsaKey* key = (RsaKey*)ssl->hsKey;
/* restore verify pointer */
args->verify = &args->output[args->idx];
ret = RsaSign(ssl,
ssl->buffers.sig.buffer, ssl->buffers.sig.length,
args->verify + args->extraSz + VERIFY_HEADER, &args->sigSz,
args->sigAlgo, ssl->options.hashAlgo, key,
ssl->buffers.key
);
}
#endif /* !NO_RSA */
/* Check for error */
if (ret != 0) {
goto exit_scv;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_VERIFY;
} /* case TLS_ASYNC_DO */
FALL_THROUGH;
case TLS_ASYNC_VERIFY:
{
/* restore verify pointer */
args->verify = &args->output[args->idx];
switch (ssl->hsType) {
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
#ifdef HAVE_ECC
case DYNAMIC_TYPE_ECC:
#ifdef WOLFSSL_CHECK_SIG_FAULTS
{
ecc_key* key = (ecc_key*)ssl->hsKey;
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (ssl->buffers.keyType == sm2_sa_algo) {
ret = Sm3wSm2Verify(ssl,
TLS12_SM2_SIG_ID, TLS12_SM2_SIG_ID_SZ,
ssl->buffers.sig.buffer, ssl->buffers.sig.length,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length, key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
else
#endif
{
ret = EccVerify(ssl,
ssl->buffers.sig.buffer, ssl->buffers.sig.length,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length, key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
if (ret != 0) {
WOLFSSL_MSG("Failed to verify ECC signature");
goto exit_scv;
}
}
#if defined(HAVE_ED25519) || defined(HAVE_ED448)
FALL_THROUGH;
#endif
#endif /* WOLFSSL_CHECK_SIG_FAULTS */
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case DYNAMIC_TYPE_ED25519:
#endif
#ifdef HAVE_ED448
case DYNAMIC_TYPE_ED448:
#endif
args->length = (word16)ssl->buffers.sig.length;
/* prepend hdr */
c16toa(args->length, args->verify + args->extraSz);
XMEMCPY(args->verify + args->extraSz + VERIFY_HEADER,
ssl->buffers.sig.buffer, ssl->buffers.sig.length);
break;
#endif /* HAVE_ECC || HAVE_ED25519 || HAVE_ED448 */
#ifndef NO_RSA
case DYNAMIC_TYPE_RSA:
{
RsaKey* key = (RsaKey*)ssl->hsKey;
if (args->verifySig == NULL) {
args->verifySig = (byte*)XMALLOC(args->sigSz, ssl->heap,
DYNAMIC_TYPE_SIGNATURE);
if (args->verifySig == NULL) {
ERROR_OUT(MEMORY_E, exit_scv);
}
XMEMCPY(args->verifySig, args->verify + args->extraSz +
VERIFY_HEADER, args->sigSz);
}
/* check for signature faults */
ret = VerifyRsaSign(ssl,
args->verifySig, args->sigSz,
ssl->buffers.sig.buffer, ssl->buffers.sig.length,
args->sigAlgo, ssl->options.hashAlgo, key,
ssl->buffers.key
);
/* free temporary buffer now */
if (ret != WC_PENDING_E) {
XFREE(args->verifySig, ssl->heap, DYNAMIC_TYPE_SIGNATURE);
args->verifySig = NULL;
}
break;
}
#endif /* !NO_RSA */
default:
break;
}
/* Check for error */
if (ret != 0) {
goto exit_scv;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_FINALIZE;
} /* case TLS_ASYNC_VERIFY */
FALL_THROUGH;
case TLS_ASYNC_FINALIZE:
{
if (args->output == NULL) {
ERROR_OUT(BUFFER_ERROR, exit_scv);
}
AddHeaders(args->output, (word32)args->length + args->extraSz +
VERIFY_HEADER, certificate_verify, ssl);
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_END;
} /* case TLS_ASYNC_FINALIZE */
FALL_THROUGH;
case TLS_ASYNC_END:
{
ret = SendHandshakeMsg(ssl, args->output,
(word32)args->length + args->extraSz + VERIFY_HEADER,
certificate_verify, "CertificateVerify");
if (ret != 0)
goto exit_scv;
break;
}
default:
ret = INPUT_CASE_ERROR;
} /* switch(ssl->options.asyncState) */
exit_scv:
WOLFSSL_LEAVE("SendCertificateVerify", ret);
WOLFSSL_END(WC_FUNC_CERTIFICATE_VERIFY_SEND);
#ifdef WOLFSSL_ASYNC_IO
/* Handle async operation */
if (ret == WANT_WRITE
#ifdef WOLFSSL_ASYNC_CRYPT
|| ret == WC_PENDING_E
#endif
)
return ret;
#endif /* WOLFSSL_ASYNC_IO */
/* Digest is not allocated, so do this to prevent free */
if(ssl->buffers.digest.buffer) {
if (!ssl->options.dontFreeDigest) {
/*This should not happen*/
XFREE(ssl->buffers.digest.buffer,
ssl->heap, DYNAMIC_TYPE_DIGEST);
}
}
ssl->buffers.digest.buffer = NULL;
ssl->buffers.digest.length = 0;
ssl->options.dontFreeDigest = 0;
/* Final cleanup */
#ifdef WOLFSSL_ASYNC_IO
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#else
FreeScvArgs(ssl, args);
#endif
FreeKeyExchange(ssl);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#endif /* WOLFSSL_NO_CLIENT_AUTH */
#endif /* WOLFSSL_NO_TLS12 */
#endif /* NO_CERTS */
#ifdef HAVE_SESSION_TICKET
int SetTicket(WOLFSSL* ssl, const byte* ticket, word32 length)
{
if (!HaveUniqueSessionObj(ssl))
return MEMORY_ERROR;
/* Free old dynamic ticket if we already had one */
if (ssl->session->ticketLenAlloc > 0) {
XFREE(ssl->session->ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
ssl->session->ticket = ssl->session->staticTicket;
ssl->session->ticketLenAlloc = 0;
}
if (length > sizeof(ssl->session->staticTicket)) {
byte* sessionTicket =
(byte*)XMALLOC(length, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
if (sessionTicket == NULL)
return MEMORY_E;
ssl->session->ticket = sessionTicket;
ssl->session->ticketLenAlloc = (word16)length;
}
ssl->session->ticketLen = (word16)length;
if (length > 0) {
XMEMCPY(ssl->session->ticket, ticket, length);
if (ssl->session_ticket_cb != NULL) {
ssl->session_ticket_cb(ssl,
ssl->session->ticket, ssl->session->ticketLen,
ssl->session_ticket_ctx);
}
/* Create a fake sessionID based on the ticket, this will
* supersede the existing session cache info. */
ssl->options.haveSessionId = 1;
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
XMEMCPY(ssl->session->sessionID,
ssl->session->ticket + length - ID_LEN, ID_LEN);
ssl->session->sessionIDSz = ID_LEN;
}
else
#endif
{
XMEMCPY(ssl->arrays->sessionID,
ssl->session->ticket + length - ID_LEN, ID_LEN);
ssl->arrays->sessionIDSz = ID_LEN;
}
}
return 0;
}
#ifndef WOLFSSL_NO_TLS12
/* handle processing of session_ticket (4) */
static int DoSessionTicket(WOLFSSL* ssl, const byte* input, word32* inOutIdx,
word32 size)
{
word32 begin = *inOutIdx;
word32 lifetime;
word16 length;
int ret;
if (ssl->expect_session_ticket == 0) {
WOLFSSL_MSG("Unexpected session ticket");
WOLFSSL_ERROR_VERBOSE(SESSION_TICKET_EXPECT_E);
return SESSION_TICKET_EXPECT_E;
}
if (OPAQUE32_LEN > size)
return BUFFER_ERROR;
ato32(input + *inOutIdx, &lifetime);
*inOutIdx += OPAQUE32_LEN;
if ((*inOutIdx - begin) + OPAQUE16_LEN > size)
return BUFFER_ERROR;
ato16(input + *inOutIdx, &length);
*inOutIdx += OPAQUE16_LEN;
if ((*inOutIdx - begin) + length > size)
return BUFFER_ERROR;
if ((ret = SetTicket(ssl, input + *inOutIdx, length)) != 0)
return ret;
*inOutIdx += length;
if (length > 0) {
ssl->timeout = lifetime;
SetupSession(ssl);
#ifndef NO_SESSION_CACHE
AddSession(ssl);
#endif
}
if (IsEncryptionOn(ssl, 0)) {
*inOutIdx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
*inOutIdx += MacSize(ssl);
#endif
}
ssl->expect_session_ticket = 0;
return 0;
}
#endif /* !WOLFSSL_NO_TLS12 */
#endif /* HAVE_SESSION_TICKET */
#endif /* NO_WOLFSSL_CLIENT */
#ifndef NO_CERTS
#ifdef WOLF_PRIVATE_KEY_ID
int GetPrivateKeySigSize(WOLFSSL* ssl)
{
int sigSz = 0;
if (ssl == NULL)
return 0;
switch (ssl->buffers.keyType) {
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
sigSz = ssl->buffers.keySz;
ssl->hsType = DYNAMIC_TYPE_RSA;
break;
#endif
#ifdef HAVE_ECC
case ecc_dsa_sa_algo:
sigSz = wc_ecc_sig_size_calc(ssl->buffers.keySz);
ssl->hsType = DYNAMIC_TYPE_ECC;
break;
#endif
#ifdef HAVE_ED25519
case ed25519_sa_algo:
sigSz = ED25519_SIG_SIZE; /* fixed known value */
ssl->hsType = DYNAMIC_TYPE_ED25519;
break;
#endif
#ifdef HAVE_ED448
case ed448_sa_algo:
sigSz = ED448_SIG_SIZE; /* fixed known value */
ssl->hsType = DYNAMIC_TYPE_ED448;
break;
#endif
default:
break;
}
return sigSz;
}
#endif /* HAVE_PK_CALLBACKS */
#endif /* NO_CERTS */
#ifdef HAVE_ECC
/* returns the WOLFSSL_* version of the curve from the OID sum */
word16 GetCurveByOID(int oidSum) {
switch(oidSum) {
#if (defined(HAVE_ECC160) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 160
#ifndef NO_ECC_SECP
case ECC_SECP160R1_OID:
return WOLFSSL_ECC_SECP160R1;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_SECPR2
case ECC_SECP160R2_OID:
return WOLFSSL_ECC_SECP160R2;
#endif /* HAVE_ECC_SECPR2 */
#ifdef HAVE_ECC_KOBLITZ
case ECC_SECP160K1_OID:
return WOLFSSL_ECC_SECP160K1;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (defined(HAVE_ECC192) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 192
#ifndef NO_ECC_SECP
case ECC_SECP192R1_OID:
return WOLFSSL_ECC_SECP192R1;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case ECC_SECP192K1_OID:
return WOLFSSL_ECC_SECP192K1;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (defined(HAVE_ECC224) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 224
#ifndef NO_ECC_SECP
case ECC_SECP224R1_OID:
return WOLFSSL_ECC_SECP224R1;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case ECC_SECP224K1_OID:
return WOLFSSL_ECC_SECP224K1;
#endif /* HAVE_ECC_KOBLITZ */
#endif
#if (!defined(NO_ECC256) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 256
#ifndef NO_ECC_SECP
case ECC_SECP256R1_OID:
return WOLFSSL_ECC_SECP256R1;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_KOBLITZ
case ECC_SECP256K1_OID:
return WOLFSSL_ECC_SECP256K1;
#endif /* HAVE_ECC_KOBLITZ */
#ifdef HAVE_ECC_BRAINPOOL
case ECC_BRAINPOOLP256R1_OID:
return WOLFSSL_ECC_BRAINPOOLP256R1;
#endif /* HAVE_ECC_BRAINPOOL */
#ifdef WOLFSSL_SM2
case ECC_SM2P256V1_OID:
return WOLFSSL_ECC_SM2P256V1;
#endif /* WOLFSSL_SM2 */
#endif
#if (defined(HAVE_ECC384) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 384
#ifndef NO_ECC_SECP
case ECC_SECP384R1_OID:
return WOLFSSL_ECC_SECP384R1;
#endif /* !NO_ECC_SECP */
#ifdef HAVE_ECC_BRAINPOOL
case ECC_BRAINPOOLP384R1_OID:
return WOLFSSL_ECC_BRAINPOOLP384R1;
#endif /* HAVE_ECC_BRAINPOOL */
#endif
#if (defined(HAVE_ECC512) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 512
#ifdef HAVE_ECC_BRAINPOOL
case ECC_BRAINPOOLP512R1_OID:
return WOLFSSL_ECC_BRAINPOOLP512R1;
#endif /* HAVE_ECC_BRAINPOOL */
#endif
#if (defined(HAVE_ECC521) || defined(HAVE_ALL_CURVES)) && ECC_MIN_KEY_SZ <= 521
#ifndef NO_ECC_SECP
case ECC_SECP521R1_OID:
return WOLFSSL_ECC_SECP521R1;
#endif /* !NO_ECC_SECP */
#endif
default:
WOLFSSL_MSG("Curve OID not compiled in or implemented");
return 0;
}
}
#endif /* HAVE_ECC */
int TranslateErrorToAlert(int err)
{
switch (err) {
case BUFFER_ERROR:
return decode_error;
case EXT_NOT_ALLOWED:
case PEER_KEY_ERROR:
case ECC_PEERKEY_ERROR:
case BAD_KEY_SHARE_DATA:
case PSK_KEY_ERROR:
case INVALID_PARAMETER:
case HRR_COOKIE_ERROR:
return illegal_parameter;
case INCOMPLETE_DATA:
return missing_extension;
case MATCH_SUITE_ERROR:
case MISSING_HANDSHAKE_DATA:
return handshake_failure;
case VERSION_ERROR:
return wolfssl_alert_protocol_version;
default:
return invalid_alert;
}
}
#ifndef NO_WOLFSSL_SERVER
#ifndef WOLFSSL_NO_TLS12
/* handle generation of server_hello (2) */
int SendServerHello(WOLFSSL* ssl)
{
int ret;
byte *output;
word16 length;
word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
int sendSz;
byte sessIdSz = ID_LEN;
#if defined(HAVE_TLS_EXTENSIONS) && defined(HAVE_SESSION_TICKET)
byte echoId = 0; /* ticket echo id flag */
#endif
byte cacheOff = 0; /* session cache off flag */
WOLFSSL_START(WC_FUNC_SERVER_HELLO_SEND);
WOLFSSL_ENTER("SendServerHello");
length = VERSION_SZ + RAN_LEN
+ ID_LEN + ENUM_LEN
+ SUITE_LEN
+ ENUM_LEN;
#ifdef HAVE_TLS_EXTENSIONS
ret = TLSX_GetResponseSize(ssl, server_hello, &length);
if (ret != 0)
return ret;
#ifdef HAVE_SESSION_TICKET
if (ssl->options.useTicket) {
/* echo session id sz can be 0,32 or bogus len in between */
sessIdSz = ssl->arrays->sessionIDSz;
if (sessIdSz > ID_LEN) {
WOLFSSL_MSG("Bad bogus session id len");
return BUFFER_ERROR;
}
if (!IsAtLeastTLSv1_3(ssl->version))
length -= (ID_LEN - sessIdSz); /* adjust ID_LEN assumption */
echoId = 1;
}
#endif /* HAVE_SESSION_TICKET */
#else
if (ssl->options.haveEMS) {
length += HELLO_EXT_SZ_SZ + HELLO_EXT_SZ;
}
#endif
/* is the session cache off at build or runtime */
#ifdef NO_SESSION_CACHE
cacheOff = 1;
#else
if (ssl->options.sessionCacheOff == 1) {
cacheOff = 1;
}
#endif
/* if no session cache don't send a session ID unless we're echoing
* an ID as part of session tickets */
if (cacheOff == 1
#if defined(HAVE_TLS_EXTENSIONS) && defined(HAVE_SESSION_TICKET)
&& echoId == 0
#endif
) {
length -= ID_LEN; /* adjust ID_LEN assumption */
sessIdSz = 0;
}
sendSz = length + HANDSHAKE_HEADER_SZ + RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
}
#endif /* WOLFSSL_DTLS */
if (IsEncryptionOn(ssl, 1))
sendSz += MAX_MSG_EXTRA;
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
AddHeaders(output, length, server_hello, ssl);
/* now write to output */
/* first version */
output[idx++] = (byte)ssl->version.major;
output[idx++] = (byte)ssl->version.minor;
/* then random and session id */
if (!ssl->options.resuming) {
/* generate random part and session id */
ret = wc_RNG_GenerateBlock(ssl->rng, output + idx,
RAN_LEN + sizeof(sessIdSz) + sessIdSz);
if (ret != 0)
return ret;
#ifdef WOLFSSL_TLS13
if (TLSv1_3_Capable(ssl)) {
/* TLS v1.3 capable server downgraded. */
XMEMCPY(output + idx + RAN_LEN - (TLS13_DOWNGRADE_SZ + 1),
tls13Downgrade, TLS13_DOWNGRADE_SZ);
output[idx + RAN_LEN - 1] = (byte)IsAtLeastTLSv1_2(ssl);
}
else
#endif
if (ssl->ctx->method->version.major == SSLv3_MAJOR &&
ssl->ctx->method->version.minor == TLSv1_2_MINOR &&
(wolfSSL_get_options(ssl) & WOLFSSL_OP_NO_TLSv1_2) == 0 &&
!IsAtLeastTLSv1_2(ssl)) {
/* TLS v1.2 capable server downgraded. */
XMEMCPY(output + idx + RAN_LEN - (TLS13_DOWNGRADE_SZ + 1),
tls13Downgrade, TLS13_DOWNGRADE_SZ);
output[idx + RAN_LEN - 1] = 0;
}
/* store info in SSL for later */
XMEMCPY(ssl->arrays->serverRandom, output + idx, RAN_LEN);
idx += RAN_LEN;
output[idx++] = sessIdSz;
XMEMCPY(ssl->arrays->sessionID, output + idx, sessIdSz);
ssl->arrays->sessionIDSz = sessIdSz;
}
else {
/* If resuming, use info from SSL */
XMEMCPY(output + idx, ssl->arrays->serverRandom, RAN_LEN);
idx += RAN_LEN;
output[idx++] = sessIdSz;
XMEMCPY(output + idx, ssl->arrays->sessionID, sessIdSz);
}
idx += sessIdSz;
#ifdef SHOW_SECRETS
{
int j;
printf("server random: ");
for (j = 0; j < RAN_LEN; j++)
printf("%02x", ssl->arrays->serverRandom[j]);
printf("\n");
}
#endif
/* then cipher suite */
output[idx++] = ssl->options.cipherSuite0;
output[idx++] = ssl->options.cipherSuite;
/* then compression */
if (ssl->options.usingCompression)
output[idx++] = ZLIB_COMPRESSION;
else
output[idx++] = NO_COMPRESSION;
/* last, extensions */
#ifdef HAVE_TLS_EXTENSIONS
{
word16 offset = 0;
ret = TLSX_WriteResponse(ssl, output + idx, server_hello, &offset);
if (ret != 0)
return ret;
idx += offset;
}
#else
#ifdef HAVE_EXTENDED_MASTER
if (ssl->options.haveEMS) {
c16toa(HELLO_EXT_SZ, output + idx);
idx += HELLO_EXT_SZ_SZ;
c16toa(HELLO_EXT_EXTMS, output + idx);
idx += HELLO_EXT_TYPE_SZ;
c16toa(0, output + idx);
/*idx += HELLO_EXT_SZ_SZ;*/
/* idx is not used after this point. uncomment the line above
* if adding any more extensions in the future. */
}
#endif
#endif
if (IsEncryptionOn(ssl, 1)) {
byte* input;
int inputSz = idx; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls)
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz -= recordHeaderSz;
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, input, inputSz, server_hello)) != 0) {
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
return ret;
}
#endif
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
} else {
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, output, sendSz, server_hello)) != 0)
return ret;
}
if (ssl->options.dtls)
DtlsSEQIncrement(ssl, CUR_ORDER);
#endif
ret = HashOutput(ssl, output, sendSz, 0);
if (ret != 0)
return ret;
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "ServerHello");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "ServerHello", handshake, output, sendSz,
WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->options.serverState = SERVER_HELLO_COMPLETE;
ssl->options.buildingMsg = 0;
ssl->buffers.outputBuffer.length += sendSz;
if (ssl->options.groupMessages)
ret = 0;
else
ret = SendBuffered(ssl);
WOLFSSL_LEAVE("SendServerHello", ret);
WOLFSSL_END(WC_FUNC_SERVER_HELLO_SEND);
return ret;
}
#if defined(HAVE_ECC)
static byte SetCurveId(ecc_key* key)
{
if (key == NULL || key->dp == NULL) {
WOLFSSL_MSG("SetCurveId: Invalid key!");
return 0;
}
return (byte)GetCurveByOID(key->dp->oidSum);
}
#endif /* HAVE_ECC */
typedef struct SskeArgs {
byte* output; /* not allocated */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
byte* exportBuf;
#endif
#ifndef NO_RSA
byte* verifySig;
#endif
byte* input;
word32 idx;
word32 tmpSigSz;
word32 length;
word32 sigSz;
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448) || \
!defined(NO_RSA)
word32 sigDataSz;
#endif
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
word32 exportSz;
#endif
int sendSz;
int inputSz;
} SskeArgs;
static void FreeSskeArgs(WOLFSSL* ssl, void* pArgs)
{
SskeArgs* args = (SskeArgs*)pArgs;
(void)ssl;
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)
if (args->exportBuf) {
XFREE(args->exportBuf, ssl->heap, DYNAMIC_TYPE_DER);
args->exportBuf = NULL;
}
#endif
#ifndef NO_RSA
if (args->verifySig) {
XFREE(args->verifySig, ssl->heap, DYNAMIC_TYPE_SIGNATURE);
args->verifySig = NULL;
}
#endif
(void)args;
}
/* handle generation of server_key_exchange (12) */
int SendServerKeyExchange(WOLFSSL* ssl)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_IO
SskeArgs* args = NULL;
WOLFSSL_ASSERT_SIZEOF_GE(ssl->async->args, *args);
#else
SskeArgs args[1];
#endif
WOLFSSL_START(WC_FUNC_SERVER_KEY_EXCHANGE_SEND);
WOLFSSL_ENTER("SendServerKeyExchange");
#ifdef WOLFSSL_ASYNC_IO
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
XMEMSET(ssl->async, 0, sizeof(struct WOLFSSL_ASYNC));
}
args = (SskeArgs*)ssl->async->args;
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_sske;
}
else
#endif
if (ssl->options.buildingMsg) {
/* We should be in the sending state. */
if (ssl->options.asyncState != TLS_ASYNC_END) {
ret = BAD_STATE_E;
goto exit_sske;
}
}
else
#endif
{
/* Reset state */
ret = 0;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
XMEMSET(args, 0, sizeof(SskeArgs));
#ifdef WOLFSSL_ASYNC_IO
ssl->async->freeArgs = FreeSskeArgs;
#endif
}
switch(ssl->options.asyncState)
{
case TLS_ASYNC_BEGIN:
{
/* Do some checks / debug msgs */
switch(ssl->specs.kea)
{
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
WOLFSSL_MSG("Using ephemeral ECDH PSK");
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
#if defined(HAVE_ECC)
case ecc_diffie_hellman_kea:
{
if (ssl->specs.static_ecdh) {
WOLFSSL_MSG("Using Static ECDH, not sending "
"ServerKeyExchange");
ERROR_OUT(0, exit_sske);
}
WOLFSSL_MSG("Using ephemeral ECDH");
break;
}
#endif /* HAVE_ECC */
}
/* Preparing keys */
switch(ssl->specs.kea)
{
#ifndef NO_PSK
case psk_kea:
{
/* Nothing to do in this sub-state */
break;
}
#endif /* !NO_PSK */
#if !defined(NO_DH) && (!defined(NO_PSK) || !defined(NO_RSA) \
|| (defined(HAVE_ANON) && !defined(WOLFSSL_NO_TLS12)))
#if !defined(NO_PSK)
case dhe_psk_kea:
#endif
#if !defined(NO_RSA) || (defined(HAVE_ANON) && \
!defined(WOLFSSL_NO_TLS12))
case diffie_hellman_kea:
#endif
#if (defined(WOLFSSL_TLS13) || defined(HAVE_FFDHE)) && !defined(HAVE_PUBLIC_FFDHE)
if (ssl->namedGroup) {
word32 pSz = 0;
ret = wc_DhGetNamedKeyParamSize(ssl->namedGroup, &pSz,
NULL, NULL);
if (ret != 0)
goto exit_sske;
if (ssl->buffers.serverDH_Pub.buffer == NULL) {
/* Free'd in SSL_ResourceFree and
* FreeHandshakeResources */
ssl->buffers.serverDH_Pub.buffer = (byte*)XMALLOC(
pSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_Pub.buffer == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
ssl->buffers.serverDH_Pub.length = pSz;
}
ssl->options.dhKeySz =(word16)pSz;
pSz = wc_DhGetNamedKeyMinSize(ssl->namedGroup);
if (ssl->buffers.serverDH_Priv.buffer == NULL) {
/* Free'd in SSL_ResourceFree and
* FreeHandshakeResources */
ssl->buffers.serverDH_Priv.buffer = (byte*)XMALLOC(
pSz, ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
if (ssl->buffers.serverDH_Priv.buffer == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
ssl->buffers.serverDH_Priv.length = pSz;
}
ret = AllocKey(ssl, DYNAMIC_TYPE_DH,
(void**)&ssl->buffers.serverDH_Key);
if (ret != 0) {
goto exit_sske;
}
ret = wc_DhSetNamedKey(ssl->buffers.serverDH_Key,
ssl->namedGroup);
if (ret != 0) {
goto exit_sske;
}
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && \
!defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)
ssl->options.dhKeyTested = 1;
#endif
#ifdef HAVE_SECURE_RENEGOTIATION
/* Check that the DH public key buffer is large
* enough to hold the key. This may occur on a
* renegotiation when the key generated in the
* initial handshake is shorter than the key
* generated in the renegotiation. */
if (ssl->buffers.serverDH_Pub.length <
ssl->buffers.serverDH_P.length) {
byte* tmp = (byte*)XREALLOC(
ssl->buffers.serverDH_Pub.buffer,
ssl->buffers.serverDH_P.length +
OPAQUE16_LEN,
ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (tmp == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
ssl->buffers.serverDH_Pub.buffer = tmp;
ssl->buffers.serverDH_Pub.length =
ssl->buffers.serverDH_P.length + OPAQUE16_LEN;
}
#endif
ret = DhGenKeyPair(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_Priv.buffer,
(word32*)&ssl->buffers.serverDH_Priv.length,
ssl->buffers.serverDH_Pub.buffer,
(word32*)&ssl->buffers.serverDH_Pub.length);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("DH private key buffer",
ssl->buffers.serverDH_Priv.buffer,
ssl->buffers.serverDH_Priv.length);
#endif
break;
}
else
#endif
{
/* Allocate DH key buffers and generate key */
if (ssl->buffers.serverDH_P.buffer == NULL ||
ssl->buffers.serverDH_G.buffer == NULL) {
ERROR_OUT(NO_DH_PARAMS, exit_sske);
}
if (ssl->buffers.serverDH_Pub.buffer == NULL) {
/* Free'd in SSL_ResourceFree and FreeHandshakeResources */
ssl->buffers.serverDH_Pub.buffer = (byte*)XMALLOC(
ssl->buffers.serverDH_P.length,
ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_Pub.buffer == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
ssl->buffers.serverDH_Pub.length =
ssl->buffers.serverDH_P.length;
}
if (ssl->buffers.serverDH_Priv.buffer == NULL) {
/* Free'd in SSL_ResourceFree and FreeHandshakeResources */
ssl->buffers.serverDH_Priv.buffer = (byte*)XMALLOC(
ssl->buffers.serverDH_P.length,
ssl->heap, DYNAMIC_TYPE_PRIVATE_KEY);
if (ssl->buffers.serverDH_Priv.buffer == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
ssl->buffers.serverDH_Priv.length =
ssl->buffers.serverDH_P.length;
}
ssl->options.dhKeySz =
(word16)ssl->buffers.serverDH_P.length;
ret = AllocKey(ssl, DYNAMIC_TYPE_DH,
(void**)&ssl->buffers.serverDH_Key);
if (ret != 0) {
goto exit_sske;
}
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && \
!defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
if (ssl->options.dhDoKeyTest &&
!ssl->options.dhKeyTested)
{
ret = wc_DhSetCheckKey(
ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length,
NULL, 0, 0, ssl->rng);
if (ret != 0) {
goto exit_sske;
}
ssl->options.dhKeyTested = 1;
}
else
#endif
{
ret = wc_DhSetKey(ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length);
if (ret != 0) {
goto exit_sske;
}
}
#ifdef HAVE_SECURE_RENEGOTIATION
/* Check that the DH public key buffer is large
* enough to hold the key. This may occur on a
* renegotiation when the key generated in the
* initial handshake is shorter than the key
* generated in the renegotiation. */
if (ssl->buffers.serverDH_Pub.length <
ssl->buffers.serverDH_P.length) {
byte* tmp = (byte*)XREALLOC(
ssl->buffers.serverDH_Pub.buffer,
ssl->buffers.serverDH_P.length +
OPAQUE16_LEN,
ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (tmp == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
ssl->buffers.serverDH_Pub.buffer = tmp;
ssl->buffers.serverDH_Pub.length =
ssl->buffers.serverDH_P.length + OPAQUE16_LEN;
}
#endif
ret = DhGenKeyPair(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_Priv.buffer,
(word32*)&ssl->buffers.serverDH_Priv.length,
ssl->buffers.serverDH_Pub.buffer,
(word32*)&ssl->buffers.serverDH_Pub.length);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("DH private key buffer",
ssl->buffers.serverDH_Priv.buffer,
ssl->buffers.serverDH_Priv.length);
#endif
break;
}
#endif /* !NO_DH && (!NO_PSK || !NO_RSA) */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
/* Fall through to create temp ECC key */
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || \
((defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)) && \
(defined(HAVE_ED25519) || defined(HAVE_ED448) || \
!defined(NO_RSA)))
case ecc_diffie_hellman_kea:
{
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
/* need ephemeral key now, create it if missing */
if (ssl->eccTempKey == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->eccTempKey);
if (ret != 0) {
goto exit_sske;
}
}
if (ssl->eccTempKeyPresent == 0) {
ret = X25519MakeKey(ssl,
(curve25519_key*)ssl->eccTempKey, NULL);
if (ret == 0 || ret == WC_PENDING_E) {
ssl->eccTempKeyPresent =
DYNAMIC_TYPE_CURVE25519;
}
else {
FreeKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->eccTempKey);
}
}
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
/* need ephemeral key now, create it if missing */
if (ssl->eccTempKey == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->eccTempKey);
if (ret != 0) {
goto exit_sske;
}
}
if (ssl->eccTempKeyPresent == 0) {
ret = X448MakeKey(ssl,
(curve448_key*)ssl->eccTempKey, NULL);
if (ret == 0 || ret == WC_PENDING_E) {
ssl->eccTempKeyPresent =
DYNAMIC_TYPE_CURVE448;
}
else {
FreeKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->eccTempKey);
}
}
break;
}
#endif
#ifdef HAVE_ECC
/* need ephemeral key now, create it if missing */
if (ssl->eccTempKey == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->eccTempKey);
if (ret != 0) {
goto exit_sske;
}
}
if (ssl->eccTempKeyPresent == 0) {
ret = EccMakeKey(ssl, ssl->eccTempKey, NULL);
if (ret == 0 || ret == WC_PENDING_E) {
ssl->eccTempKeyPresent = DYNAMIC_TYPE_ECC;
}
}
#endif
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
default:
/* Skip ServerKeyExchange */
goto exit_sske;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_sske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_BUILD;
} /* case TLS_ASYNC_BEGIN */
FALL_THROUGH;
case TLS_ASYNC_BUILD:
{
switch(ssl->specs.kea)
{
#ifndef NO_PSK
case psk_kea:
{
args->idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
if (ssl->arrays->server_hint[0] == 0) {
ERROR_OUT(0, exit_sske); /* don't send */
}
/* include size part */
args->length = (word32)XSTRLEN(ssl->arrays->server_hint);
if (args->length > MAX_PSK_ID_LEN) {
ERROR_OUT(SERVER_HINT_ERROR, exit_sske);
}
args->length += HINT_LEN_SZ;
args->sendSz = args->length + HANDSHAKE_HEADER_SZ +
RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
args->sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
args->idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
}
#endif
if (IsEncryptionOn(ssl, 1)) {
args->sendSz += MAX_MSG_EXTRA;
}
/* Use tmp buffer */
args->input = (byte*)XMALLOC(args->sendSz,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (args->input == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
args->output = args->input;
AddHeaders(args->output, args->length,
server_key_exchange, ssl);
/* key data */
c16toa((word16)(args->length - HINT_LEN_SZ),
args->output + args->idx);
args->idx += HINT_LEN_SZ;
XMEMCPY(args->output + args->idx,
ssl->arrays->server_hint,
args->length - HINT_LEN_SZ);
break;
}
#endif /* !NO_PSK */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
word32 hintLen;
args->idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
args->length = LENGTH_SZ * 3 + /* p, g, pub */
ssl->buffers.serverDH_P.length +
ssl->buffers.serverDH_G.length +
ssl->buffers.serverDH_Pub.length;
/* include size part */
hintLen = (word32)XSTRLEN(ssl->arrays->server_hint);
if (hintLen > MAX_PSK_ID_LEN) {
ERROR_OUT(SERVER_HINT_ERROR, exit_sske);
}
args->length += hintLen + HINT_LEN_SZ;
args->sendSz = args->length + HANDSHAKE_HEADER_SZ +
RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
args->sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
args->idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
}
#endif
if (IsEncryptionOn(ssl, 1)) {
args->sendSz += MAX_MSG_EXTRA;
}
/* Use tmp buffer */
args->input = (byte*)XMALLOC(args->sendSz,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (args->input == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
args->output = args->input;
AddHeaders(args->output, args->length,
server_key_exchange, ssl);
/* key data */
c16toa((word16)hintLen, args->output + args->idx);
args->idx += HINT_LEN_SZ;
XMEMCPY(args->output + args->idx,
ssl->arrays->server_hint, hintLen);
args->idx += hintLen;
/* add p, g, pub */
c16toa((word16)ssl->buffers.serverDH_P.length,
args->output + args->idx);
args->idx += LENGTH_SZ;
XMEMCPY(args->output + args->idx,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length);
args->idx += ssl->buffers.serverDH_P.length;
/* g */
c16toa((word16)ssl->buffers.serverDH_G.length,
args->output + args->idx);
args->idx += LENGTH_SZ;
XMEMCPY(args->output + args->idx,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length);
args->idx += ssl->buffers.serverDH_G.length;
/* pub */
c16toa((word16)ssl->buffers.serverDH_Pub.length,
args->output + args->idx);
args->idx += LENGTH_SZ;
XMEMCPY(args->output + args->idx,
ssl->buffers.serverDH_Pub.buffer,
ssl->buffers.serverDH_Pub.length);
/* No need to update idx, since sizes are already set */
/* args->idx += ssl->buffers.serverDH_Pub.length; */
break;
}
#endif /* !defined(NO_DH) && !defined(NO_PSK) */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
word32 hintLen;
/* curve type, named curve, length(1) */
args->idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
args->length = ENUM_LEN + CURVE_LEN + ENUM_LEN;
args->exportSz = MAX_EXPORT_ECC_SZ;
args->exportBuf = (byte*)XMALLOC(MAX_EXPORT_ECC_SZ,
ssl->heap, DYNAMIC_TYPE_DER);
if (args->exportBuf == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
if (wc_curve25519_export_public_ex(
(curve25519_key*)ssl->eccTempKey,
args->exportBuf, &args->exportSz,
EC25519_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_sske);
}
}
else
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
if (wc_curve448_export_public_ex(
(curve448_key*)ssl->eccTempKey,
args->exportBuf, &args->exportSz,
EC448_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_sske);
}
}
else
#endif
{
PRIVATE_KEY_UNLOCK();
ret = wc_ecc_export_x963(ssl->eccTempKey,
args->exportBuf, &args->exportSz);
PRIVATE_KEY_LOCK();
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_sske);
}
}
args->length += args->exportSz;
/* include size part */
hintLen = (word32)XSTRLEN(ssl->arrays->server_hint);
if (hintLen > MAX_PSK_ID_LEN) {
ERROR_OUT(SERVER_HINT_ERROR, exit_sske);
}
args->length += hintLen + HINT_LEN_SZ;
args->sendSz = args->length + HANDSHAKE_HEADER_SZ + RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
args->sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
args->idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
}
#endif
if (IsEncryptionOn(ssl, 1)) {
args->sendSz += MAX_MSG_EXTRA;
}
/* Use tmp buffer */
args->input = (byte*)XMALLOC(args->sendSz,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (args->input == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
args->output = args->input;
/* key data */
c16toa((word16)hintLen, args->output + args->idx);
args->idx += HINT_LEN_SZ;
XMEMCPY(args->output + args->idx,
ssl->arrays->server_hint, hintLen);
args->idx += hintLen;
/* ECC key exchange data */
args->output[args->idx++] = named_curve;
args->output[args->idx++] = 0x00; /* leading zero */
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID)
args->output[args->idx++] = WOLFSSL_ECC_X25519;
else
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID)
args->output[args->idx++] = WOLFSSL_ECC_X448;
else
#endif
{
#ifdef HAVE_ECC
args->output[args->idx++] =
SetCurveId(ssl->eccTempKey);
#endif
}
args->output[args->idx++] = (byte)args->exportSz;
XMEMCPY(args->output + args->idx, args->exportBuf,
args->exportSz);
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || \
((defined(HAVE_CURVE25519) || defined(HAVE_CURVE448)) && \
(defined(HAVE_ED25519) || defined(HAVE_ED448) || \
!defined(NO_RSA)))
case ecc_diffie_hellman_kea:
{
enum wc_HashType hashType;
word32 preSigSz, preSigIdx;
/* curve type, named curve, length(1) */
args->idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
args->length = ENUM_LEN + CURVE_LEN + ENUM_LEN;
/* Export temp ECC key and add to length */
args->exportSz = MAX_EXPORT_ECC_SZ;
args->exportBuf = (byte*)XMALLOC(MAX_EXPORT_ECC_SZ,
ssl->heap, DYNAMIC_TYPE_DER);
if (args->exportBuf == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
if (wc_curve25519_export_public_ex(
(curve25519_key*)ssl->eccTempKey,
args->exportBuf, &args->exportSz,
EC25519_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_sske);
}
}
else
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
if (wc_curve448_export_public_ex(
(curve448_key*)ssl->eccTempKey,
args->exportBuf, &args->exportSz,
EC448_LITTLE_ENDIAN) != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_sske);
}
}
else
#endif
{
#if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_EXPORT)
PRIVATE_KEY_UNLOCK();
ret = wc_ecc_export_x963(ssl->eccTempKey,
args->exportBuf, &args->exportSz);
PRIVATE_KEY_LOCK();
if (ret != 0) {
ERROR_OUT(ECC_EXPORT_ERROR, exit_sske);
}
#endif
}
args->length += args->exportSz;
preSigSz = args->length;
preSigIdx = args->idx;
if (ssl->buffers.key == NULL) {
#ifdef HAVE_PK_CALLBACKS
if (wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)) {
args->tmpSigSz = GetPrivateKeySigSize(ssl);
if (args->tmpSigSz == 0) {
ERROR_OUT(NO_PRIVATE_KEY, exit_sske);
}
}
else
#endif
ERROR_OUT(NO_PRIVATE_KEY, exit_sske);
}
else {
switch(ssl->options.sigAlgo) {
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
{
word16 keySz;
ssl->buffers.keyType = rsa_sa_algo;
ret = DecodePrivateKey(ssl, &keySz);
if (ret != 0) {
goto exit_sske;
}
args->tmpSigSz = (word32)keySz;
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
#endif
case ecc_dsa_sa_algo:
{
word16 keySz;
ssl->buffers.keyType = ecc_dsa_sa_algo;
ret = DecodePrivateKey(ssl, &keySz);
if (ret != 0) {
goto exit_sske;
}
/* worst case estimate */
args->tmpSigSz = keySz;
break;
}
#endif
#ifdef HAVE_ED25519
case ed25519_sa_algo:
{
word16 keySz;
ssl->buffers.keyType = ed25519_sa_algo;
ret = DecodePrivateKey(ssl, &keySz);
if (ret != 0) {
goto exit_sske;
}
/* worst case estimate */
args->tmpSigSz = ED25519_SIG_SIZE;
break;
}
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
case ed448_sa_algo:
{
word16 keySz;
ssl->buffers.keyType = ed448_sa_algo;
ret = DecodePrivateKey(ssl, &keySz);
if (ret != 0) {
goto exit_sske;
}
/* worst case estimate */
args->tmpSigSz = ED448_SIG_SIZE;
break;
}
#endif /* HAVE_ED448 */
default:
ERROR_OUT(ALGO_ID_E, exit_sske); /* unsupported type */
} /* switch(ssl->specs.sig_algo) */
}
/* sig length */
args->length += LENGTH_SZ;
args->length += args->tmpSigSz;
if (IsAtLeastTLSv1_2(ssl)) {
args->length += HASH_SIG_SIZE;
}
args->sendSz = args->length + HANDSHAKE_HEADER_SZ + RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
args->sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
args->idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
preSigIdx = args->idx;
}
#endif
if (IsEncryptionOn(ssl, 1)) {
args->sendSz += MAX_MSG_EXTRA;
}
/* Use tmp buffer */
args->input = (byte*)XMALLOC(args->sendSz,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (args->input == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
args->output = args->input;
/* record and message headers will be added below, when we're sure
of the sig length */
/* key exchange data */
args->output[args->idx++] = named_curve;
args->output[args->idx++] = 0x00; /* leading zero */
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID)
args->output[args->idx++] = WOLFSSL_ECC_X25519;
else
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID)
args->output[args->idx++] = WOLFSSL_ECC_X448;
else
#endif
{
#ifdef HAVE_ECC
args->output[args->idx++] =
SetCurveId(ssl->eccTempKey);
#endif
}
args->output[args->idx++] = (byte)args->exportSz;
XMEMCPY(args->output + args->idx, args->exportBuf, args->exportSz);
args->idx += args->exportSz;
/* Determine hash type */
if (IsAtLeastTLSv1_2(ssl)) {
EncodeSigAlg(ssl->options.hashAlgo,
ssl->options.sigAlgo,
&args->output[args->idx]);
args->idx += 2;
hashType = HashAlgoToType(ssl->options.hashAlgo);
if (hashType == WC_HASH_TYPE_NONE) {
ERROR_OUT(ALGO_ID_E, exit_sske);
}
} else {
/* only using sha and md5 for rsa */
#ifndef NO_OLD_TLS
hashType = WC_HASH_TYPE_SHA;
if (ssl->options.sigAlgo == rsa_sa_algo) {
hashType = WC_HASH_TYPE_MD5_SHA;
}
#else
ERROR_OUT(ALGO_ID_E, exit_sske);
#endif
}
/* Signature length will be written later, when we're sure what it is */
#ifdef HAVE_FUZZER
if (ssl->fuzzerCb) {
ssl->fuzzerCb(ssl, args->output + preSigIdx,
preSigSz, FUZZ_SIGNATURE, ssl->fuzzerCtx);
}
#endif
ret = HashSkeData(ssl, hashType,
args->output + preSigIdx, preSigSz,
ssl->options.sigAlgo);
if (ret != 0) {
goto exit_sske;
}
args->sigSz = args->tmpSigSz;
/* Sign hash to create signature */
switch (ssl->options.sigAlgo)
{
#ifndef NO_RSA
case rsa_sa_algo:
{
/* For TLS 1.2 re-encode signature */
if (IsAtLeastTLSv1_2(ssl)) {
byte* encodedSig = (byte*)XMALLOC(
MAX_ENCODED_SIG_SZ, ssl->heap,
DYNAMIC_TYPE_DIGEST);
if (encodedSig == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
ssl->buffers.digest.length =
wc_EncodeSignature(encodedSig,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
TypeHash(ssl->options.hashAlgo));
/* Replace sig buffer with new one */
if (!ssl->options.dontFreeDigest) {
XFREE(ssl->buffers.digest.buffer,
ssl->heap, DYNAMIC_TYPE_DIGEST);
}
ssl->options.dontFreeDigest = 0;
ssl->buffers.digest.buffer = encodedSig;
}
/* write sig size here */
c16toa((word16)args->sigSz,
args->output + args->idx);
args->idx += LENGTH_SZ;
break;
}
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
/* write sig size here */
c16toa((word16)args->sigSz,
args->output + args->idx);
args->idx += LENGTH_SZ;
break;
#endif
#endif /* !NO_RSA */
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
#endif
case ecc_dsa_sa_algo:
{
break;
}
#ifdef HAVE_ED25519
case ed25519_sa_algo:
ret = Ed25519CheckPubKey(ssl);
if (ret != 0)
goto exit_sske;
break;
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
case ed448_sa_algo:
ret = Ed448CheckPubKey(ssl);
if (ret != 0)
goto exit_sske;
break;
#endif /* HAVE_ED448 */
default:
break;
} /* switch(ssl->specs.sig_algo) */
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#if !defined(NO_DH) && (!defined(NO_RSA) || \
(defined(HAVE_ANON) && !defined(WOLFSSL_NO_TLS12)))
case diffie_hellman_kea:
{
enum wc_HashType hashType;
word32 preSigSz, preSigIdx;
args->idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
args->length = LENGTH_SZ * 3; /* p, g, pub */
args->length += ssl->buffers.serverDH_P.length +
ssl->buffers.serverDH_G.length +
ssl->buffers.serverDH_Pub.length;
preSigIdx = args->idx;
preSigSz = args->length;
if (!ssl->options.usingAnon_cipher) {
word16 keySz = 0;
/* sig length */
args->length += LENGTH_SZ;
if (ssl->buffers.key == NULL) {
#ifdef HAVE_PK_CALLBACKS
if (wolfSSL_CTX_IsPrivatePkSet(ssl->ctx))
keySz = (word16)GetPrivateKeySigSize(ssl);
else
#endif
ERROR_OUT(NO_PRIVATE_KEY, exit_sske);
}
else
{
if (ssl->buffers.keyType == 0)
ssl->buffers.keyType = rsa_sa_algo;
ret = DecodePrivateKey(ssl, &keySz);
if (ret != 0) {
goto exit_sske;
}
}
/* test if keySz has error */
if (keySz == 0) {
ERROR_OUT(keySz, exit_sske);
}
args->tmpSigSz = (word32)keySz;
args->length += args->tmpSigSz;
if (IsAtLeastTLSv1_2(ssl)) {
args->length += HASH_SIG_SIZE;
}
}
args->sendSz = args->length + HANDSHAKE_HEADER_SZ +
RECORD_HEADER_SZ;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
args->sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
args->idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
preSigIdx = args->idx;
}
#endif
if (IsEncryptionOn(ssl, 1)) {
args->sendSz += MAX_MSG_EXTRA;
}
/* Use tmp buffer */
args->input = (byte*)XMALLOC(args->sendSz,
ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (args->input == NULL)
ERROR_OUT(MEMORY_E, exit_sske);
args->output = args->input;
AddHeaders(args->output, args->length,
server_key_exchange, ssl);
/* add p, g, pub */
c16toa((word16)ssl->buffers.serverDH_P.length,
args->output + args->idx);
args->idx += LENGTH_SZ;
XMEMCPY(args->output + args->idx,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length);
args->idx += ssl->buffers.serverDH_P.length;
/* g */
c16toa((word16)ssl->buffers.serverDH_G.length,
args->output + args->idx);
args->idx += LENGTH_SZ;
XMEMCPY(args->output + args->idx,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length);
args->idx += ssl->buffers.serverDH_G.length;
/* pub */
c16toa((word16)ssl->buffers.serverDH_Pub.length,
args->output + args->idx);
args->idx += LENGTH_SZ;
XMEMCPY(args->output + args->idx,
ssl->buffers.serverDH_Pub.buffer,
ssl->buffers.serverDH_Pub.length);
args->idx += ssl->buffers.serverDH_Pub.length;
#ifdef HAVE_FUZZER
if (ssl->fuzzerCb) {
ssl->fuzzerCb(ssl, args->output + preSigIdx,
preSigSz, FUZZ_SIGNATURE, ssl->fuzzerCtx);
}
#endif
if (ssl->options.usingAnon_cipher) {
break;
}
/* Determine hash type */
if (IsAtLeastTLSv1_2(ssl)) {
EncodeSigAlg(ssl->options.hashAlgo,
ssl->options.sigAlgo,
&args->output[args->idx]);
args->idx += 2;
hashType = HashAlgoToType(ssl->options.hashAlgo);
if (hashType == WC_HASH_TYPE_NONE) {
ERROR_OUT(ALGO_ID_E, exit_sske);
}
} else {
/* only using sha and md5 for rsa */
#ifndef NO_OLD_TLS
hashType = WC_HASH_TYPE_SHA;
if (ssl->options.sigAlgo == rsa_sa_algo) {
hashType = WC_HASH_TYPE_MD5_SHA;
}
#else
ERROR_OUT(ALGO_ID_E, exit_sske);
#endif
}
/* signature size */
c16toa((word16)args->tmpSigSz, args->output + args->idx);
args->idx += LENGTH_SZ;
ret = HashSkeData(ssl, hashType,
args->output + preSigIdx, preSigSz,
ssl->options.sigAlgo);
if (ret != 0) {
goto exit_sske;
}
args->sigSz = args->tmpSigSz;
/* Sign hash to create signature */
switch (ssl->options.sigAlgo)
{
#ifndef NO_RSA
case rsa_sa_algo:
{
/* For TLS 1.2 re-encode signature */
if (IsAtLeastTLSv1_2(ssl)) {
byte* encodedSig = (byte*)XMALLOC(
MAX_ENCODED_SIG_SZ, ssl->heap,
DYNAMIC_TYPE_DIGEST);
if (encodedSig == NULL) {
ERROR_OUT(MEMORY_E, exit_sske);
}
ssl->buffers.digest.length =
wc_EncodeSignature(encodedSig,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
TypeHash(ssl->options.hashAlgo));
/* Replace sig buffer with new one */
if (!ssl->options.dontFreeDigest) {
XFREE(ssl->buffers.digest.buffer,
ssl->heap, DYNAMIC_TYPE_DIGEST);
}
ssl->options.dontFreeDigest = 0;
ssl->buffers.digest.buffer = encodedSig;
}
break;
}
#endif /* NO_RSA */
default:
break;
} /* switch (ssl->options.sigAlgo) */
break;
}
#endif /* !defined(NO_DH) && !defined(NO_RSA) */
default:
break;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_sske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_DO;
} /* case TLS_ASYNC_BUILD */
FALL_THROUGH;
case TLS_ASYNC_DO:
{
switch(ssl->specs.kea)
{
#ifndef NO_PSK
case psk_kea:
{
break;
}
#endif /* !NO_PSK */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
break;
}
#endif /* !defined(NO_DH) && !defined(NO_PSK) */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
/* Sign hash to create signature */
switch (ssl->options.sigAlgo)
{
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
{
RsaKey* key = (RsaKey*)ssl->hsKey;
ret = RsaSign(ssl,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
args->output + args->idx,
&args->sigSz,
ssl->options.sigAlgo, ssl->options.hashAlgo,
key,
ssl->buffers.key
);
break;
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
{
ecc_key* key = (ecc_key*)ssl->hsKey;
ret = Sm2wSm3Sign(ssl,
TLS12_SM2_SIG_ID, TLS12_SM2_SIG_ID_SZ,
ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
args->output + LENGTH_SZ + args->idx,
&args->sigSz,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
break;
}
#endif
case ecc_dsa_sa_algo:
{
ecc_key* key = (ecc_key*)ssl->hsKey;
ret = EccSign(ssl,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
args->output + LENGTH_SZ + args->idx,
&args->sigSz,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
break;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ed25519_sa_algo:
{
ed25519_key* key = (ed25519_key*)ssl->hsKey;
ret = Ed25519Sign(ssl,
ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
args->output + LENGTH_SZ + args->idx,
&args->sigSz,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
break;
}
#endif
#ifdef HAVE_ED448
case ed448_sa_algo:
{
ed448_key* key = (ed448_key*)ssl->hsKey;
ret = Ed448Sign(ssl,
ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
args->output + LENGTH_SZ + args->idx,
&args->sigSz,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
break;
}
#endif
default:
ERROR_OUT(ALGO_ID_E, exit_sske);
} /* switch(ssl->specs.sig_algo) */
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#if !defined(NO_DH) && !defined(NO_RSA)
case diffie_hellman_kea:
{
/* Sign hash to create signature */
switch (ssl->options.sigAlgo)
{
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
{
RsaKey* key = (RsaKey*)ssl->hsKey;
if (ssl->options.usingAnon_cipher) {
break;
}
ret = RsaSign(ssl,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
args->output + args->idx,
&args->sigSz,
ssl->options.sigAlgo, ssl->options.hashAlgo,
key,
ssl->buffers.key
);
break;
}
#endif /* NO_RSA */
default:
break;
} /* switch (ssl->options.sigAlgo) */
break;
}
#endif /* !defined(NO_DH) && !defined(NO_RSA) */
default:
break;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_sske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_VERIFY;
} /* case TLS_ASYNC_DO */
FALL_THROUGH;
case TLS_ASYNC_VERIFY:
{
switch(ssl->specs.kea)
{
#ifndef NO_PSK
case psk_kea:
{
/* Nothing to do in this sub-state */
break;
}
#endif /* !NO_PSK */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
/* Nothing to do in this sub-state */
break;
}
#endif /* !defined(NO_DH) && !defined(NO_PSK) */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
/* Nothing to do in this sub-state */
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
switch(ssl->options.sigAlgo)
{
#ifndef NO_RSA
#ifdef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
{
RsaKey* key = (RsaKey*)ssl->hsKey;
if (args->verifySig == NULL) {
if (args->sigSz == 0) {
ERROR_OUT(BAD_COND_E, exit_sske);
}
args->verifySig = (byte*)XMALLOC(
args->sigSz, ssl->heap,
DYNAMIC_TYPE_SIGNATURE);
if (!args->verifySig) {
ERROR_OUT(MEMORY_E, exit_sske);
}
XMEMCPY(args->verifySig,
args->output + args->idx, args->sigSz);
}
/* check for signature faults */
ret = VerifyRsaSign(ssl,
args->verifySig, args->sigSz,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
ssl->options.sigAlgo, ssl->options.hashAlgo,
key, ssl->buffers.key
);
break;
}
#endif
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
case sm2_sa_algo:
#endif /* WOLFSSL_SM2 */
case ecc_dsa_sa_algo:
#ifdef WOLFSSL_CHECK_SIG_FAULTS
{
ecc_key* key = (ecc_key*)ssl->hsKey;
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (ssl->options.sigAlgo == sm2_sa_algo) {
ret = Sm2wSm3Verify(ssl,
TLS12_SM2_SIG_ID, TLS12_SM2_SIG_ID_SZ,
args->output + LENGTH_SZ + args->idx,
args->sigSz,
ssl->buffers.sig.buffer,
ssl->buffers.sig.length,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
else
#endif /* WOLFSSL_SM2 */
{
ret = EccVerify(ssl,
args->output + LENGTH_SZ + args->idx,
args->sigSz,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
}
if (ret != 0) {
WOLFSSL_MSG(
"Failed to verify ECC signature");
goto exit_sske;
}
}
#if defined(HAVE_E25519) || defined(HAVE_ED448)
FALL_THROUGH;
#endif
#endif /* WOLFSSL_CHECK_SIG_FAULTS */
#ifdef HAVE_ED25519
case ed25519_sa_algo:
#endif
#ifdef HAVE_ED448
case ed448_sa_algo:
#endif
{
/* Now that we know the real sig size, write it. */
c16toa((word16)args->sigSz,
args->output + args->idx);
/* And adjust length and sendSz from estimates */
args->length += args->sigSz - args->tmpSigSz;
args->sendSz += args->sigSz - args->tmpSigSz;
break;
}
default:
ERROR_OUT(ALGO_ID_E, exit_sske); /* unsupported type */
} /* switch(ssl->specs.sig_algo) */
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#if !defined(NO_DH) && !defined(NO_RSA)
case diffie_hellman_kea:
{
switch (ssl->options.sigAlgo)
{
#ifndef NO_RSA
#ifndef WC_RSA_PSS
case rsa_pss_sa_algo:
#endif
case rsa_sa_algo:
{
RsaKey* key = (RsaKey*)ssl->hsKey;
if (ssl->options.usingAnon_cipher) {
break;
}
if (args->verifySig == NULL) {
if (args->sigSz == 0) {
ERROR_OUT(BAD_COND_E, exit_sske);
}
args->verifySig = (byte*)XMALLOC(
args->sigSz, ssl->heap,
DYNAMIC_TYPE_SIGNATURE);
if (!args->verifySig) {
ERROR_OUT(MEMORY_E, exit_sske);
}
XMEMCPY(args->verifySig,
args->output + args->idx, args->sigSz);
}
/* check for signature faults */
ret = VerifyRsaSign(ssl,
args->verifySig, args->sigSz,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
ssl->options.sigAlgo, ssl->options.hashAlgo,
key, ssl->buffers.key
);
break;
}
#endif
} /* switch (ssl->options.sigAlgo) */
break;
}
#endif /* !defined(NO_DH) && !defined(NO_RSA) */
default:
break;
} /* switch(ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_sske;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_FINALIZE;
} /* case TLS_ASYNC_VERIFY */
FALL_THROUGH;
case TLS_ASYNC_FINALIZE:
{
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
if (ssl->specs.kea == ecdhe_psk_kea ||
ssl->specs.kea == ecc_diffie_hellman_kea) {
/* Check output to make sure it was set */
if (args->output) {
AddHeaders(args->output, args->length,
server_key_exchange, ssl);
}
else {
ERROR_OUT(BUFFER_ERROR, exit_sske);
}
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_END;
} /* case TLS_ASYNC_FINALIZE */
FALL_THROUGH;
case TLS_ASYNC_END:
{
ret = SendHandshakeMsg(ssl, args->output, args->length,
server_key_exchange, "ServerKeyExchange");
if (ret != 0)
goto exit_sske;
ssl->options.serverState = SERVER_KEYEXCHANGE_COMPLETE;
break;
}
default:
ret = INPUT_CASE_ERROR;
} /* switch(ssl->options.asyncState) */
exit_sske:
WOLFSSL_LEAVE("SendServerKeyExchange", ret);
WOLFSSL_END(WC_FUNC_SERVER_KEY_EXCHANGE_SEND);
#ifdef WOLFSSL_ASYNC_IO
/* Handle async operation */
if (ret == WANT_WRITE
#ifdef WOLFSSL_ASYNC_CRYPT
|| ret == WC_PENDING_E
#endif
)
return ret;
#endif /* WOLFSSL_ASYNC_IO */
/* Final cleanup */
if (
#ifdef WOLFSSL_ASYNC_IO
args != NULL &&
#endif
args->input != NULL) {
XFREE(args->input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
args->input = NULL;
}
#ifdef WOLFSSL_ASYNC_IO
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#else
FreeSskeArgs(ssl, args);
#endif
FreeKeyExchange(ssl);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#if defined(HAVE_SERVER_RENEGOTIATION_INFO) || defined(HAVE_FALLBACK_SCSV) || \
defined(OPENSSL_ALL)
/* search suites for specific one, idx on success, negative on error */
static int FindSuite(Suites* suites, byte first, byte second)
{
int i;
if (suites == NULL || suites->suiteSz == 0) {
WOLFSSL_MSG("Suites pointer error or suiteSz 0");
return SUITES_ERROR;
}
for (i = 0; i < suites->suiteSz-1; i += SUITE_LEN) {
if (suites->suites[i] == first &&
suites->suites[i+1] == second )
return i;
}
return MATCH_SUITE_ERROR;
}
#endif
#endif /* !WOLFSSL_NO_TLS12 */
/* Make sure server cert/key are valid for this suite, true on success
* Returns 1 for valid server suite or 0 if not found
* For asynchronous this can return WC_PENDING_E
*/
static int VerifyServerSuite(const WOLFSSL* ssl, const Suites* suites,
word16 idx, CipherSuite* cs, TLSX* extensions)
{
#ifndef NO_PSK
int havePSK = ssl->options.havePSK;
#endif
byte first;
byte second;
(void)cs;
(void)extensions;
WOLFSSL_ENTER("VerifyServerSuite");
if (suites == NULL) {
WOLFSSL_MSG("Suites pointer error");
return 0;
}
first = suites->suites[idx];
second = suites->suites[idx+1];
if (CipherRequires(first, second, REQUIRES_RSA)) {
WOLFSSL_MSG("Requires RSA");
if (ssl->options.haveRSA == 0) {
WOLFSSL_MSG("Don't have RSA");
return 0;
}
}
if (CipherRequires(first, second, REQUIRES_DHE)) {
WOLFSSL_MSG("Requires DHE");
if (ssl->options.haveDH == 0) {
WOLFSSL_MSG("Don't have DHE");
return 0;
}
}
if (CipherRequires(first, second, REQUIRES_ECC)) {
WOLFSSL_MSG("Requires ECC");
if (ssl->options.haveECC == 0) {
WOLFSSL_MSG("Don't have ECC");
return 0;
}
}
if (CipherRequires(first, second, REQUIRES_ECC_STATIC)) {
WOLFSSL_MSG("Requires static ECC");
if (ssl->options.haveStaticECC == 0) {
WOLFSSL_MSG("Don't have static ECC");
return 0;
}
}
if (CipherRequires(first, second, REQUIRES_PSK)) {
WOLFSSL_MSG("Requires PSK");
#ifndef NO_PSK
if (havePSK == 0)
#endif
{
WOLFSSL_MSG("Don't have PSK");
return 0;
}
}
if (CipherRequires(first, second, REQUIRES_RSA_SIG)) {
WOLFSSL_MSG("Requires RSA Signature");
if (ssl->options.side == WOLFSSL_SERVER_END &&
ssl->options.haveECDSAsig == 1) {
WOLFSSL_MSG("Don't have RSA Signature");
return 0;
}
}
#if !defined(WOLFSSL_OLDTLS_AEAD_CIPHERSUITES)
if (CipherRequires(first, second, REQUIRES_AEAD)) {
WOLFSSL_MSG("Requires AEAD");
if (ssl->version.major == SSLv3_MAJOR &&
ssl->version.minor < TLSv1_2_MINOR) {
WOLFSSL_MSG("Version of SSL does not support AEAD ciphers");
return 0;
}
}
#endif
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && defined(HAVE_SUPPORTED_CURVES)
if (!TLSX_ValidateSupportedCurves(ssl, first, second,
&cs->ecdhCurveOID)) {
WOLFSSL_MSG("Don't have matching curves");
return 0;
}
#endif
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version) &&
ssl->options.side == WOLFSSL_SERVER_END) {
#ifdef HAVE_SUPPORTED_CURVES
byte searched = 0;
int ret = TLSX_KeyShare_Choose(ssl, extensions, first, second,
&cs->clientKSE, &searched);
if (ret == MEMORY_E) {
WOLFSSL_MSG("TLSX_KeyShare_Choose() failed in "
"VerifyServerSuite() with MEMORY_E");
return 0;
}
if (cs->clientKSE == NULL && searched) {
#ifdef WOLFSSL_SEND_HRR_COOKIE
/* If the CH contains a cookie then we need to send an alert to
* start from scratch. */
if (TLSX_Find(extensions, TLSX_COOKIE) != NULL)
return INVALID_PARAMETER;
#endif
cs->doHelloRetry = 1;
}
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E)
return ret;
#endif
if (!cs->doHelloRetry && ret != 0)
return 0; /* not found */
#endif /* HAVE_SUPPORTED_CURVES */
}
else if ((first == TLS13_BYTE) || ((first == ECC_BYTE) &&
((second == TLS_SHA256_SHA256) ||
(second == TLS_SHA384_SHA384))) ||
((first == CIPHER_BYTE) && ((second == TLS_SM4_GCM_SM3) ||
(second == TLS_SM4_CCM_SM3)))) {
/* Can't negotiate TLS 1.3 cipher suites with lower protocol
* version. */
return 0;
}
#endif /* WOLFSSL_TLS13 */
return 1;
}
static int CompareSuites(const WOLFSSL* ssl, const Suites* suites,
Suites* peerSuites, word16 i, word16 j,
CipherSuite* cs, TLSX* extensions)
{
if (suites->suites[i] == peerSuites->suites[j] &&
suites->suites[i+1] == peerSuites->suites[j+1] ) {
int ret = VerifyServerSuite(ssl, suites, i, cs, extensions);
if (ret < 0) {
return ret;
}
if (ret) {
WOLFSSL_MSG("Verified suite validity");
cs->cipherSuite0 = suites->suites[i];
cs->cipherSuite = suites->suites[i+1];
return 0;
}
else {
WOLFSSL_MSG("Could not verify suite validity, continue");
}
}
return MATCH_SUITE_ERROR;
}
int MatchSuite_ex(const WOLFSSL* ssl, Suites* peerSuites, CipherSuite* cs,
TLSX* extensions)
{
int ret;
word16 i, j;
const Suites* suites = WOLFSSL_SUITES(ssl);
WOLFSSL_ENTER("MatchSuite");
/* & 0x1 equivalent % 2 */
if (peerSuites->suiteSz == 0 || peerSuites->suiteSz & 0x1)
return BUFFER_ERROR;
if (suites == NULL)
return SUITES_ERROR;
if (!ssl->options.useClientOrder) {
/* Server order */
for (i = 0; i < suites->suiteSz; i += 2) {
for (j = 0; j < peerSuites->suiteSz; j += 2) {
ret = CompareSuites(ssl, suites, peerSuites, i, j, cs, extensions);
if (ret != MATCH_SUITE_ERROR)
return ret;
}
}
}
else {
/* Client order */
for (j = 0; j < peerSuites->suiteSz; j += 2) {
for (i = 0; i < suites->suiteSz; i += 2) {
ret = CompareSuites(ssl, suites, peerSuites, i, j, cs, extensions);
if (ret != MATCH_SUITE_ERROR)
return ret;
}
}
}
WOLFSSL_ERROR_VERBOSE(MATCH_SUITE_ERROR);
return MATCH_SUITE_ERROR;
}
int MatchSuite(WOLFSSL* ssl, Suites* peerSuites)
{
int ret;
CipherSuite cs;
XMEMSET(&cs, 0, sizeof(cs));
ret = MatchSuite_ex(ssl, peerSuites, &cs,
#ifdef HAVE_TLS_EXTENSIONS
ssl->extensions
#else
NULL
#endif
);
if (ret != 0)
return ret;
ssl->options.cipherSuite0 = cs.cipherSuite0;
ssl->options.cipherSuite = cs.cipherSuite;
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_CURVE25519) || \
defined(HAVE_ED448) || defined(HAVE_CURVE448)
ssl->ecdhCurveOID = cs.ecdhCurveOID;
#endif
ret = SetCipherSpecs(ssl);
if (ret != 0)
return ret;
ret = PickHashSigAlgo(ssl, peerSuites->hashSigAlgo,
peerSuites->hashSigAlgoSz);
if (ret != 0)
return ret;
#if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES)
if (cs.doHelloRetry) {
/* Make sure we don't send HRR twice */
if (ssl->options.serverState == SERVER_HELLO_RETRY_REQUEST_COMPLETE)
return INVALID_PARAMETER;
ssl->options.serverState = SERVER_HELLO_RETRY_REQUEST_COMPLETE;
return TLSX_KeyShare_SetSupported(ssl, &ssl->extensions);
}
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES)
if (IsAtLeastTLSv1_3(ssl->version) &&
ssl->options.side == WOLFSSL_SERVER_END) {
ret = TLSX_KeyShare_Setup(ssl, cs.clientKSE);
if (ret != 0)
return ret;
}
#endif
return ret;
}
#ifdef OLD_HELLO_ALLOWED
/* process old style client hello, deprecate? */
int ProcessOldClientHello(WOLFSSL* ssl, const byte* input, word32* inOutIdx,
word32 inSz, word16 sz)
{
word32 idx = *inOutIdx;
word16 sessionSz;
word16 randomSz;
word16 i, j;
ProtocolVersion pv;
Suites clSuites;
int ret = -1;
(void)inSz;
WOLFSSL_MSG("Got old format client hello");
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn)
AddPacketName(ssl, "ClientHello");
if (ssl->toInfoOn)
AddLateName("ClientHello", &ssl->timeoutInfo);
#endif
/* manually hash input since different format */
#ifndef NO_OLD_TLS
#ifndef NO_MD5
wc_Md5Update(&ssl->hsHashes->hashMd5, input + idx, sz);
#endif
#ifndef NO_SHA
wc_ShaUpdate(&ssl->hsHashes->hashSha, input + idx, sz);
#endif
#endif
#ifndef NO_SHA256
if (IsAtLeastTLSv1_2(ssl)) {
int shaRet = wc_Sha256Update(&ssl->hsHashes->hashSha256,
input + idx, sz);
if (shaRet != 0)
return shaRet;
}
#endif
/* does this value mean client_hello? */
idx++;
/* version */
pv.major = input[idx++];
pv.minor = input[idx++];
ssl->chVersion = pv; /* store */
if (ssl->version.minor > pv.minor) {
byte haveRSA = 0;
byte havePSK = 0;
int keySz = 0;
if (!ssl->options.downgrade) {
WOLFSSL_MSG("Client trying to connect with lesser version");
return VERSION_ERROR;
}
if (pv.minor < ssl->options.minDowngrade) {
WOLFSSL_MSG("\tversion below minimum allowed, fatal error");
return VERSION_ERROR;
}
if (pv.minor == SSLv3_MINOR) {
/* turn off tls */
WOLFSSL_MSG("\tdowngrading to SSLv3");
ssl->options.tls = 0;
ssl->options.tls1_1 = 0;
ssl->version.minor = SSLv3_MINOR;
}
else if (pv.minor == TLSv1_MINOR) {
WOLFSSL_MSG("\tdowngrading to TLSv1");
/* turn off tls 1.1+ */
ssl->options.tls1_1 = 0;
ssl->version.minor = TLSv1_MINOR;
}
else if (pv.minor == TLSv1_1_MINOR) {
WOLFSSL_MSG("\tdowngrading to TLSv1.1");
ssl->version.minor = TLSv1_1_MINOR;
}
else if (pv.minor == TLSv1_2_MINOR) {
WOLFSSL_MSG(" downgrading to TLSv1.2");
ssl->version.minor = TLSv1_2_MINOR;
}
#ifndef NO_RSA
haveRSA = 1;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
ret = AllocateSuites(ssl);
if (ret != 0)
return ret;
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, TRUE, ssl->options.haveStaticECC,
ssl->options.haveFalconSig,
ssl->options.haveDilithiumSig, ssl->options.haveAnon,
TRUE, ssl->options.side);
}
/* suite size */
ato16(&input[idx], &clSuites.suiteSz);
idx += OPAQUE16_LEN;
if (clSuites.suiteSz > WOLFSSL_MAX_SUITE_SZ)
return BUFFER_ERROR;
/* Make sure the suiteSz is a multiple of 3. (Old Client Hello) */
if (clSuites.suiteSz % 3 != 0)
return BUFFER_ERROR;
clSuites.hashSigAlgoSz = 0;
/* session size */
ato16(&input[idx], &sessionSz);
idx += OPAQUE16_LEN;
if (sessionSz > ID_LEN)
return BUFFER_ERROR;
/* random size */
ato16(&input[idx], &randomSz);
idx += OPAQUE16_LEN;
if (randomSz > RAN_LEN)
return BUFFER_ERROR;
/* suites */
for (i = 0, j = 0; i < clSuites.suiteSz; i += 3) {
byte first = input[idx++];
if (!first) { /* implicit: skip sslv2 type */
XMEMCPY(&clSuites.suites[j], &input[idx], SUITE_LEN);
j += SUITE_LEN;
}
idx += SUITE_LEN;
}
clSuites.suiteSz = j;
/* session id */
if (sessionSz) {
XMEMCPY(ssl->arrays->sessionID, input + idx, sessionSz);
ssl->arrays->sessionIDSz = (byte)sessionSz;
idx += sessionSz;
ssl->options.resuming = 1;
}
/* random */
if (randomSz < RAN_LEN)
XMEMSET(ssl->arrays->clientRandom, 0, RAN_LEN - randomSz);
XMEMCPY(&ssl->arrays->clientRandom[RAN_LEN - randomSz], input + idx,
randomSz);
idx += randomSz;
if (ssl->options.usingCompression)
ssl->options.usingCompression = 0; /* turn off */
ssl->options.clientState = CLIENT_HELLO_COMPLETE;
ssl->cbmode = SSL_CB_MODE_WRITE;
*inOutIdx = idx;
ssl->options.haveSessionId = 1;
/* DoClientHello uses same resume code */
if (ssl->options.resuming) { /* let's try */
WOLFSSL_SESSION* session;
#ifdef HAVE_SESSION_TICKET
if (ssl->options.useTicket == 1) {
session = ssl->session;
}
else
#endif
{
session = wolfSSL_GetSession(ssl, ssl->arrays->masterSecret, 1);
}
if (!session) {
WOLFSSL_MSG("Session lookup for resume failed");
ssl->options.resuming = 0;
} else {
if (MatchSuite(ssl, &clSuites) < 0) {
WOLFSSL_MSG("Unsupported cipher suite, OldClientHello");
return UNSUPPORTED_SUITE;
}
ret = wc_RNG_GenerateBlock(ssl->rng, ssl->arrays->serverRandom,
RAN_LEN);
if (ret != 0)
return ret;
#ifdef NO_OLD_TLS
ret = DeriveTlsKeys(ssl);
#else
#ifndef NO_TLS
if (ssl->options.tls)
ret = DeriveTlsKeys(ssl);
#endif
if (!ssl->options.tls)
ret = DeriveKeys(ssl);
#endif
/* SERVER: peer auth based on session secret. */
ssl->options.peerAuthGood = (ret == 0);
ssl->options.clientState = CLIENT_KEYEXCHANGE_COMPLETE;
return ret;
}
}
ret = MatchSuite(ssl, &clSuites);
if (ret != 0)return ret;
return SanityCheckMsgReceived(ssl, client_hello);
}
#endif /* OLD_HELLO_ALLOWED */
#ifndef WOLFSSL_NO_TLS12
/**
* Handles session resumption.
* Session tickets are checked for validity based on the time each ticket
* was created, timeout value and the current time. If the tickets are
* judged expired, falls back to full-handshake. If you want disable this
* session ticket validation check in TLS1.2 and below, define
* WOLFSSL_NO_TICKET_EXPIRE.
*/
int HandleTlsResumption(WOLFSSL* ssl, Suites* clSuites)
{
int ret = 0;
WOLFSSL_SESSION* session;
#ifdef HAVE_SESSION_TICKET
if (ssl->options.useTicket == 1) {
session = ssl->session;
}
else
#endif
{
session = wolfSSL_GetSession(ssl, ssl->arrays->masterSecret, 1);
}
if (!session) {
WOLFSSL_MSG("Session lookup for resume failed");
ssl->options.resuming = 0;
return ret;
}
#if !defined(WOLFSSL_NO_TICKET_EXPIRE) && !defined(NO_ASN_TIME)
/* check if the ticket is valid */
if (LowResTimer() > session->bornOn + ssl->timeout) {
WOLFSSL_MSG("Expired session, fall back to full handshake.");
ssl->options.resuming = 0;
}
#endif /* !WOLFSSL_NO_TICKET_EXPIRE && !NO_ASN_TIME */
else if (session->haveEMS != ssl->options.haveEMS) {
/* RFC 7627, 5.3, server-side */
/* if old sess didn't have EMS, but new does, full handshake */
if (!session->haveEMS && ssl->options.haveEMS) {
WOLFSSL_MSG("Attempting to resume a session that didn't "
"use EMS with a new session with EMS. Do full "
"handshake.");
ssl->options.resuming = 0;
}
/* if old sess used EMS, but new doesn't, MUST abort */
else if (session->haveEMS && !ssl->options.haveEMS) {
WOLFSSL_MSG("Trying to resume a session with EMS without "
"using EMS");
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, handshake_failure);
#endif
ret = EXT_MASTER_SECRET_NEEDED_E;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
else {
#ifndef NO_RESUME_SUITE_CHECK
int j;
/* Check client suites include the one in session */
for (j = 0; j < clSuites->suiteSz; j += 2) {
if (clSuites->suites[j] == session->cipherSuite0 &&
clSuites->suites[j+1] == session->cipherSuite) {
break;
}
}
if (j == clSuites->suiteSz) {
WOLFSSL_MSG("Prev session's cipher suite not in ClientHello");
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, illegal_parameter);
#endif
ret = UNSUPPORTED_SUITE;
WOLFSSL_ERROR_VERBOSE(ret);
}
#endif
if (ret == 0 && ssl->options.resuming) {
/* for resumption use the cipher suite from session */
ssl->options.cipherSuite0 = session->cipherSuite0;
ssl->options.cipherSuite = session->cipherSuite;
ret = SetCipherSpecs(ssl);
if (ret == 0) {
ret = PickHashSigAlgo(ssl, clSuites->hashSigAlgo,
clSuites->hashSigAlgoSz);
}
}
else if (ret == 0) {
if (MatchSuite(ssl, clSuites) < 0) {
WOLFSSL_MSG("Unsupported cipher suite, ClientHello");
ret = UNSUPPORTED_SUITE;
WOLFSSL_ERROR_VERBOSE(ret);
}
}
if (ret == 0) {
ret = wc_RNG_GenerateBlock(ssl->rng,
ssl->arrays->serverRandom, RAN_LEN);
}
if (ret == 0) {
#ifdef NO_OLD_TLS
ret = DeriveTlsKeys(ssl);
#else
#ifndef NO_TLS
if (ssl->options.tls)
ret = DeriveTlsKeys(ssl);
#endif
if (!ssl->options.tls)
ret = DeriveKeys(ssl);
#endif
/* SERVER: peer auth based on session secret. */
ssl->options.peerAuthGood = (ret == 0);
ssl->options.clientState = CLIENT_KEYEXCHANGE_COMPLETE;
}
}
return ret;
}
/* handle processing of client_hello (1) */
int DoClientHello(WOLFSSL* ssl, const byte* input, word32* inOutIdx,
word32 helloSz)
{
byte b;
ProtocolVersion pv;
#ifdef WOLFSSL_SMALL_STACK
Suites* clSuites = NULL;
#else
Suites clSuites[1];
#endif
word32 i = *inOutIdx;
word32 begin = i;
int ret = 0;
byte lesserVersion;
WOLFSSL_START(WC_FUNC_CLIENT_HELLO_DO);
WOLFSSL_ENTER("DoClientHello");
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn) AddPacketName(ssl, "ClientHello");
if (ssl->toInfoOn) AddLateName("ClientHello", &ssl->timeoutInfo);
#endif
/* do not change state in the SSL object before the next region of code
* to be able to statelessly compute a DTLS cookie */
#ifdef WOLFSSL_DTLS
/* Update the ssl->options.dtlsStateful setting `if` statement in
* wolfSSL_accept when changing this one. */
if (IsDtlsNotSctpMode(ssl) && IsDtlsNotSrtpMode(ssl) && !IsSCR(ssl) &&
!ssl->options.dtlsStateful) {
DtlsSetSeqNumForReply(ssl);
ret = DoClientHelloStateless(ssl, input + *inOutIdx, helloSz, 0,
NULL);
if (ret != 0 || !ssl->options.dtlsStateful) {
int alertType = TranslateErrorToAlert(ret);
if (alertType != invalid_alert) {
int err;
/* propagate socket errors to avoid re-calling send alert */
err = SendAlert(ssl, alert_fatal, alertType);
if (err == SOCKET_ERROR_E)
ret = SOCKET_ERROR_E;
}
*inOutIdx += helloSz;
DtlsResetState(ssl);
if (DtlsIgnoreError(ret))
ret = 0;
return ret;
}
if (ssl->chGoodCb != NULL) {
int cbret = ssl->chGoodCb(ssl, ssl->chGoodCtx);
if (cbret < 0) {
ssl->error = cbret;
WOLFSSL_MSG("ClientHello Good Cb don't continue error");
return WOLFSSL_FATAL_ERROR;
}
}
}
ssl->options.dtlsStateful = 1;
#endif /* WOLFSSL_DTLS */
/* Reset to sane value for SCR */
ssl->options.resuming = 0;
ssl->arrays->sessionIDSz = 0;
/* protocol version, random and session id length check */
if (OPAQUE16_LEN + RAN_LEN + OPAQUE8_LEN > helloSz)
return BUFFER_ERROR;
/* protocol version */
XMEMCPY(&pv, input + i, OPAQUE16_LEN);
ssl->chVersion = pv; /* store */
i += OPAQUE16_LEN;
/* Legacy protocol version cannot negotiate TLS 1.3 or higher. */
if (pv.major == SSLv3_MAJOR && pv.minor >= TLSv1_3_MINOR)
pv.minor = TLSv1_2_MINOR;
lesserVersion = !ssl->options.dtls && ssl->version.minor > pv.minor;
lesserVersion |= ssl->options.dtls && ssl->version.minor < pv.minor;
if (lesserVersion) {
byte belowMinDowngrade;
word16 haveRSA = 0;
word16 havePSK = 0;
int keySz = 0;
if (!ssl->options.downgrade) {
WOLFSSL_MSG("Client trying to connect with lesser version");
ret = VERSION_ERROR;
goto out;
}
belowMinDowngrade = pv.minor < ssl->options.minDowngrade;
/* DTLS versions increase backwards (-1,-2,-3) ecc */
if (ssl->options.dtls)
belowMinDowngrade = ssl->options.dtls
&& pv.minor > ssl->options.minDowngrade;
if (belowMinDowngrade) {
WOLFSSL_MSG("\tversion below minimum allowed, fatal error");
ret = VERSION_ERROR;
goto out;
}
if (!ssl->options.dtls) {
if (pv.minor == SSLv3_MINOR) {
/* turn off tls */
WOLFSSL_MSG("\tdowngrading to SSLv3");
ssl->options.tls = 0;
ssl->options.tls1_1 = 0;
ssl->version.minor = SSLv3_MINOR;
}
else if (pv.minor == TLSv1_MINOR) {
/* turn off tls 1.1+ */
WOLFSSL_MSG("\tdowngrading to TLSv1");
ssl->options.tls1_1 = 0;
ssl->version.minor = TLSv1_MINOR;
}
else if (pv.minor == TLSv1_1_MINOR) {
WOLFSSL_MSG("\tdowngrading to TLSv1.1");
ssl->version.minor = TLSv1_1_MINOR;
}
else if (pv.minor == TLSv1_2_MINOR) {
WOLFSSL_MSG(" downgrading to TLSv1.2");
ssl->version.minor = TLSv1_2_MINOR;
}
}
else {
if (pv.minor == DTLSv1_2_MINOR) {
WOLFSSL_MSG("\tDowngrading to DTLSv1.2");
ssl->options.tls1_3 = 0;
ssl->version.minor = DTLSv1_2_MINOR;
}
else if (pv.minor == DTLS_MINOR) {
WOLFSSL_MSG("\tDowngrading to DTLSv1.0");
ssl->options.tls1_3 = 0;
ssl->version.minor = DTLS_MINOR;
}
}
#ifndef NO_RSA
haveRSA = 1;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
ret = AllocateSuites(ssl);
if (ret != 0)
goto out;
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, TRUE, ssl->options.haveStaticECC,
ssl->options.haveFalconSig,
ssl->options.haveDilithiumSig, ssl->options.haveAnon,
TRUE, ssl->options.side);
}
/* check if option is set to not allow the current version
* set from either wolfSSL_set_options or wolfSSL_CTX_set_options */
if (!ssl->options.dtls && ssl->options.downgrade &&
ssl->options.mask > 0) {
int reset = 0;
if (ssl->version.minor == TLSv1_2_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2) ==
WOLFSSL_OP_NO_TLSv1_2) {
WOLFSSL_MSG("\tOption set to not allow TLSv1.2, Downgrading");
ssl->version.minor = TLSv1_1_MINOR;
reset = 1;
}
if (ssl->version.minor == TLSv1_1_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1) ==
WOLFSSL_OP_NO_TLSv1_1) {
WOLFSSL_MSG("\tOption set to not allow TLSv1.1, Downgrading");
ssl->options.tls1_1 = 0;
ssl->version.minor = TLSv1_MINOR;
reset = 1;
}
if (ssl->version.minor == TLSv1_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_TLSv1) ==
WOLFSSL_OP_NO_TLSv1) {
WOLFSSL_MSG("\tOption set to not allow TLSv1, Downgrading");
ssl->options.tls = 0;
ssl->options.tls1_1 = 0;
ssl->version.minor = SSLv3_MINOR;
reset = 1;
}
if (ssl->version.minor == SSLv3_MINOR &&
(ssl->options.mask & WOLFSSL_OP_NO_SSLv3) ==
WOLFSSL_OP_NO_SSLv3) {
WOLFSSL_MSG("\tError, option set to not allow SSLv3");
ret = VERSION_ERROR;
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, wolfssl_alert_protocol_version);
#endif
goto out;
}
if (ssl->version.minor < ssl->options.minDowngrade) {
WOLFSSL_MSG("\tversion below minimum allowed, fatal error");
ret = VERSION_ERROR;
goto out;
}
if (reset) {
word16 haveRSA = 0;
word16 havePSK = 0;
int keySz = 0;
#ifndef NO_RSA
haveRSA = 1;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
ret = AllocateSuites(ssl);
if (ret != 0)
goto out;
/* reset cipher suites to account for TLS version change */
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveECDSAsig,
ssl->options.haveECC, TRUE, ssl->options.haveStaticECC,
ssl->options.haveFalconSig,
ssl->options.haveDilithiumSig, ssl->options.haveAnon,
TRUE, ssl->options.side);
}
}
/* random */
XMEMCPY(ssl->arrays->clientRandom, input + i, RAN_LEN);
i += RAN_LEN;
#ifdef SHOW_SECRETS
{
int j;
printf("client random: ");
for (j = 0; j < RAN_LEN; j++)
printf("%02x", ssl->arrays->clientRandom[j]);
printf("\n");
}
#endif
/* session id */
b = input[i++];
if (b > ID_LEN) {
WOLFSSL_MSG("Invalid session ID size");
ret = BUFFER_ERROR; /* session ID greater than 32 bytes long */
goto out;
}
else if (b > 0 && !IsSCR(ssl)) {
if ((i - begin) + b > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
/* Always save session ID in case we want to echo it. */
XMEMCPY(ssl->arrays->sessionID, input + i, b);
ssl->arrays->sessionIDSz = b;
if (b == ID_LEN)
ssl->options.resuming = 1; /* client wants to resume */
WOLFSSL_MSG("Client wants to resume session");
}
i += b;
#ifdef WOLFSSL_DTLS
/* cookie */
if (ssl->options.dtls) {
word8 peerCookieSz;
if ((i - begin) + OPAQUE8_LEN > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
peerCookieSz = input[i++];
if (peerCookieSz) {
if (peerCookieSz > MAX_COOKIE_LEN) {
ret = BUFFER_ERROR;
goto out;
}
if ((i - begin) + peerCookieSz > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
i += peerCookieSz;
}
}
#endif /* WOLFSSL_DTLS */
/* suites */
if ((i - begin) + OPAQUE16_LEN > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
#ifdef WOLFSSL_SMALL_STACK
clSuites = (Suites*)XMALLOC(sizeof(Suites), ssl->heap,
DYNAMIC_TYPE_SUITES);
if (clSuites == NULL) {
ret = MEMORY_E;
goto out;
}
#endif
XMEMSET(clSuites, 0, sizeof(Suites));
ato16(&input[i], &clSuites->suiteSz);
i += OPAQUE16_LEN;
/* Cipher suite lists are always multiples of two in length. */
if (clSuites->suiteSz % 2 != 0) {
ret = BUFFER_ERROR;
goto out;
}
/* suites and compression length check */
if ((i - begin) + clSuites->suiteSz + OPAQUE8_LEN > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
if (clSuites->suiteSz > WOLFSSL_MAX_SUITE_SZ) {
ret = BUFFER_ERROR;
goto out;
}
XMEMCPY(clSuites->suites, input + i, clSuites->suiteSz);
#ifdef HAVE_SERVER_RENEGOTIATION_INFO
/* check for TLS_EMPTY_RENEGOTIATION_INFO_SCSV suite */
if (FindSuite(clSuites, 0, TLS_EMPTY_RENEGOTIATION_INFO_SCSV) >= 0) {
TLSX* extension;
/* check for TLS_EMPTY_RENEGOTIATION_INFO_SCSV suite */
ret = TLSX_AddEmptyRenegotiationInfo(&ssl->extensions, ssl->heap);
if (ret != WOLFSSL_SUCCESS)
goto out;
extension = TLSX_Find(ssl->extensions, TLSX_RENEGOTIATION_INFO);
if (extension) {
ssl->secure_renegotiation =
(SecureRenegotiation*)extension->data;
ssl->secure_renegotiation->enabled = 1;
}
}
#endif /* HAVE_SERVER_RENEGOTIATION_INFO */
#if defined(HAVE_FALLBACK_SCSV) || defined(OPENSSL_ALL)
/* check for TLS_FALLBACK_SCSV suite */
if (FindSuite(clSuites, TLS_FALLBACK_SCSV, 0) >= 0) {
WOLFSSL_MSG("Found Fallback SCSV");
if (ssl->ctx->method->version.minor > pv.minor) {
WOLFSSL_MSG("Client trying to connect with lesser version");
SendAlert(ssl, alert_fatal, inappropriate_fallback);
ret = VERSION_ERROR;
goto out;
}
}
#endif
i += clSuites->suiteSz;
clSuites->hashSigAlgoSz = 0;
/* compression length */
b = input[i++];
if ((i - begin) + b > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
if (b == 0) {
WOLFSSL_MSG("No compression types in list");
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, decode_error);
#endif
ret = COMPRESSION_ERROR;
goto out;
}
{
/* compression match types */
int matchNo = 0;
int matchZlib = 0;
while (b--) {
byte comp = input[i++];
if (comp == NO_COMPRESSION) {
matchNo = 1;
}
if (comp == ZLIB_COMPRESSION) {
matchZlib = 1;
}
}
if (ssl->options.usingCompression == 0 && matchNo) {
WOLFSSL_MSG("Matched No Compression");
} else if (ssl->options.usingCompression && matchZlib) {
WOLFSSL_MSG("Matched zlib Compression");
} else if (ssl->options.usingCompression && matchNo) {
WOLFSSL_MSG("Could only match no compression, turning off");
ssl->options.usingCompression = 0; /* turn off */
} else {
WOLFSSL_MSG("Could not match compression");
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, illegal_parameter);
#endif
ret = COMPRESSION_ERROR;
goto out;
}
}
*inOutIdx = i;
/* tls extensions */
if ((i - begin) < helloSz) {
#ifdef HAVE_TLS_EXTENSIONS
if (TLSX_SupportExtensions(ssl))
#else
if (IsAtLeastTLSv1_2(ssl))
#endif
{
/* Process the hello extension. Skip unsupported. */
word16 totalExtSz;
#ifdef HAVE_TLS_EXTENSIONS
/* auto populate extensions supported unless user defined */
if ((ret = TLSX_PopulateExtensions(ssl, 1)) != 0)
goto out;
#endif
if ((i - begin) + OPAQUE16_LEN > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
ato16(&input[i], &totalExtSz);
i += OPAQUE16_LEN;
if ((i - begin) + totalExtSz > helloSz) {
ret = BUFFER_ERROR;
goto out;
}
#ifdef HAVE_TLS_EXTENSIONS
/* tls extensions */
if ((ret = TLSX_Parse(ssl, input + i, totalExtSz, client_hello,
clSuites)))
goto out;
#ifdef WOLFSSL_TLS13
if (TLSX_Find(ssl->extensions,
TLSX_SUPPORTED_VERSIONS) != NULL) {
WOLFSSL_MSG(
"Client attempting to connect with higher version");
ret = VERSION_ERROR;
goto out;
}
#endif
#ifdef HAVE_SNI
if((ret=SNI_Callback(ssl)))
goto out;
#endif
#ifdef HAVE_ALPN
if((ret=ALPN_Select(ssl)))
goto out;
#endif
i += totalExtSz;
#else
while (totalExtSz) {
word16 extId, extSz;
if (OPAQUE16_LEN + OPAQUE16_LEN > totalExtSz) {
ret = BUFFER_ERROR;
goto out;
}
ato16(&input[i], &extId);
i += OPAQUE16_LEN;
ato16(&input[i], &extSz);
i += OPAQUE16_LEN;
if (OPAQUE16_LEN + OPAQUE16_LEN + extSz > totalExtSz) {
ret = BUFFER_ERROR;
goto out;
}
if (extId == HELLO_EXT_SIG_ALGO) {
word16 hashSigAlgoSz;
ato16(&input[i], &hashSigAlgoSz);
i += OPAQUE16_LEN;
if (OPAQUE16_LEN + hashSigAlgoSz > extSz) {
ret = BUFFER_ERROR;
goto out;
}
if (hashSigAlgoSz % 2 != 0) {
ret = BUFFER_ERROR;
goto out;
}
clSuites->hashSigAlgoSz = hashSigAlgoSz;
if (clSuites->hashSigAlgoSz > WOLFSSL_MAX_SIGALGO) {
WOLFSSL_MSG("ClientHello SigAlgo list exceeds max, "
"truncating");
clSuites->hashSigAlgoSz = WOLFSSL_MAX_SIGALGO;
}
XMEMCPY(clSuites->hashSigAlgo, &input[i],
clSuites->hashSigAlgoSz);
i += hashSigAlgoSz;
}
#ifdef HAVE_EXTENDED_MASTER
else if (extId == HELLO_EXT_EXTMS)
ssl->options.haveEMS = 1;
#endif
else
i += extSz;
totalExtSz -= OPAQUE16_LEN + OPAQUE16_LEN + extSz;
}
#endif
*inOutIdx = i;
}
else
*inOutIdx = begin + helloSz; /* skip extensions */
}
#ifdef WOLFSSL_DTLS_CID
if (ssl->options.useDtlsCID)
DtlsCIDOnExtensionsParsed(ssl);
#endif /* WOLFSSL_DTLS_CID */
ssl->options.clientState = CLIENT_HELLO_COMPLETE;
ssl->options.haveSessionId = 1;
/* ProcessOld uses same resume code */
if (ssl->options.resuming) {
ret = HandleTlsResumption(ssl, clSuites);
if (ret != 0)
goto out;
#if defined(HAVE_TLS_EXTENSIONS) && defined(HAVE_ENCRYPT_THEN_MAC) && \
!defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.encThenMac && ssl->specs.cipher_type == block) {
ret = TLSX_EncryptThenMac_Respond(ssl);
if (ret != 0)
goto out;
}
else
ssl->options.encThenMac = 0;
#endif
if (ssl->options.clientState == CLIENT_KEYEXCHANGE_COMPLETE) {
WOLFSSL_LEAVE("DoClientHello", ret);
WOLFSSL_END(WC_FUNC_CLIENT_HELLO_DO);
goto out;
}
}
#if defined(HAVE_TLS_EXTENSIONS) && defined(HAVE_DH_DEFAULT_PARAMS)
#if defined(HAVE_FFDHE) && defined(HAVE_SUPPORTED_CURVES)
if (TLSX_Find(ssl->extensions, TLSX_SUPPORTED_GROUPS) != NULL) {
/* Set FFDHE parameters or clear DHE parameters if FFDH parameters
* present and no matches in the server's list. */
ret = TLSX_SupportedFFDHE_Set(ssl);
if (ret != 0)
goto out;
}
#endif
#endif
#ifdef OPENSSL_EXTRA
ssl->clSuites = clSuites;
/* Give user last chance to provide a cert for cipher selection */
if (ret == 0 && ssl->ctx->certSetupCb != NULL)
ret = CertSetupCbWrapper(ssl);
#endif
if (ret == 0)
ret = MatchSuite(ssl, clSuites);
#if defined(HAVE_TLS_EXTENSIONS) && defined(HAVE_ENCRYPT_THEN_MAC) && \
!defined(WOLFSSL_AEAD_ONLY)
if (ret == 0 && ssl->options.encThenMac &&
ssl->specs.cipher_type == block) {
ret = TLSX_EncryptThenMac_Respond(ssl);
}
else
ssl->options.encThenMac = 0;
#endif
#ifdef WOLFSSL_DTLS
if (ret == 0 && ssl->options.dtls)
DtlsMsgPoolReset(ssl);
#endif
out:
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
ssl->clSuites = NULL;
#endif
#ifdef WOLFSSL_SMALL_STACK
if (clSuites != NULL)
XFREE(clSuites, ssl->heap, DYNAMIC_TYPE_SUITES);
#endif
WOLFSSL_LEAVE("DoClientHello", ret);
WOLFSSL_END(WC_FUNC_CLIENT_HELLO_DO);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#if (!defined(NO_RSA) || defined(HAVE_ECC) || defined(HAVE_ED25519) || \
defined(HAVE_ED448)) && !defined(WOLFSSL_NO_CLIENT_AUTH)
typedef struct DcvArgs {
byte* output; /* not allocated */
word32 sendSz;
word16 sz;
word32 sigSz;
word32 idx;
word32 begin;
byte hashAlgo;
byte sigAlgo;
} DcvArgs;
static void FreeDcvArgs(WOLFSSL* ssl, void* pArgs)
{
DcvArgs* args = (DcvArgs*)pArgs;
(void)ssl;
(void)args;
}
/* handle processing of certificate_verify (15) */
static int DoCertificateVerify(WOLFSSL* ssl, byte* input,
word32* inOutIdx, word32 size)
{
int ret = 0;
#ifdef WOLFSSL_ASYNC_CRYPT
DcvArgs* args = NULL;
WOLFSSL_ASSERT_SIZEOF_GE(ssl->async->args, *args);
#else
DcvArgs args[1];
#endif
WOLFSSL_START(WC_FUNC_CERTIFICATE_VERIFY_DO);
WOLFSSL_ENTER("DoCertificateVerify");
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
ERROR_OUT(MEMORY_E, exit_dcv);
}
args = (DcvArgs*)ssl->async->args;
ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_dcv;
}
else
#endif
{
/* Reset state */
ret = 0;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
XMEMSET(args, 0, sizeof(DcvArgs));
args->hashAlgo = sha_mac;
args->sigAlgo = anonymous_sa_algo;
args->idx = *inOutIdx;
args->begin = *inOutIdx;
#ifdef WOLFSSL_ASYNC_CRYPT
ssl->async->freeArgs = FreeDcvArgs;
#endif
}
switch(ssl->options.asyncState)
{
case TLS_ASYNC_BEGIN:
{
#ifdef WOLFSSL_CALLBACKS
if (ssl->hsInfoOn)
AddPacketName(ssl, "CertificateVerify");
if (ssl->toInfoOn)
AddLateName("CertificateVerify", &ssl->timeoutInfo);
#endif
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_BUILD;
} /* case TLS_ASYNC_BEGIN */
FALL_THROUGH;
case TLS_ASYNC_BUILD:
{
if (IsAtLeastTLSv1_2(ssl)) {
if ((args->idx - args->begin) + ENUM_LEN + ENUM_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcv);
}
DecodeSigAlg(&input[args->idx], &args->hashAlgo,
&args->sigAlgo);
args->idx += 2;
}
#ifndef NO_RSA
else if (ssl->peerRsaKey != NULL && ssl->peerRsaKeyPresent != 0)
args->sigAlgo = rsa_sa_algo;
#endif
#ifdef HAVE_ECC
else if (ssl->peerEccDsaKeyPresent) {
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (ssl->peerEccDsaKey->dp->id == ECC_SM2P256V1) {
args->sigAlgo = sm2_sa_algo;
}
else
#endif
{
args->sigAlgo = ecc_dsa_sa_algo;
}
}
#endif
#if defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)
else if (ssl->peerEd25519KeyPresent)
args->sigAlgo = ed25519_sa_algo;
#endif /* HAVE_ED25519 && !NO_ED25519_CLIENT_AUTH */
#if defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)
else if (ssl->peerEd448KeyPresent)
args->sigAlgo = ed448_sa_algo;
#endif /* HAVE_ED448 && !NO_ED448_CLIENT_AUTH */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcv);
}
ato16(input + args->idx, &args->sz);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + args->sz > size ||
args->sz > ENCRYPT_LEN) {
ERROR_OUT(BUFFER_ERROR, exit_dcv);
}
#ifdef HAVE_ECC
if (ssl->peerEccDsaKeyPresent) {
WOLFSSL_MSG("Doing ECC peer cert verify");
/* make sure a default is defined */
#if !defined(NO_SHA)
SetDigest(ssl, sha_mac);
#elif !defined(NO_SHA256)
SetDigest(ssl, sha256_mac);
#elif defined(WOLFSSL_SM3)
SetDigest(ssl, sm3_mac);
#elif defined(WOLFSSL_SHA384)
SetDigest(ssl, sha384_mac);
#elif defined(WOLFSSL_SHA512)
SetDigest(ssl, sha512_mac);
#else
#error No digest enabled for ECC sig verify
#endif
if (IsAtLeastTLSv1_2(ssl)) {
if (args->sigAlgo != ecc_dsa_sa_algo
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
&& args->sigAlgo != sm2_sa_algo
#endif
) {
WOLFSSL_MSG("Oops, peer sent ECC key but not in verify");
}
SetDigest(ssl, args->hashAlgo);
}
}
#endif /* HAVE_ECC */
#if defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)
if (ssl->peerEd25519KeyPresent) {
WOLFSSL_MSG("Doing ED25519 peer cert verify");
if (IsAtLeastTLSv1_2(ssl) &&
args->sigAlgo != ed25519_sa_algo) {
WOLFSSL_MSG(
"Oops, peer sent ED25519 key but not in verify");
}
}
#endif /* HAVE_ED25519 && !NO_ED25519_CLIENT_AUTH */
#if defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)
if (ssl->peerEd448KeyPresent) {
WOLFSSL_MSG("Doing ED448 peer cert verify");
if (IsAtLeastTLSv1_2(ssl) &&
args->sigAlgo != ed448_sa_algo) {
WOLFSSL_MSG(
"Oops, peer sent ED448 key but not in verify");
}
}
#endif /* HAVE_ED448 && !NO_ED448_CLIENT_AUTH */
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_DO;
} /* case TLS_ASYNC_BUILD */
FALL_THROUGH;
case TLS_ASYNC_DO:
{
#ifndef NO_RSA
if (ssl->peerRsaKey != NULL && ssl->peerRsaKeyPresent != 0) {
WOLFSSL_MSG("Doing RSA peer cert verify");
ret = RsaVerify(ssl,
input + args->idx,
args->sz,
&args->output,
args->sigAlgo, args->hashAlgo,
ssl->peerRsaKey,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerRsaKey
#else
NULL
#endif
);
if (ret >= 0) {
if (args->sigAlgo == rsa_sa_algo)
args->sendSz = ret;
else {
args->sigSz = ret;
args->sendSz = ssl->buffers.digest.length;
}
ret = 0;
}
}
#endif /* !NO_RSA */
#ifdef HAVE_ECC
if (ssl->peerEccDsaKeyPresent) {
WOLFSSL_MSG("Doing ECC peer cert verify");
#if defined(WOLFSSL_SM2) && defined(WOLFSSL_SM3)
if (args->sigAlgo == sm2_sa_algo) {
ret = Sm2wSm3Verify(ssl,
TLS12_SM2_SIG_ID, TLS12_SM2_SIG_ID_SZ,
input + args->idx, args->sz,
ssl->hsHashes->messages, ssl->hsHashes->prevLen,
ssl->peerEccDsaKey,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEccDsaKey
#else
NULL
#endif
);
}
else
#endif
{
ret = EccVerify(ssl,
input + args->idx, args->sz,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
ssl->peerEccDsaKey,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEccDsaKey
#else
NULL
#endif
);
}
/* SERVER: Data verified with certificate's public key. */
ssl->options.peerAuthGood = ssl->options.havePeerCert &&
(ret == 0);
}
#endif /* HAVE_ECC */
#if defined(HAVE_ED25519) && !defined(NO_ED25519_CLIENT_AUTH)
if (ssl->peerEd25519KeyPresent) {
WOLFSSL_MSG("Doing Ed25519 peer cert verify");
ret = Ed25519Verify(ssl,
input + args->idx, args->sz,
ssl->hsHashes->messages, ssl->hsHashes->prevLen,
ssl->peerEd25519Key,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEd25519Key
#else
NULL
#endif
);
/* SERVER: Data verified with certificate's public key. */
ssl->options.peerAuthGood = ssl->options.havePeerCert &&
(ret == 0);
}
#endif /* HAVE_ED25519 && !NO_ED25519_CLIENT_AUTH */
#if defined(HAVE_ED448) && !defined(NO_ED448_CLIENT_AUTH)
if (ssl->peerEd448KeyPresent) {
WOLFSSL_MSG("Doing Ed448 peer cert verify");
ret = Ed448Verify(ssl,
input + args->idx, args->sz,
ssl->hsHashes->messages, ssl->hsHashes->prevLen,
ssl->peerEd448Key,
#ifdef HAVE_PK_CALLBACKS
&ssl->buffers.peerEd448Key
#else
NULL
#endif
);
/* SERVER: Data verified with certificate's public key. */
ssl->options.peerAuthGood = ssl->options.havePeerCert &&
(ret == 0);
}
#endif /* HAVE_ED448 && !NO_ED448_CLIENT_AUTH */
#ifdef WOLFSSL_ASYNC_CRYPT
/* handle async pending */
if (ret == WC_PENDING_E)
goto exit_dcv;
#endif
/* Check for error */
if (ret != 0) {
ret = SIG_VERIFY_E;
goto exit_dcv;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_VERIFY;
} /* case TLS_ASYNC_DO */
FALL_THROUGH;
case TLS_ASYNC_VERIFY:
{
#ifndef NO_RSA
if (ssl->peerRsaKey != NULL && ssl->peerRsaKeyPresent != 0) {
if (IsAtLeastTLSv1_2(ssl)) {
#ifdef WC_RSA_PSS
if (args->sigAlgo == rsa_pss_sa_algo) {
SetDigest(ssl, args->hashAlgo);
#ifdef HAVE_SELFTEST
ret = wc_RsaPSS_CheckPadding(
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
args->output, args->sigSz,
HashAlgoToType(args->hashAlgo));
#else
ret = wc_RsaPSS_CheckPadding_ex(
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
args->output, args->sigSz,
HashAlgoToType(args->hashAlgo), -1,
mp_count_bits(&ssl->peerRsaKey->n));
#endif
if (ret != 0) {
ret = SIG_VERIFY_E;
goto exit_dcv;
}
}
else
#endif
{
#ifndef WOLFSSL_SMALL_STACK
byte encodedSig[MAX_ENCODED_SIG_SZ];
#else
byte* encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ,
ssl->heap, DYNAMIC_TYPE_SIGNATURE);
if (encodedSig == NULL) {
ERROR_OUT(MEMORY_E, exit_dcv);
}
#endif
if (args->sigAlgo != rsa_sa_algo) {
WOLFSSL_MSG("Oops, peer sent RSA key but not "
"in verify");
}
SetDigest(ssl, args->hashAlgo);
args->sigSz = wc_EncodeSignature(encodedSig,
ssl->buffers.digest.buffer,
ssl->buffers.digest.length,
TypeHash(args->hashAlgo));
if (args->sendSz != args->sigSz || !args->output ||
XMEMCMP(args->output, encodedSig,
min(args->sigSz, MAX_ENCODED_SIG_SZ)) != 0) {
ret = VERIFY_CERT_ERROR;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(encodedSig, ssl->heap,
DYNAMIC_TYPE_SIGNATURE);
#endif
}
}
else {
if (args->sendSz != FINISHED_SZ || !args->output ||
XMEMCMP(args->output,
&ssl->hsHashes->certHashes, FINISHED_SZ) != 0) {
ret = VERIFY_CERT_ERROR;
}
}
if (ret == 0) {
/* SERVER: Data verified with cert's public key. */
ssl->options.peerAuthGood = ssl->options.havePeerCert &&
(ret == 0);
}
}
#endif /* !NO_RSA */
if (ret != 0)
break;
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_FINALIZE;
} /* case TLS_ASYNC_VERIFY */
FALL_THROUGH;
case TLS_ASYNC_FINALIZE:
{
if (IsEncryptionOn(ssl, 0)) {
args->idx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
args->idx += MacSize(ssl);
#endif
}
ssl->options.havePeerVerify = 1;
/* Set final index */
args->idx += args->sz;
*inOutIdx = args->idx;
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_END;
} /* case TLS_ASYNC_FINALIZE */
FALL_THROUGH;
case TLS_ASYNC_END:
{
break;
}
default:
ret = INPUT_CASE_ERROR;
} /* switch(ssl->options.asyncState) */
exit_dcv:
WOLFSSL_LEAVE("DoCertificateVerify", ret);
WOLFSSL_END(WC_FUNC_CERTIFICATE_VERIFY_DO);
#ifdef WOLFSSL_ASYNC_CRYPT
/* Handle async operation */
if (ret == WC_PENDING_E) {
/* Mark message as not received so it can process again */
ssl->msgsReceived.got_certificate_verify = 0;
return ret;
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_ERROR)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == SIG_VERIFY_E)
SendAlert(ssl, alert_fatal, decrypt_error);
else if (ret != 0)
SendAlert(ssl, alert_fatal, bad_certificate);
#endif
/* Digest is not allocated, so do this to prevent free */
if(ssl->buffers.digest.buffer) {
if (!ssl->options.dontFreeDigest) {
/*This should not happen*/
XFREE(ssl->buffers.digest.buffer,
ssl->heap, DYNAMIC_TYPE_DIGEST);
}
}
ssl->buffers.digest.buffer = NULL;
ssl->buffers.digest.length = 0;
ssl->options.dontFreeDigest = 0;
#ifdef WOLFSSL_ASYNC_CRYPT
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#else
FreeDcvArgs(ssl, args);
#endif
/* Final cleanup */
FreeKeyExchange(ssl);
if (ret != 0) {
WOLFSSL_ERROR_VERBOSE(ret);
}
return ret;
}
#endif /* (!NO_RSA || ECC || ED25519 || ED448) && !WOLFSSL_NO_CLIENT_AUTH */
/* handle generation of server_hello_done (14) */
int SendServerHelloDone(WOLFSSL* ssl)
{
byte* output;
int sendSz = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
int ret;
WOLFSSL_START(WC_FUNC_SERVER_HELLO_DONE_SEND);
WOLFSSL_ENTER("SendServerHelloDone");
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls)
sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
#endif
if (IsEncryptionOn(ssl, 1))
sendSz += MAX_MSG_EXTRA;
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
AddHeaders(output, 0, server_hello_done, ssl);
if (IsEncryptionOn(ssl, 1)) {
byte* input;
int inputSz = HANDSHAKE_HEADER_SZ; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls) {
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz += DTLS_HANDSHAKE_EXTRA;
}
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, input, inputSz, server_hello_done)) != 0) {
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
return ret;
}
#endif
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
} else {
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
if ((ret = DtlsMsgPoolSave(ssl, output, sendSz, server_hello_done)) != 0)
return ret;
}
if (ssl->options.dtls)
DtlsSEQIncrement(ssl, CUR_ORDER);
#endif
ret = HashOutput(ssl, output, sendSz, 0);
if (ret != 0)
return ret;
}
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "ServerHelloDone");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "ServerHelloDone", handshake, output,
sendSz, WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
ssl->options.serverState = SERVER_HELLODONE_COMPLETE;
ssl->options.buildingMsg = 0;
ssl->buffers.outputBuffer.length += sendSz;
ret = SendBuffered(ssl);
WOLFSSL_LEAVE("SendServerHelloDone", ret);
WOLFSSL_END(WC_FUNC_SERVER_HELLO_DONE_SEND);
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef HAVE_SESSION_TICKET
#ifdef WOLFSSL_TICKET_HAVE_ID
static void GetRealSessionID(WOLFSSL* ssl, const byte** id, byte* idSz)
{
if (ssl->session->haveAltSessionID) {
*id = ssl->session->altSessionID;
*idSz = ID_LEN;
}
else if (!IsAtLeastTLSv1_3(ssl->version) && ssl->arrays != NULL) {
*id = ssl->arrays->sessionID;
*idSz = ssl->arrays->sessionIDSz;
}
else {
*id = ssl->session->sessionID;
*idSz = ssl->session->sessionIDSz;
}
}
#endif
int SetupTicket(WOLFSSL* ssl)
{
int ret = 0;
(void)ssl;
#ifdef WOLFSSL_TLS13
{
/* Client adds to ticket age to obfuscate. */
byte ageAdd[AGEADD_LEN]; /* Obfuscation of age */
ret = wc_RNG_GenerateBlock(ssl->rng, ageAdd, AGEADD_LEN);
if (ret != 0)
return ret;
ato32(ageAdd, &ssl->session->ticketAdd);
}
#endif
#ifdef WOLFSSL_TICKET_HAVE_ID
{
const byte* id = NULL;
byte idSz = 0;
GetRealSessionID(ssl, &id, &idSz);
if (idSz == 0) {
ret = wc_RNG_GenerateBlock(ssl->rng, ssl->session->altSessionID,
ID_LEN);
if (ret != 0)
return ret;
ssl->session->haveAltSessionID = 1;
}
}
#endif
return ret;
}
/* create a new session ticket, 0 on success
* Do any kind of setup in SetupTicket */
int CreateTicket(WOLFSSL* ssl)
{
InternalTicket* it;
ExternalTicket* et;
int encLen;
int ret;
int error;
word32 itHash = 0;
byte zeros[WOLFSSL_TICKET_MAC_SZ]; /* biggest cmp size */
WOLFSSL_ASSERT_SIZEOF_GE(ssl->session->staticTicket, *et);
WOLFSSL_ASSERT_SIZEOF_GE(et->enc_ticket, *it);
if (ssl->session->ticket != ssl->session->staticTicket) {
/* Always use the static ticket buffer */
XFREE(ssl->session->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK);
ssl->session->ticket = ssl->session->staticTicket;
ssl->session->ticketLenAlloc = 0;
}
et = (ExternalTicket*)ssl->session->ticket;
it = (InternalTicket*)et->enc_ticket;
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->error != WC_PENDING_E)
#endif
{
XMEMSET(et, 0, sizeof(*et));
}
/* build internal */
it->pv.major = ssl->version.major;
it->pv.minor = ssl->version.minor;
it->suite[0] = ssl->options.cipherSuite0;
it->suite[1] = ssl->options.cipherSuite;
#ifdef WOLFSSL_EARLY_DATA
c32toa(ssl->options.maxEarlyDataSz, it->maxEarlyDataSz);
#endif
if (!ssl->options.tls1_3) {
if (ssl->arrays == NULL) {
WOLFSSL_MSG("CreateTicket called with null arrays");
ret = BAD_FUNC_ARG;
goto error;
}
XMEMCPY(it->msecret, ssl->arrays->masterSecret, SECRET_LEN);
#ifndef NO_ASN_TIME
c32toa(LowResTimer(), it->timestamp);
#endif
it->haveEMS = (byte) ssl->options.haveEMS;
}
else {
#ifdef WOLFSSL_TLS13
#ifdef WOLFSSL_32BIT_MILLI_TIME
word32 now = TimeNowInMilliseconds();
#else
sword64 now = TimeNowInMilliseconds();
#endif
if (now == 0) {
ret = GETTIME_ERROR;
goto error;
}
c32toa(ssl->session->ticketAdd, it->ageAdd);
c16toa(ssl->session->namedGroup, it->namedGroup);
#ifdef WOLFSSL_32BIT_MILLI_TIME
c32toa(now, it->timestamp);
#else
c32toa((word32)(now >> 32), it->timestamp);
c32toa((word32)now , it->timestamp + OPAQUE32_LEN);
#endif
/* Resumption master secret. */
XMEMCPY(it->msecret, ssl->session->masterSecret, SECRET_LEN);
if (ssl->session->ticketNonce.len > MAX_TICKET_NONCE_STATIC_SZ) {
WOLFSSL_MSG("Bad ticket nonce value");
ret = BAD_TICKET_MSG_SZ;
goto error;
}
XMEMCPY(it->ticketNonce, ssl->session->ticketNonce.data,
ssl->session->ticketNonce.len);
it->ticketNonceLen = ssl->session->ticketNonce.len;
#endif
}
#ifdef OPENSSL_EXTRA
it->sessionCtxSz = ssl->sessionCtxSz;
XMEMCPY(it->sessionCtx, ssl->sessionCtx, ID_LEN);
#endif
#ifdef WOLFSSL_TICKET_HAVE_ID
{
const byte* id = NULL;
byte idSz = 0;
GetRealSessionID(ssl, &id, &idSz);
/* make sure idSz is not larger than ID_LEN */
if (idSz > ID_LEN)
idSz = ID_LEN;
XMEMCPY(it->id, id, idSz);
}
#endif
/* encrypt */
encLen = WOLFSSL_TICKET_ENC_SZ; /* max size user can use */
if (ssl->ctx->ticketEncCb == NULL
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || defined(WOLFSSL_WPAS_SMALL)
||
/* SSL_OP_NO_TICKET turns off tickets in <= 1.2. Forces
* "stateful" tickets for 1.3 so just use the regular
* stateless ones. */
(!IsAtLeastTLSv1_3(ssl->version) &&
(ssl->options.mask & WOLFSSL_OP_NO_TICKET) != 0)
#endif
) {
/* Use BAD_TICKET_ENCRYPT to signal missing ticket callback */
ret = BAD_TICKET_ENCRYPT;
}
else {
itHash = HashObject((byte*)it, sizeof(*it), &error);
if (error == 0) {
ret = ssl->ctx->ticketEncCb(ssl, et->key_name, et->iv, et->mac,
1, et->enc_ticket, sizeof(InternalTicket), &encLen,
SSL_TICKET_CTX(ssl));
}
else {
ret = WOLFSSL_TICKET_RET_FATAL;
}
}
if (ret != WOLFSSL_TICKET_RET_OK) {
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
return ret;
}
#endif
goto error;
}
if (encLen < (int)sizeof(InternalTicket) ||
encLen > (int)WOLFSSL_TICKET_ENC_SZ) {
WOLFSSL_MSG("Bad user ticket encrypt size");
ret = BAD_TICKET_KEY_CB_SZ;
}
/* sanity checks on encrypt callback */
/* internal ticket can't be the same if encrypted */
if (itHash == HashObject((byte*)it, sizeof(*it), &error) || error != 0)
{
WOLFSSL_MSG("User ticket encrypt didn't encrypt or hash failed");
ret = BAD_TICKET_ENCRYPT;
goto error;
}
XMEMSET(zeros, 0, sizeof(zeros));
/* name */
if (XMEMCMP(et->key_name, zeros, WOLFSSL_TICKET_NAME_SZ) == 0) {
WOLFSSL_MSG("User ticket encrypt didn't set name");
ret = BAD_TICKET_ENCRYPT;
goto error;
}
/* iv */
if (XMEMCMP(et->iv, zeros, WOLFSSL_TICKET_IV_SZ) == 0) {
WOLFSSL_MSG("User ticket encrypt didn't set iv");
ret = BAD_TICKET_ENCRYPT;
goto error;
}
/* mac */
if (XMEMCMP(et->mac, zeros, WOLFSSL_TICKET_MAC_SZ) == 0) {
WOLFSSL_MSG("User ticket encrypt didn't set mac");
ret = BAD_TICKET_ENCRYPT;
goto error;
}
/* set size */
c16toa((word16)encLen, et->enc_len);
if (encLen < (int)WOLFSSL_TICKET_ENC_SZ) {
/* move mac up since whole enc buffer not used */
XMEMMOVE(et->enc_ticket + encLen, et->mac,
WOLFSSL_TICKET_MAC_SZ);
}
ssl->session->ticketLen =
(word16)(encLen + WOLFSSL_TICKET_FIXED_SZ);
return ret;
error:
#ifdef WOLFSSL_CHECK_MEM_ZERO
/* Ticket has sensitive data in it now. */
wc_MemZero_Add("Create Ticket internal", it, sizeof(InternalTicket));
#endif
ForceZero(it, sizeof(*it));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(it, sizeof(InternalTicket));
#endif
WOLFSSL_ERROR_VERBOSE(ret);
return ret;
}
int DoDecryptTicket(const WOLFSSL* ssl, const byte* input, word32 len,
InternalTicket **it)
{
ExternalTicket* et;
int ret;
int outLen;
word16 inLen;
WOLFSSL_START(WC_FUNC_TICKET_DO);
WOLFSSL_ENTER("DoDecryptTicket");
if (len > SESSION_TICKET_LEN ||
len < (word32)(sizeof(InternalTicket) + WOLFSSL_TICKET_FIXED_SZ)) {
WOLFSSL_ERROR_VERBOSE(BAD_TICKET_MSG_SZ);
return WOLFSSL_TICKET_RET_REJECT;
}
et = (ExternalTicket*)input;
/* decrypt */
ato16(et->enc_len, &inLen);
if (inLen > WOLFSSL_TICKET_ENC_SZ) {
WOLFSSL_ERROR_VERBOSE(BAD_TICKET_MSG_SZ);
return WOLFSSL_TICKET_RET_REJECT;
}
outLen = (int)inLen; /* may be reduced by user padding */
if (ssl->ctx->ticketEncCb == NULL
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) || defined(WOLFSSL_WPAS_SMALL)
||
/* SSL_OP_NO_TICKET turns off tickets in < 1.2. Forces
* "stateful" tickets for 1.3 so just use the regular
* stateless ones. */
(!IsAtLeastTLSv1_3(ssl->version) &&
(ssl->options.mask & WOLFSSL_OP_NO_TICKET) != 0)
#endif
) {
/* Use BAD_TICKET_ENCRYPT to signal missing ticket callback */
WOLFSSL_ERROR_VERBOSE(BAD_TICKET_ENCRYPT);
ret = WOLFSSL_TICKET_RET_REJECT;
}
else {
/* Callback uses ssl without const but for DTLS, it really shouldn't
* modify its state. */
ret = ssl->ctx->ticketEncCb((WOLFSSL*)ssl, et->key_name, et->iv,
et->enc_ticket + inLen, 0,
et->enc_ticket, inLen, &outLen,
SSL_TICKET_CTX(ssl));
}
if (ret != WOLFSSL_TICKET_RET_OK) {
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E) {
return ret;
}
#endif /* WOLFSSL_ASYNC_CRYPT */
if (ret != WOLFSSL_TICKET_RET_CREATE) {
WOLFSSL_ERROR_VERBOSE(BAD_TICKET_KEY_CB_SZ);
return WOLFSSL_TICKET_RET_REJECT;
}
}
if (outLen > (int)inLen || outLen < (int)sizeof(InternalTicket)) {
WOLFSSL_MSG("Bad user ticket decrypt len");
WOLFSSL_ERROR_VERBOSE(BAD_TICKET_KEY_CB_SZ);
return BAD_TICKET_KEY_CB_SZ;
}
*it = (InternalTicket*)et->enc_ticket;
return ret;
}
static int DoClientTicketCheckVersion(const WOLFSSL* ssl,
InternalTicket* it)
{
if (ssl->version.minor < it->pv.minor) {
WOLFSSL_MSG("Ticket has greater version");
return VERSION_ERROR;
}
else if (ssl->version.minor > it->pv.minor) {
if (IsAtLeastTLSv1_3(it->pv) != IsAtLeastTLSv1_3(ssl->version)) {
WOLFSSL_MSG("Tickets cannot be shared between "
"TLS 1.3 and TLS 1.2 and lower");
return VERSION_ERROR;
}
if (!ssl->options.downgrade) {
WOLFSSL_MSG("Ticket has lesser version");
return VERSION_ERROR;
}
WOLFSSL_MSG("Downgrading protocol due to ticket");
if (it->pv.minor < ssl->options.minDowngrade) {
WOLFSSL_MSG("Ticket has lesser version than allowed");
return VERSION_ERROR;
}
}
#ifdef WOLFSSL_TLS13
/* Check resumption master secret. */
if (IsAtLeastTLSv1_3(it->pv) &&
it->ticketNonceLen > MAX_TICKET_NONCE_STATIC_SZ) {
WOLFSSL_MSG("Unsupported ticketNonce len in ticket");
return BAD_TICKET_ENCRYPT;
}
#endif
return 0;
}
#if defined(WOLFSSL_TLS13)
/* Return 0 when check successful. <0 on failure. */
int DoClientTicketCheck(const WOLFSSL* ssl, const PreSharedKey* psk,
sword64 timeout, const byte* suite)
{
word32 ticketAdd;
#ifdef WOLFSSL_32BIT_MILLI_TIME
word32 now;
sword64 diff;
word32 ticketSeen; /* Time ticket seen (ms) */
ato32(psk->it->timestamp, &ticketSeen);
now = TimeNowInMilliseconds();
if (now == 0)
return GETTIME_ERROR;
/* Difference between now and time ticket constructed
* (from decrypted ticket). */
diff = now;
diff -= ticketSeen;
if (diff > timeout * 1000 ||
diff > (sword64)TLS13_MAX_TICKET_AGE * 1000)
return -1;
#else
sword64 diff;
sword64 ticketSeen; /* Time ticket seen (ms) */
word32 seenHi, seenLo;
ato32(psk->it->timestamp , &seenHi);
ato32(psk->it->timestamp + OPAQUE32_LEN, &seenLo);
ticketSeen = ((sword64)seenHi << 32) + seenLo;
diff = TimeNowInMilliseconds();
if (diff == 0)
return GETTIME_ERROR;
/* Difference between now and time ticket constructed
* (from decrypted ticket). */
diff -= ticketSeen;
if (diff > timeout * 1000 ||
diff > (sword64)TLS13_MAX_TICKET_AGE * 1000)
return -1;
#endif
ato32(psk->it->ageAdd, &ticketAdd);
/* Subtract client's ticket age and unobfuscate. */
diff -= psk->ticketAge;
diff += ticketAdd;
/* Check session and ticket age timeout.
* Allow +/- 1000 milliseconds on ticket age.
*/
if (diff < -1000 || diff - MAX_TICKET_AGE_DIFF * 1000 > 1000)
return -1;
#if !defined(WOLFSSL_PSK_ONE_ID) && !defined(WOLFSSL_PRIORITIZE_PSK)
/* Check whether resumption is possible based on suites in SSL and
* ciphersuite in ticket.
*/
(void)ssl;
if (XMEMCMP(suite, psk->it->suite, SUITE_LEN) != 0)
return -1;
#else
(void)suite;
if (!FindSuiteSSL(ssl, psk->it->suite))
return -1;
#endif
#ifdef OPENSSL_EXTRA
if (ssl->sessionCtxSz > 0 &&
(psk->it->sessionCtxSz != ssl->sessionCtxSz ||
XMEMCMP(psk->it->sessionCtx, ssl->sessionCtx,
ssl->sessionCtxSz) != 0))
return -1;
#endif
return 0;
}
#endif /* WOLFSSL_SLT13 */
void DoClientTicketFinalize(WOLFSSL* ssl, InternalTicket* it,
const WOLFSSL_SESSION* sess)
{
#ifdef WOLFSSL_TICKET_HAVE_ID
ssl->session->haveAltSessionID = 1;
XMEMCPY(ssl->session->altSessionID, it->id, ID_LEN);
#endif
if (sess != NULL) {
byte bogusID[ID_LEN];
byte bogusIDSz = ssl->session->sessionIDSz;
XMEMCPY(bogusID, ssl->session->sessionID, ID_LEN);
/* Failure here should not interrupt the resumption. We already have
* all the cipher material we need in `it` */
WOLFSSL_MSG("Copying in session from passed in arg");
(void)wolfSSL_DupSession(sess, ssl->session, 1);
/* Restore the fake ID */
XMEMCPY(ssl->session->sessionID, bogusID, ID_LEN);
ssl->session->sessionIDSz= bogusIDSz;
}
#ifdef WOLFSSL_TICKET_HAVE_ID
else {
if (wolfSSL_GetSession(ssl, NULL, 1) != NULL) {
WOLFSSL_MSG("Found session matching the session id"
" found in the ticket");
}
else {
WOLFSSL_MSG("Can't find session matching the session id"
" found in the ticket");
}
}
#endif
if (!IsAtLeastTLSv1_3(ssl->version)) {
XMEMCPY(ssl->arrays->masterSecret, it->msecret, SECRET_LEN);
/* Copy the haveExtendedMasterSecret property from the ticket to
* the saved session, so the property may be checked later. */
ssl->session->haveEMS = it->haveEMS;
ato32((const byte*)&it->timestamp, &ssl->session->bornOn);
#ifndef NO_RESUME_SUITE_CHECK
ssl->session->cipherSuite0 = it->suite[0];
ssl->session->cipherSuite = it->suite[1];
#endif
}
else {
#ifdef WOLFSSL_TLS13
/* This should have been already checked in
* DoClientTicketCheckVersion */
if (it->ticketNonceLen > MAX_TICKET_NONCE_STATIC_SZ) {
WOLFSSL_MSG("Unsupported ticketNonce len in ticket");
return;
}
/* Restore information to renegotiate. */
#ifdef WOLFSSL_32BIT_MILLI_TIME
ato32(it->timestamp, &ssl->session->ticketSeen);
#else
{
word32 seenHi, seenLo;
ato32(it->timestamp , &seenHi);
ato32(it->timestamp + OPAQUE32_LEN, &seenLo);
ssl->session->ticketSeen = ((sword64)seenHi << 32) + seenLo;
}
#endif
ato32(it->ageAdd, &ssl->session->ticketAdd);
ssl->session->cipherSuite0 = it->suite[0];
ssl->session->cipherSuite = it->suite[1];
#ifdef WOLFSSL_EARLY_DATA
ato32(it->maxEarlyDataSz, &ssl->session->maxEarlyDataSz);
#endif
/* Resumption master secret. */
XMEMCPY(ssl->session->masterSecret, it->msecret, SECRET_LEN);
#if defined(WOLFSSL_TICKET_NONCE_MALLOC) && \
(!defined(HAVE_FIPS) || (defined(FIPS_VERSION_GE) && FIPS_VERSION_GE(5,3)))
if (ssl->session->ticketNonce.data
!= ssl->session->ticketNonce.dataStatic) {
XFREE(ssl->session->ticketNonce.data, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
ssl->session->ticketNonce.data =
ssl->session->ticketNonce.dataStatic;
}
#endif /* defined(WOLFSSL_TICKET_NONCE_MALLOC) && FIPS_VERSION_GE(5,3) */
XMEMCPY(ssl->session->ticketNonce.data, it->ticketNonce,
it->ticketNonceLen);
ssl->session->ticketNonce.len = it->ticketNonceLen;
ato16(it->namedGroup, &ssl->session->namedGroup);
#endif
}
ssl->version.minor = it->pv.minor;
}
#if defined(WOLFSSL_TLS13)
static void PopulateInternalTicketFromSession(const WOLFSSL_SESSION* sess,
InternalTicket* it)
{
#ifdef WOLFSSL_32BIT_MILLI_TIME
word32 milliBornOn = sess->bornOn;
#else
sword64 milliBornOn = (sword64)sess->bornOn;
#endif
/* Convert to milliseconds */
milliBornOn *= 1000;
it->pv = sess->version;
it->suite[0] = sess->cipherSuite0;
it->suite[1] = sess->cipherSuite;
XMEMCPY(it->msecret, sess->masterSecret, SECRET_LEN);
#ifdef WOLFSSL_32BIT_MILLI_TIME
c32toa(milliBornOn, it->timestamp);
#else
c32toa((word32)(milliBornOn >> 32), it->timestamp);
c32toa((word32)milliBornOn , it->timestamp + OPAQUE32_LEN);
#endif
it->haveEMS = (byte)sess->haveEMS;
c32toa(sess->ticketAdd, it->ageAdd);
c16toa(sess->namedGroup, it->namedGroup);
if (sess->ticketNonce.len <= MAX_TICKET_NONCE_STATIC_SZ) {
it->ticketNonceLen = sess->ticketNonce.len;
XMEMCPY(it->ticketNonce, sess->ticketNonce.data,
sess->ticketNonce.len);
}
#ifdef WOLFSSL_EARLY_DATA
c32toa(sess->maxEarlyDataSz, it->maxEarlyDataSz);
#endif
#ifdef WOLFSSL_TICKET_HAVE_ID
if (sess->haveAltSessionID)
XMEMCPY(it->id, sess->altSessionID, ID_LEN);
else
XMEMCPY(it->id, sess->sessionID, ID_LEN);
#endif
#ifdef OPENSSL_EXTRA
it->sessionCtxSz = sess->sessionCtxSz;
XMEMCPY(it->sessionCtx, sess->sessionCtx, sess->sessionCtxSz);
#endif
}
static const WOLFSSL_SESSION* GetSesionFromCacheOrExt(const WOLFSSL* ssl,
const byte* id, psk_sess_free_cb_ctx* freeCtx)
{
const WOLFSSL_SESSION* sess = NULL;
int ret;
XMEMSET(freeCtx, 0, sizeof(*freeCtx));
#ifdef HAVE_EXT_CACHE
if (ssl->ctx->get_sess_cb != NULL) {
int copy = 0;
sess = ssl->ctx->get_sess_cb((WOLFSSL*)ssl,
id, ID_LEN, &copy);
if (sess != NULL) {
freeCtx->extCache = 1;
/* If copy not set then free immediately */
if (!copy)
freeCtx->freeSess = 1;
}
}
#endif
if (sess == NULL) {
ret = TlsSessionCacheGetAndRdLock(id, &sess, &freeCtx->row,
ssl->options.side);
if (ret != 0)
sess = NULL;
}
return sess;
}
static void FreeSessionFromCacheOrExt(const WOLFSSL* ssl,
const WOLFSSL_SESSION* sess, psk_sess_free_cb_ctx* freeCtx)
{
(void)ssl;
(void)sess;
#ifdef HAVE_EXT_CACHE
if (freeCtx->extCache) {
if (freeCtx->freeSess)
/* In this case sess is not longer const and the external cache
* wants us to free it. */
wolfSSL_FreeSession(ssl->ctx, (WOLFSSL_SESSION*)sess);
}
else
#endif
TlsSessionCacheUnlockRow(freeCtx->row);
}
/* Parse ticket sent by client, returns callback return value. Doesn't
* modify ssl and stores the InternalTicket inside psk */
int DoClientTicket_ex(const WOLFSSL* ssl, PreSharedKey* psk, int retainSess)
{
int ret;
int decryptRet = WOLFSSL_TICKET_RET_REJECT;
WOLFSSL_START(WC_FUNC_TICKET_DO);
WOLFSSL_ENTER("DoClientTicket_ex");
if (psk->identityLen == ID_LEN && IsAtLeastTLSv1_3(ssl->version)) {
/* This is a stateful ticket. We can be sure about this because
* stateless tickets are much longer. */
const WOLFSSL_SESSION* sess = NULL;
sess = GetSesionFromCacheOrExt(ssl, psk->identity,
&psk->sess_free_cb_ctx);
if (sess != NULL) {
/* Session found in cache. Copy in relevant info to psk */
byte* tmp;
WOLFSSL_MSG("Found session matching the session id"
" found in the ticket");
/* Allocate and populate an InternalTicket */
tmp = (byte*)XREALLOC(psk->identity, sizeof(InternalTicket),
ssl->heap, DYNAMIC_TYPE_TLSX);
if (tmp != NULL) {
XMEMSET(tmp, 0, sizeof(InternalTicket));
psk->identity = tmp;
psk->identityLen = sizeof(InternalTicket);
psk->it = (InternalTicket*)tmp;
PopulateInternalTicketFromSession(sess, psk->it);
decryptRet = WOLFSSL_TICKET_RET_OK;
if (retainSess) {
psk->sess = sess;
psk->sess_free_cb = FreeSessionFromCacheOrExt;
}
}
if (psk->sess == NULL) {
FreeSessionFromCacheOrExt(ssl, sess,
&psk->sess_free_cb_ctx);
XMEMSET(&psk->sess_free_cb_ctx, 0,
sizeof(psk_sess_free_cb_ctx));
}
}
}
else {
decryptRet = DoDecryptTicket(ssl, psk->identity, psk->identityLen,
&psk->it);
}
switch (decryptRet) {
case WOLFSSL_TICKET_RET_OK:
psk->decryptRet = PSK_DECRYPT_OK;
break;
case WOLFSSL_TICKET_RET_CREATE:
psk->decryptRet = PSK_DECRYPT_CREATE;
break;
default:
psk->decryptRet = PSK_DECRYPT_FAIL;
WOLFSSL_LEAVE("DoClientTicket_ex", decryptRet);
return decryptRet;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
/* Internal ticket successfully decrypted. */
wc_MemZero_Add("Do Client Ticket internal", psk->it,
sizeof(InternalTicket));
#endif
ret = DoClientTicketCheckVersion(ssl, psk->it);
if (ret != 0) {
psk->decryptRet = PSK_DECRYPT_FAIL;
ForceZero(psk->identity, psk->identityLen);
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(psk->it, sizeof(InternalTicket));
#endif
WOLFSSL_LEAVE("DoClientTicket_ex", ret);
return ret;
}
WOLFSSL_LEAVE("DoClientTicket_ex", decryptRet);
return decryptRet;
}
#endif /* WOLFSL_TLS13 */
/* Parse ticket sent by client, returns callback return value */
int DoClientTicket(WOLFSSL* ssl, const byte* input, word32 len)
{
int decryptRet = WOLFSSL_TICKET_RET_REJECT;
int ret;
InternalTicket* it = NULL;
#ifdef WOLFSSL_TLS13
InternalTicket staticIt;
const WOLFSSL_SESSION* sess = NULL;
psk_sess_free_cb_ctx freeCtx;
XMEMSET(&freeCtx, 0, sizeof(psk_sess_free_cb_ctx));
#endif
WOLFSSL_START(WC_FUNC_TICKET_DO);
WOLFSSL_ENTER("DoClientTicket");
#ifdef WOLFSSL_TLS13
if (len == ID_LEN && IsAtLeastTLSv1_3(ssl->version)) {
/* This is a stateful ticket. We can be sure about this because
* stateless tickets are much longer. */
sess = GetSesionFromCacheOrExt(ssl, input, &freeCtx);
if (sess != NULL) {
it = &staticIt;
XMEMSET(it, 0, sizeof(InternalTicket));
PopulateInternalTicketFromSession(sess, it);
decryptRet = WOLFSSL_TICKET_RET_OK;
}
}
else
#endif
decryptRet = DoDecryptTicket(ssl, input, len, &it);
if (decryptRet != WOLFSSL_TICKET_RET_OK &&
decryptRet != WOLFSSL_TICKET_RET_CREATE) {
it = NULL;
goto cleanup;
}
#ifdef WOLFSSL_CHECK_MEM_ZERO
/* Internal ticket successfully decrypted. */
wc_MemZero_Add("Do Client Ticket internal", it, sizeof(InternalTicket));
#endif
ret = DoClientTicketCheckVersion(ssl, it);
if (ret != 0) {
decryptRet = ret;
goto cleanup;
}
DoClientTicketFinalize(ssl, it, NULL);
cleanup:
if (it != NULL) {
ForceZero(it, sizeof(*it));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(it, sizeof(InternalTicket));
#endif
}
#ifdef WOLFSSL_TLS13
if (sess != NULL)
FreeSessionFromCacheOrExt(ssl, sess, &freeCtx);
#endif
return decryptRet;
}
#ifdef WOLFSSL_TLS13
void CleanupClientTickets(PreSharedKey* psk)
{
for (; psk != NULL; psk = psk->next) {
if (psk->decryptRet == PSK_DECRYPT_OK ||
psk->decryptRet == PSK_DECRYPT_CREATE) {
psk->decryptRet = PSK_DECRYPT_NONE;
ForceZero(psk->identity, psk->identityLen);
#ifdef WOLFSSL_CHECK_MEM_ZERO
/* We want to check the InternalTicket area since that is what
* we registered in DoClientTicket_ex */
wc_MemZero_Check((((ExternalTicket*)psk->identity)->enc_ticket),
sizeof(InternalTicket));
#endif
}
}
}
#endif /* WOLFSSL_TLS13 */
/* send Session Ticket */
int SendTicket(WOLFSSL* ssl)
{
byte* output;
int ret;
int sendSz;
word32 length = SESSION_HINT_SZ + LENGTH_SZ;
word32 idx = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
WOLFSSL_START(WC_FUNC_TICKET_SEND);
WOLFSSL_ENTER("SendTicket");
if (ssl->options.createTicket) {
ret = SetupTicket(ssl);
if (ret != 0)
return ret;
ret = CreateTicket(ssl);
if (ret != 0)
return ret;
}
length += ssl->session->ticketLen;
sendSz = length + HANDSHAKE_HEADER_SZ + RECORD_HEADER_SZ;
if (!ssl->options.dtls) {
if (IsEncryptionOn(ssl, 1) && ssl->options.handShakeDone)
sendSz += MAX_MSG_EXTRA;
}
else {
#ifdef WOLFSSL_DTLS
sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
idx += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
#endif
}
if (IsEncryptionOn(ssl, 1) && ssl->options.handShakeDone)
sendSz += cipherExtraData(ssl);
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
AddHeaders(output, length, session_ticket, ssl);
/* hint */
c32toa(ssl->ctx->ticketHint, output + idx);
idx += SESSION_HINT_SZ;
/* length */
c16toa(ssl->session->ticketLen, output + idx);
idx += LENGTH_SZ;
/* ticket */
XMEMCPY(output + idx, ssl->session->ticket, ssl->session->ticketLen);
idx += ssl->session->ticketLen;
if (IsEncryptionOn(ssl, 1) && ssl->options.handShakeDone) {
byte* input;
int inputSz = idx; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls)
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz -= recordHeaderSz;
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 1, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
}
else {
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
if ((ret = DtlsMsgPoolSave(ssl, output, sendSz, session_ticket)) != 0)
return ret;
DtlsSEQIncrement(ssl, CUR_ORDER);
}
#endif
ret = HashOutput(ssl, output, sendSz, 0);
if (ret != 0)
return ret;
}
ssl->buffers.outputBuffer.length += sendSz;
ssl->options.buildingMsg = 0;
if (!ssl->options.groupMessages)
ret = SendBuffered(ssl);
WOLFSSL_LEAVE("SendTicket", ret);
WOLFSSL_END(WC_FUNC_TICKET_SEND);
return ret;
}
#ifndef WOLFSSL_NO_DEF_TICKET_ENC_CB
/* Initialize the context for session ticket encryption.
*
* @param [in] ctx SSL context.
* @param [in] keyCtx Context for session ticket encryption.
* @return 0 on success.
* @return BAD_MUTEX_E when initializing mutex fails.
*/
static int TicketEncCbCtx_Init(WOLFSSL_CTX* ctx, TicketEncCbCtx* keyCtx)
{
int ret = 0;
XMEMSET(keyCtx, 0, sizeof(*keyCtx));
keyCtx->ctx = ctx;
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Add("TicketEncCbCtx_Init keyCtx->name", keyCtx->name,
sizeof(keyCtx->name));
wc_MemZero_Add("TicketEncCbCtx_Init keyCtx->key[0]", keyCtx->key[0],
sizeof(keyCtx->key[0]));
wc_MemZero_Add("TicketEncCbCtx_Init keyCtx->key[1]", keyCtx->key[1],
sizeof(keyCtx->key[1]));
#endif
#ifndef SINGLE_THREADED
ret = wc_InitMutex(&keyCtx->mutex);
#endif
return ret;
}
/* Setup the session ticket encryption context for this.
*
* Initialize RNG, generate name, generate primary key and set primary key
* expirary.
*
* @param [in] keyCtx Context for session ticket encryption.
* @param [in] heap Dynamic memory allocation hint.
* @param [in] devId Device identifier.
* @return 0 on success.
* @return Other value when random number generator fails.
*/
static int TicketEncCbCtx_Setup(TicketEncCbCtx* keyCtx, void* heap, int devId)
{
int ret;
#ifndef SINGLE_THREADED
ret = 0;
/* Check that key wasn't set up while waiting. */
if (keyCtx->expirary[0] == 0)
#endif
{
ret = wc_InitRng_ex(&keyCtx->rng, heap, devId);
if (ret == 0) {
ret = wc_RNG_GenerateBlock(&keyCtx->rng, keyCtx->name,
sizeof(keyCtx->name));
}
if (ret == 0) {
/* Mask of the bottom bit - used for index of key. */
keyCtx->name[WOLFSSL_TICKET_NAME_SZ - 1] &= 0xfe;
/* Generate initial primary key. */
ret = wc_RNG_GenerateBlock(&keyCtx->rng, keyCtx->key[0],
WOLFSSL_TICKET_KEY_SZ);
}
if (ret == 0) {
keyCtx->expirary[0] = LowResTimer() + WOLFSSL_TICKET_KEY_LIFETIME;
}
}
return ret;
}
/* Free the context for session ticket encryption.
*
* Zeroize keys and name.
*
* @param [in] keyCtx Context for session ticket encryption.
*/
static void TicketEncCbCtx_Free(TicketEncCbCtx* keyCtx)
{
/* Zeroize sensitive data. */
ForceZero(keyCtx->name, sizeof(keyCtx->name));
ForceZero(keyCtx->key[0], sizeof(keyCtx->key[0]));
ForceZero(keyCtx->key[1], sizeof(keyCtx->key[1]));
#ifdef WOLFSSL_CHECK_MEM_ZERO
wc_MemZero_Check(keyCtx->name, sizeof(keyCtx->name));
wc_MemZero_Check(keyCtx->key[0], sizeof(keyCtx->key[0]));
wc_MemZero_Check(keyCtx->key[1], sizeof(keyCtx->key[1]));
#endif
#ifndef SINGLE_THREADED
wc_FreeMutex(&keyCtx->mutex);
#endif
wc_FreeRng(&keyCtx->rng);
}
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) && \
!defined(WOLFSSL_TICKET_ENC_AES128_GCM) && \
!defined(WOLFSSL_TICKET_ENC_AES256_GCM)
/* Ticket encryption/decryption implementation.
*
* @param [in] key Key for encryption/decryption.
* @param [in] keyLen Length of key in bytes.
* @param [in] iv IV/Nonce for encryption/decryption.
* @param [in] aad Additional authentication data.
* @param [in] aadSz Length of additional authentication data.
* @param [in] in Data to encrypt/decrypt.
* @param [in] inLen Length of encrypted data.
* @param [out] out Resulting data from encrypt/decrypt.
* @param [out] outLen Size of resulting data.
* @param [in] tag Authentication tag for encrypted data.
* @param [in] heap Dynamic memory allocation data hint.
* @param [in] enc 1 when encrypting, 0 when decrypting.
* @return 0 on success.
* @return Other value when encryption/decryption fails.
*/
static int TicketEncDec(byte* key, int keyLen, byte* iv, byte* aad, int aadSz,
byte* in, int inLen, byte* out, int* outLen, byte* tag,
void* heap, int enc)
{
int ret;
(void)keyLen;
(void)heap;
if (enc) {
ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, aadSz, in, inLen, out,
tag);
}
else {
ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, aadSz, in, inLen, tag,
out);
}
*outLen = inLen;
return ret;
}
#elif defined(HAVE_AESGCM)
/* Ticket encryption/decryption implementation.
*
* @param [in] key Key for encryption/decryption.
* @param [in] keyLen Length of key in bytes.
* @param [in] iv IV/Nonce for encryption/decryption.
* @param [in] aad Additional authentication data.
* @param [in] aadSz Length of additional authentication data.
* @param [in] in Data to encrypt/decrypt.
* @param [in] inLen Length of encrypted data.
* @param [out] out Resulting data from encrypt/decrypt.
* @param [out] outLen Size of resulting data.
* @param [in] tag Authentication tag for encrypted data.
* @param [in] heap Dynamic memory allocation data hint.
* @param [in] enc 1 when encrypting, 0 when decrypting.
* @return 0 on success.
* @return MEMORY_E when dynamic memory allocation fails.
* @return Other value when encryption/decryption fails.
*/
static int TicketEncDec(byte* key, int keyLen, byte* iv, byte* aad, int aadSz,
byte* in, int inLen, byte* out, int* outLen, byte* tag,
void* heap, int enc)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
Aes* aes;
#else
Aes aes[1];
#endif
(void)heap;
#ifdef WOLFSSL_SMALL_STACK
aes = (Aes*)XMALLOC(sizeof(Aes), heap, DYNAMIC_TYPE_TMP_BUFFER);
if (aes == NULL)
return MEMORY_E;
#endif
if (enc) {
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_AesGcmSetKey(aes, key, keyLen);
}
if (ret == 0) {
ret = wc_AesGcmEncrypt(aes, in, out, inLen, iv, GCM_NONCE_MID_SZ,
tag, AES_BLOCK_SIZE, aad, aadSz);
}
wc_AesFree(aes);
}
else {
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_AesGcmSetKey(aes, key, keyLen);
}
if (ret == 0) {
ret = wc_AesGcmDecrypt(aes, in, out, inLen, iv, GCM_NONCE_MID_SZ,
tag, AES_BLOCK_SIZE, aad, aadSz);
}
wc_AesFree(aes);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
*outLen = inLen;
return ret;
}
#elif defined(WOLFSSL_SM4_GCM)
/* Ticket encryption/decryption implementation.
*
* @param [in] key Key for encryption/decryption.
* @param [in] keyLen Length of key in bytes.
* @param [in] iv IV/Nonce for encryption/decryption.
* @param [in] aad Additional authentication data.
* @param [in] aadSz Length of additional authentication data.
* @param [in] in Data to encrypt/decrypt.
* @param [in] inLen Length of encrypted data.
* @param [out] out Resulting data from encrypt/decrypt.
* @param [out] outLen Size of resulting data.
* @param [in] tag Authentication tag for encrypted data.
* @param [in] heap Dynamic memory allocation data hint.
* @param [in] enc 1 when encrypting, 0 when decrypting.
* @return 0 on success.
* @return MEMORY_E when dynamic memory allocation fails.
* @return Other value when encryption/decryption fails.
*/
static int TicketEncDec(byte* key, int keyLen, byte* iv, byte* aad, int aadSz,
byte* in, int inLen, byte* out, int* outLen, byte* tag,
void* heap, int enc)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
wc_Sm4* sm4;
#else
wc_Sm4 sm4[1];
#endif
(void)heap;
#ifdef WOLFSSL_SMALL_STACK
sm4 = (wc_Sm4*)XMALLOC(sizeof(wc_Sm4), heap, DYNAMIC_TYPE_TMP_BUFFER);
if (sm4 == NULL)
return MEMORY_E;
#endif
if (enc) {
ret = wc_Sm4Init(sm4, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_Sm4GcmSetKey(sm4, key, keyLen);
}
if (ret == 0) {
ret = wc_Sm4GcmEncrypt(sm4, in, out, inLen, iv, GCM_NONCE_MID_SZ,
tag, SM4_BLOCK_SIZE, aad, aadSz);
}
wc_Sm4Free(sm4);
}
else {
ret = wc_Sm4Init(sm4, NULL, INVALID_DEVID);
if (ret == 0) {
ret = wc_Sm4GcmSetKey(sm4, key, keyLen);
}
if (ret == 0) {
ret = wc_Sm4GcmDecrypt(sm4, in, out, inLen, iv, GCM_NONCE_MID_SZ,
tag, SM$_BLOCK_SIZE, aad, aadSz);
}
wc_Sm4Free(sm4);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(sm4, heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
*outLen = inLen;
return ret;
}
#else
#error "No encryption algorithm available for default ticket encryption."
#endif
/* Choose a key to use for encryption.
*
* Generate a new key if the current ones are expired.
* If the secondary key has not been used and the primary key has expired then
* generate a new primary key.
*
* @param [in] Ticket encryption callback context.
* @param [in] Session ticket lifetime.
* @param [out] Index of key to use for encryption.
* @return 0 on success.
* @return Other value when random number generation fails.
*/
static int TicketEncCbCtx_ChooseKey(TicketEncCbCtx* keyCtx, int ticketHint,
int* keyIdx)
{
int ret = 0;
/* Get new current time as lock may have taken some time. */
word32 now = LowResTimer();
/* Check expirary of primary key for encrypt. */
if (keyCtx->expirary[0] >= now + ticketHint) {
*keyIdx = 0;
}
/* Check expirary of primary key for encrypt. */
else if (keyCtx->expirary[1] >= now + ticketHint) {
*keyIdx = 1;
}
/* No key available to use. */
else {
int genKey;
/* Generate which ever key is expired for decrypt - primary first. */
if (keyCtx->expirary[0] < now) {
genKey = 0;
}
else if (keyCtx->expirary[1] < now) {
genKey = 1;
}
/* Timeouts and expirary should not allow this to happen. */
else {
return BAD_STATE_E;
}
/* Generate the required key */
ret = wc_RNG_GenerateBlock(&keyCtx->rng, keyCtx->key[genKey],
WOLFSSL_TICKET_KEY_SZ);
if (ret == 0) {
keyCtx->expirary[genKey] = now + WOLFSSL_TICKET_KEY_LIFETIME;
*keyIdx = genKey;
}
}
return ret;
}
/* Default Session Ticket encryption/decryption callback.
*
* Use ChaCha20-Poly1305, AES-GCM or SM4-GCM to encrypt/decrypt the ticket.
* Two keys are used:
* - When the first expires for encryption, then use the other.
* - Don't encrypt with key if the ticket lifetime will go beyond expirary.
* - Generate a new primary key when primary key expired for decrypt and
* no secondary key is activate for encryption.
* - Generate a new secondary key when expired and needed.
* - Calculate expirary starting from first encrypted ticket.
* - Key name has last bit set to indicate index of key.
* Keys expire for decryption after ticket key lifetime from the first encrypted
* ticket.
* Keys can only be use for encryption while the ticket hint does not exceed
* the key lifetime.
* Lifetime of a key must be greater than the lifetime of a ticket. This means
* that if one ticket is only valid for decryption, then the other will be
* valid for encryption.
* AAD = key_name | iv | ticket len (16-bits network order)
*
* @param [in] ssl SSL connection.
* @param [in,out] key_name Name of key from client.
* Encrypt: name of key returned.
* Decrypt: name from ticket message to check.
* @param [in] iv IV to use in encryption/decryption.
* @param [in] mac MAC for authentication of encrypted data.
* @param [in] enc 1 when encrypting ticket, 0 when decrypting.
* @param [in,out] ticket Encrypted/decrypted session ticket bytes.
* @param [in] inLen Length of incoming ticket.
* @param [out] outLen Length of outgoing ticket.
* @param [in] userCtx Context for encryption/decryption of ticket.
* @return WOLFSSL_TICKET_RET_OK when successful.
* @return WOLFSSL_TICKET_RET_CREATE when successful and a new ticket is to
* be created for TLS 1.2 and below.
* @return WOLFSSL_TICKET_RET_REJECT when failed to produce valid encrypted or
* decrypted ticket.
* @return WOLFSSL_TICKET_RET_FATAL when key name does not match.
*/
static int DefTicketEncCb(WOLFSSL* ssl, byte key_name[WOLFSSL_TICKET_NAME_SZ],
byte iv[WOLFSSL_TICKET_IV_SZ],
byte mac[WOLFSSL_TICKET_MAC_SZ],
int enc, byte* ticket, int inLen, int* outLen,
void* userCtx)
{
int ret;
TicketEncCbCtx* keyCtx = (TicketEncCbCtx*)userCtx;
WOLFSSL_CTX* ctx = keyCtx->ctx;
word16 sLen = XHTONS((word16)inLen);
byte aad[WOLFSSL_TICKET_NAME_SZ + WOLFSSL_TICKET_IV_SZ + sizeof(sLen)];
int aadSz = WOLFSSL_TICKET_NAME_SZ + WOLFSSL_TICKET_IV_SZ + sizeof(sLen);
byte* p = aad;
int keyIdx = 0;
WOLFSSL_ENTER("DefTicketEncCb");
/* Check we have setup the RNG, name and primary key. */
if (keyCtx->expirary[0] == 0) {
#ifndef SINGLE_THREADED
/* Lock around access to expirary and key - stop initial key being
* generated twice at the same time. */
if (wc_LockMutex(&keyCtx->mutex) != 0) {
WOLFSSL_MSG("Couldn't lock key context mutex");
return WOLFSSL_TICKET_RET_REJECT;
}
#endif
/* Sets expirary of primary key in setup. */
ret = TicketEncCbCtx_Setup(keyCtx, ssl->ctx->heap, ssl->ctx->devId);
#ifndef SINGLE_THREADED
wc_UnLockMutex(&keyCtx->mutex);
#endif
if (ret != 0)
return ret;
}
if (enc) {
/* Return the name of the key - missing key index. */
XMEMCPY(key_name, keyCtx->name, WOLFSSL_TICKET_NAME_SZ);
/* Generate a new IV into buffer to be returned.
* Don't use the RNG in keyCtx as it's for generating private data. */
ret = wc_RNG_GenerateBlock(ssl->rng, iv, WOLFSSL_TICKET_IV_SZ);
if (ret != 0) {
return WOLFSSL_TICKET_RET_REJECT;
}
}
else {
/* Mask of last bit that is the key index. */
byte lastByte = key_name[WOLFSSL_TICKET_NAME_SZ - 1] & 0xfe;
/* For decryption, see if we know this key - check all but last byte. */
if (XMEMCMP(key_name, keyCtx->name, WOLFSSL_TICKET_NAME_SZ - 1) != 0) {
return WOLFSSL_TICKET_RET_FATAL;
}
/* Ensure last byte without index bit matches too. */
if (lastByte != keyCtx->name[WOLFSSL_TICKET_NAME_SZ - 1]) {
return WOLFSSL_TICKET_RET_FATAL;
}
}
/* Build AAD from: key name, iv, and length of ticket. */
XMEMCPY(p, keyCtx->name, WOLFSSL_TICKET_NAME_SZ);
p += WOLFSSL_TICKET_NAME_SZ;
XMEMCPY(p, iv, WOLFSSL_TICKET_IV_SZ);
p += WOLFSSL_TICKET_IV_SZ;
XMEMCPY(p, &sLen, sizeof(sLen));
/* Encrypt ticket. */
if (enc) {
word32 now;
now = LowResTimer();
/* As long as encryption expirary isn't imminent - no lock. */
if (keyCtx->expirary[0] > now + ctx->ticketHint) {
keyIdx = 0;
}
else if (keyCtx->expirary[1] > now + ctx->ticketHint) {
keyIdx = 1;
}
else {
#ifndef SINGLE_THREADED
/* Lock around access to expirary and key - stop key being generated
* twice at the same time. */
if (wc_LockMutex(&keyCtx->mutex) != 0) {
WOLFSSL_MSG("Couldn't lock key context mutex");
return WOLFSSL_TICKET_RET_REJECT;
}
#endif
ret = TicketEncCbCtx_ChooseKey(keyCtx, ctx->ticketHint, &keyIdx);
#ifndef SINGLE_THREADED
wc_UnLockMutex(&keyCtx->mutex);
#endif
if (ret != 0) {
return WOLFSSL_TICKET_RET_REJECT;
}
}
/* Set the name of the key to the index chosen. */
key_name[WOLFSSL_TICKET_NAME_SZ - 1] |= keyIdx;
/* Update AAD too. */
aad[WOLFSSL_TICKET_NAME_SZ - 1] |= keyIdx;
/* Encrypt ticket data. */
ret = TicketEncDec(keyCtx->key[keyIdx], WOLFSSL_TICKET_KEY_SZ, iv, aad,
aadSz, ticket, inLen, ticket, outLen, mac, ssl->heap,
1);
if (ret != 0) return WOLFSSL_TICKET_RET_REJECT;
}
/* Decrypt ticket. */
else {
/* Get index of key from name. */
keyIdx = key_name[WOLFSSL_TICKET_NAME_SZ - 1] & 0x1;
/* Update AAD with index. */
aad[WOLFSSL_TICKET_NAME_SZ - 1] |= keyIdx;
/* Check expirary */
if (keyCtx->expirary[keyIdx] <= LowResTimer()) {
return WOLFSSL_TICKET_RET_REJECT;
}
/* Decrypt ticket data. */
ret = TicketEncDec(keyCtx->key[keyIdx], WOLFSSL_TICKET_KEY_SZ, iv, aad,
aadSz, ticket, inLen, ticket, outLen, mac, ssl->heap,
0);
if (ret != 0) {
return WOLFSSL_TICKET_RET_REJECT;
}
}
#ifndef WOLFSSL_TICKET_DECRYPT_NO_CREATE
if (!IsAtLeastTLSv1_3(ssl->version) && !enc)
return WOLFSSL_TICKET_RET_CREATE;
#endif
return WOLFSSL_TICKET_RET_OK;
}
#endif /* !WOLFSSL_NO_DEF_TICKET_ENC_CB */
#endif /* HAVE_SESSION_TICKET */
#ifndef WOLFSSL_NO_TLS12
#if defined(HAVE_SECURE_RENEGOTIATION) && \
!defined(NO_WOLFSSL_SERVER)
/* handle generation of server's hello_request (0) */
int SendHelloRequest(WOLFSSL* ssl)
{
byte* output;
int sendSz = RECORD_HEADER_SZ + HANDSHAKE_HEADER_SZ;
int ret;
WOLFSSL_START(WC_FUNC_HELLO_REQUEST_SEND);
WOLFSSL_ENTER("SendHelloRequest");
if (IsEncryptionOn(ssl, 1))
sendSz += MAX_MSG_EXTRA;
if (ssl->options.dtls)
sendSz += DTLS_RECORD_EXTRA + DTLS_HANDSHAKE_EXTRA;
/* Set this in case CheckAvailableSize returns a WANT_WRITE so that state
* is not advanced yet */
ssl->options.buildingMsg = 1;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
AddHeaders(output, 0, hello_request, ssl);
if (IsEncryptionOn(ssl, 1)) {
byte* input;
int inputSz = HANDSHAKE_HEADER_SZ; /* build msg adds rec hdr */
int recordHeaderSz = RECORD_HEADER_SZ;
if (ssl->options.dtls) {
recordHeaderSz += DTLS_RECORD_EXTRA;
inputSz += DTLS_HANDSHAKE_EXTRA;
}
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl) &&
(ret = DtlsMsgPoolSave(ssl, input, inputSz, hello_request)) != 0) {
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
return ret;
}
#endif
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 0, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
}
ssl->buffers.outputBuffer.length += sendSz;
ssl->options.buildingMsg = 0;
ret = SendBuffered(ssl);
WOLFSSL_LEAVE("SendHelloRequest", ret);
WOLFSSL_END(WC_FUNC_HELLO_REQUEST_SEND);
return ret;
}
#endif /* HAVE_SECURE_RENEGOTIATION && !NO_WOLFSSL_SERVER */
#ifdef WOLFSSL_DTLS
/* handle generation of DTLS hello_verify_request (3) */
int SendHelloVerifyRequest(WOLFSSL* ssl,
const byte* cookie, byte cookieSz)
{
byte* output;
int length = VERSION_SZ + ENUM_LEN + cookieSz;
int idx = DTLS_RECORD_HEADER_SZ + DTLS_HANDSHAKE_HEADER_SZ;
int sendSz = length + idx;
int ret;
/* are we in scr */
if (IsEncryptionOn(ssl, 1)) {
sendSz += MAX_MSG_EXTRA;
}
/* reset hashes */
ret = InitHandshakeHashes(ssl);
if (ret != 0)
return ret;
/* check for available size */
if ((ret = CheckAvailableSize(ssl, sendSz)) != 0)
return ret;
/* get output buffer */
output = GetOutputBuffer(ssl);
/* Hello Verify Request should use the same sequence number
* as the Client Hello unless we are in renegotiation then
* don't change numbers */
#ifdef HAVE_SECURE_RENEGOTIATION
if (!IsSCR(ssl))
#endif
{
ssl->keys.dtls_sequence_number_hi = ssl->keys.curSeq_hi;
ssl->keys.dtls_sequence_number_lo = ssl->keys.curSeq_lo;
}
AddHeaders(output, length, hello_verify_request, ssl);
output[idx++] = DTLS_MAJOR;
output[idx++] = DTLS_MINOR;
output[idx++] = cookieSz;
if (cookie == NULL || cookieSz == 0)
return COOKIE_ERROR;
XMEMCPY(output + idx, cookie, cookieSz);
#if defined(WOLFSSL_CALLBACKS) || defined(OPENSSL_EXTRA)
if (ssl->hsInfoOn)
AddPacketName(ssl, "HelloVerifyRequest");
if (ssl->toInfoOn) {
ret = AddPacketInfo(ssl, "HelloVerifyRequest", handshake, output,
sendSz, WRITE_PROTO, 0, ssl->heap);
if (ret != 0)
return ret;
}
#endif
/* are we in scr */
if (IsEncryptionOn(ssl, 1)) {
byte* input;
int inputSz = DTLS_HANDSHAKE_HEADER_SZ + length; /* build msg adds rec hdr */
int recordHeaderSz = DTLS_RECORD_HEADER_SZ;
input = (byte*)XMALLOC(inputSz, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (input == NULL)
return MEMORY_E;
XMEMCPY(input, output + recordHeaderSz, inputSz);
sendSz = BuildMessage(ssl, output, sendSz, input, inputSz,
handshake, 0, 0, 0, CUR_ORDER);
XFREE(input, ssl->heap, DYNAMIC_TYPE_IN_BUFFER);
if (sendSz < 0)
return sendSz;
}
ssl->buffers.outputBuffer.length += sendSz;
return SendBuffered(ssl);
}
#endif /* WOLFSSL_DTLS */
typedef struct DckeArgs {
byte* output; /* not allocated */
word32 length;
word32 idx;
word32 begin;
word32 sigSz;
#ifndef NO_RSA
int lastErr;
#endif
} DckeArgs;
static void FreeDckeArgs(WOLFSSL* ssl, void* pArgs)
{
DckeArgs* args = (DckeArgs*)pArgs;
(void)ssl;
(void)args;
}
/* handle processing client_key_exchange (16) */
static int DoClientKeyExchange(WOLFSSL* ssl, byte* input, word32* inOutIdx,
word32 size)
{
int ret;
#ifdef WOLFSSL_ASYNC_CRYPT
DckeArgs* args = NULL;
WOLFSSL_ASSERT_SIZEOF_GE(ssl->async->args, *args);
#else
DckeArgs args[1];
#endif
(void)size;
(void)input;
WOLFSSL_START(WC_FUNC_CLIENT_KEY_EXCHANGE_DO);
WOLFSSL_ENTER("DoClientKeyExchange");
#ifdef WOLFSSL_ASYNC_CRYPT
if (ssl->async == NULL) {
ssl->async = (struct WOLFSSL_ASYNC*)
XMALLOC(sizeof(struct WOLFSSL_ASYNC), ssl->heap,
DYNAMIC_TYPE_ASYNC);
if (ssl->async == NULL)
ERROR_OUT(MEMORY_E, exit_dcke);
}
args = (DckeArgs*)ssl->async->args;
ret = wolfSSL_AsyncPop(ssl, &ssl->options.asyncState);
if (ret != WC_NO_PENDING_E) {
/* Check for error */
if (ret < 0)
goto exit_dcke;
}
else
#endif /* WOLFSSL_ASYNC_CRYPT */
{
/* Reset state */
ret = 0;
ssl->options.asyncState = TLS_ASYNC_BEGIN;
XMEMSET(args, 0, sizeof(DckeArgs));
args->idx = *inOutIdx;
args->begin = *inOutIdx;
#ifdef WOLFSSL_ASYNC_CRYPT
ssl->async->freeArgs = FreeDckeArgs;
#endif
}
/* Do Client Key Exchange State Machine */
switch(ssl->options.asyncState)
{
case TLS_ASYNC_BEGIN:
{
/* Sanity checks */
/* server side checked in SanityCheckMsgReceived */
if (ssl->options.clientState < CLIENT_HELLO_COMPLETE) {
WOLFSSL_MSG("Client sending keyexchange at wrong time");
SendAlert(ssl, alert_fatal, unexpected_message);
ERROR_OUT(OUT_OF_ORDER_E, exit_dcke);
}
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH)
if (ssl->options.verifyPeer &&
(ssl->options.mutualAuth || ssl->options.failNoCert)) {
if (!ssl->options.havePeerCert) {
WOLFSSL_MSG("client didn't present peer cert");
ERROR_OUT(NO_PEER_CERT, exit_dcke);
}
}
if (ssl->options.verifyPeer && ssl->options.failNoCertxPSK) {
if (!ssl->options.havePeerCert &&
!ssl->options.usingPSK_cipher) {
WOLFSSL_MSG("client didn't present peer cert");
ERROR_OUT(NO_PEER_CERT, exit_dcke);
}
}
#endif /* !NO_CERTS && !WOLFSSL_NO_CLIENT_AUTH */
#if defined(WOLFSSL_CALLBACKS)
if (ssl->hsInfoOn) {
AddPacketName(ssl, "ClientKeyExchange");
}
if (ssl->toInfoOn) {
AddLateName("ClientKeyExchange", &ssl->timeoutInfo);
}
#endif
if (ssl->arrays->preMasterSecret == NULL) {
ssl->arrays->preMasterSz = ENCRYPT_LEN;
ssl->arrays->preMasterSecret = (byte*)XMALLOC(ENCRYPT_LEN,
ssl->heap, DYNAMIC_TYPE_SECRET);
if (ssl->arrays->preMasterSecret == NULL) {
ERROR_OUT(MEMORY_E, exit_dcke);
}
XMEMSET(ssl->arrays->preMasterSecret, 0, ENCRYPT_LEN);
}
switch (ssl->specs.kea) {
#ifndef NO_RSA
case rsa_kea:
{
break;
} /* rsa_kea */
#endif /* !NO_RSA */
#ifndef NO_PSK
case psk_kea:
{
/* sanity check that PSK server callback has been set */
if (ssl->options.server_psk_cb == NULL) {
WOLFSSL_MSG("No server PSK callback set");
ERROR_OUT(PSK_KEY_ERROR, exit_dcke);
}
break;
}
#endif /* !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifndef NO_DH
case diffie_hellman_kea:
{
break;
}
#endif /* !NO_DH */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
/* sanity check that PSK server callback has been set */
if (ssl->options.server_psk_cb == NULL) {
WOLFSSL_MSG("No server PSK callback set");
ERROR_OUT(PSK_KEY_ERROR, exit_dcke);
}
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
/* sanity check that PSK server callback has been set */
if (ssl->options.server_psk_cb == NULL) {
WOLFSSL_MSG("No server PSK callback set");
ERROR_OUT(PSK_KEY_ERROR, exit_dcke);
}
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
default:
WOLFSSL_MSG("Bad kea type");
ret = BAD_KEA_TYPE_E;
} /* switch (ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dcke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_BUILD;
} /* TLS_ASYNC_BEGIN */
FALL_THROUGH;
case TLS_ASYNC_BUILD:
{
switch (ssl->specs.kea) {
#ifndef NO_RSA
case rsa_kea:
{
word16 keySz;
ssl->buffers.keyType = rsa_sa_algo;
ret = DecodePrivateKey(ssl, &keySz);
if (ret != 0) {
goto exit_dcke;
}
args->length = (word32)keySz;
ssl->arrays->preMasterSz = SECRET_LEN;
if (ssl->options.tls) {
word16 check;
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
ato16(input + args->idx, &check);
args->idx += OPAQUE16_LEN;
if ((word32)check != args->length) {
WOLFSSL_MSG("RSA explicit size doesn't match");
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, bad_record_mac);
#endif
ERROR_OUT(RSA_PRIVATE_ERROR, exit_dcke);
}
}
if ((args->idx - args->begin) + args->length > size) {
WOLFSSL_MSG("RSA message too big");
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
/* pre-load PreMasterSecret with RNG data */
ret = wc_RNG_GenerateBlock(ssl->rng,
&ssl->arrays->preMasterSecret[VERSION_SZ],
SECRET_LEN - VERSION_SZ);
if (ret != 0) {
goto exit_dcke;
}
args->output = NULL;
break;
} /* rsa_kea */
#endif /* !NO_RSA */
#ifndef NO_PSK
case psk_kea:
{
byte* pms = ssl->arrays->preMasterSecret;
word16 ci_sz;
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
ato16(input + args->idx, &ci_sz);
args->idx += OPAQUE16_LEN;
if (ci_sz > MAX_PSK_ID_LEN) {
ERROR_OUT(CLIENT_ID_ERROR, exit_dcke);
}
if ((args->idx - args->begin) + ci_sz > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
XMEMCPY(ssl->arrays->client_identity,
input + args->idx, ci_sz);
args->idx += ci_sz;
ssl->arrays->client_identity[ci_sz] = '\0'; /* null term */
ssl->arrays->psk_keySz = ssl->options.server_psk_cb(ssl,
ssl->arrays->client_identity, ssl->arrays->psk_key,
MAX_PSK_KEY_LEN);
if (ssl->arrays->psk_keySz == 0 ||
ssl->arrays->psk_keySz > MAX_PSK_KEY_LEN) {
#if defined(WOLFSSL_EXTRA_ALERTS) || \
defined(WOLFSSL_PSK_IDENTITY_ALERT)
SendAlert(ssl, alert_fatal,
unknown_psk_identity);
#endif
ERROR_OUT(PSK_KEY_ERROR, exit_dcke);
}
/* SERVER: Pre-shared Key for peer authentication. */
ssl->options.peerAuthGood = 1;
/* make psk pre master secret */
/* length of key + length 0s + length of key + key */
c16toa((word16) ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMSET(pms, 0, ssl->arrays->psk_keySz);
pms += ssl->arrays->psk_keySz;
c16toa((word16) ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMCPY(pms, ssl->arrays->psk_key, ssl->arrays->psk_keySz);
ssl->arrays->preMasterSz =
(ssl->arrays->psk_keySz * 2) + (OPAQUE16_LEN * 2);
break;
}
#endif /* !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
#ifdef HAVE_ECC
ecc_key* private_key = ssl->eccTempKey;
/* handle static private key */
if (ssl->specs.static_ecdh &&
ssl->ecdhCurveOID != ECC_X25519_OID &&
ssl->ecdhCurveOID != ECC_X448_OID) {
word16 keySz;
ssl->buffers.keyType = ecc_dsa_sa_algo;
ret = DecodePrivateKey(ssl, &keySz);
if (ret != 0) {
goto exit_dcke;
}
private_key = (ecc_key*)ssl->hsKey;
}
#endif
/* import peer ECC key */
if ((args->idx - args->begin) + OPAQUE8_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
args->length = input[args->idx++];
if ((args->idx - args->begin) + args->length > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X25519SharedSecretCb != NULL) {
break;
}
#endif
if (ssl->peerX25519Key == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->peerX25519Key);
if (ret != 0) {
goto exit_dcke;
}
} else if (ssl->peerX25519KeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE25519,
ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
if (ret != 0) {
goto exit_dcke;
}
}
if ((ret = wc_curve25519_check_public(
input + args->idx, args->length,
EC25519_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal,
illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
if (wc_curve25519_import_public_ex(
input + args->idx, args->length,
ssl->peerX25519Key,
EC25519_LITTLE_ENDIAN)) {
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, illegal_parameter);
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
ssl->arrays->preMasterSz = CURVE25519_KEYSIZE;
ssl->peerX25519KeyPresent = 1;
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X448SharedSecretCb != NULL) {
break;
}
#endif
if (ssl->peerX448Key == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->peerX448Key);
if (ret != 0) {
goto exit_dcke;
}
} else if (ssl->peerX448KeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE448,
ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
if (ret != 0) {
goto exit_dcke;
}
}
if ((ret = wc_curve448_check_public(
input + args->idx, args->length,
EC448_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal,
illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
if (wc_curve448_import_public_ex(
input + args->idx, args->length,
ssl->peerX448Key,
EC448_LITTLE_ENDIAN)) {
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, illegal_parameter);
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
ssl->arrays->preMasterSz = CURVE448_KEY_SIZE;
ssl->peerX448KeyPresent = 1;
break;
}
#endif
#ifdef HAVE_ECC
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->EccSharedSecretCb != NULL) {
break;
}
#endif
if (!ssl->specs.static_ecdh &&
ssl->eccTempKeyPresent == 0) {
WOLFSSL_MSG("Ecc ephemeral key not made correctly");
ERROR_OUT(ECC_MAKEKEY_ERROR, exit_dcke);
}
if (ssl->peerEccKey == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
if (ret != 0) {
goto exit_dcke;
}
} else if (ssl->peerEccKeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_ECC,
ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
if (ret != 0) {
goto exit_dcke;
}
}
if (wc_ecc_import_x963_ex(input + args->idx,
args->length, ssl->peerEccKey,
private_key->dp->id)) {
#ifdef WOLFSSL_EXTRA_ALERTS
SendAlert(ssl, alert_fatal, illegal_parameter);
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
ssl->arrays->preMasterSz = private_key->dp->size;
ssl->peerEccKeyPresent = 1;
#if defined(WOLFSSL_TLS13) || defined(HAVE_FFDHE)
/* client_hello may have sent FFEDH2048, which sets namedGroup,
but that is not being used, so clear it */
/* resolves issue with server side wolfSSL_get_curve_name */
ssl->namedGroup = 0;
#endif
#endif /* HAVE_ECC */
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifndef NO_DH
case diffie_hellman_kea:
{
word16 clientPubSz;
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
ato16(input + args->idx, &clientPubSz);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + clientPubSz > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
args->sigSz = clientPubSz;
ret = AllocKey(ssl, DYNAMIC_TYPE_DH,
(void**)&ssl->buffers.serverDH_Key);
if (ret != 0) {
goto exit_dcke;
}
ret = wc_DhSetKey(ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length);
/* set the max agree result size */
ssl->arrays->preMasterSz = ENCRYPT_LEN;
break;
}
#endif /* !NO_DH */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
word16 clientSz;
/* Read in the PSK hint */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
ato16(input + args->idx, &clientSz);
args->idx += OPAQUE16_LEN;
if (clientSz > MAX_PSK_ID_LEN) {
ERROR_OUT(CLIENT_ID_ERROR, exit_dcke);
}
if ((args->idx - args->begin) + clientSz > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
XMEMCPY(ssl->arrays->client_identity, input + args->idx,
clientSz);
args->idx += clientSz;
ssl->arrays->client_identity[clientSz] = '\0'; /* null term */
/* Read in the DHE business */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
ato16(input + args->idx, &clientSz);
args->idx += OPAQUE16_LEN;
if ((args->idx - args->begin) + clientSz > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
args->sigSz = clientSz;
ret = AllocKey(ssl, DYNAMIC_TYPE_DH,
(void**)&ssl->buffers.serverDH_Key);
if (ret != 0) {
goto exit_dcke;
}
ret = wc_DhSetKey(ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length,
ssl->buffers.serverDH_G.buffer,
ssl->buffers.serverDH_G.length);
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
word16 clientSz;
/* Read in the PSK hint */
if ((args->idx - args->begin) + OPAQUE16_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
ato16(input + args->idx, &clientSz);
args->idx += OPAQUE16_LEN;
if (clientSz > MAX_PSK_ID_LEN) {
ERROR_OUT(CLIENT_ID_ERROR, exit_dcke);
}
if ((args->idx - args->begin) + clientSz > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
XMEMCPY(ssl->arrays->client_identity,
input + args->idx, clientSz);
args->idx += clientSz;
ssl->arrays->client_identity[clientSz] = '\0'; /* null term */
/* import peer ECC key */
if ((args->idx - args->begin) + OPAQUE8_LEN > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
args->length = input[args->idx++];
if ((args->idx - args->begin) + args->length > size) {
ERROR_OUT(BUFFER_ERROR, exit_dcke);
}
args->sigSz = ENCRYPT_LEN - OPAQUE16_LEN;
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X25519SharedSecretCb != NULL) {
break;
}
#endif
if (ssl->eccTempKeyPresent == 0) {
WOLFSSL_MSG(
"X25519 ephemeral key not made correctly");
ERROR_OUT(ECC_MAKEKEY_ERROR, exit_dcke);
}
if (ssl->peerX25519Key == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->peerX25519Key);
if (ret != 0) {
goto exit_dcke;
}
} else if (ssl->peerX25519KeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE25519,
ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
if (ret != 0) {
goto exit_dcke;
}
}
if ((ret = wc_curve25519_check_public(
input + args->idx, args->length,
EC25519_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal,
illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
if (wc_curve25519_import_public_ex(
input + args->idx, args->length,
ssl->peerX25519Key,
EC25519_LITTLE_ENDIAN)) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
ssl->peerX25519KeyPresent = 1;
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->X448SharedSecretCb != NULL) {
break;
}
#endif
if (ssl->eccTempKeyPresent == 0) {
WOLFSSL_MSG(
"X448 ephemeral key not made correctly");
ERROR_OUT(ECC_MAKEKEY_ERROR, exit_dcke);
}
if (ssl->peerX448Key == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->peerX448Key);
if (ret != 0) {
goto exit_dcke;
}
} else if (ssl->peerX448KeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_CURVE448,
ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
if (ret != 0) {
goto exit_dcke;
}
}
if ((ret = wc_curve448_check_public(
input + args->idx, args->length,
EC448_LITTLE_ENDIAN)) != 0) {
#ifdef WOLFSSL_EXTRA_ALERTS
if (ret == BUFFER_E)
SendAlert(ssl, alert_fatal, decode_error);
else if (ret == ECC_OUT_OF_RANGE_E)
SendAlert(ssl, alert_fatal, bad_record_mac);
else {
SendAlert(ssl, alert_fatal,
illegal_parameter);
}
#endif
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
if (wc_curve448_import_public_ex(
input + args->idx, args->length,
ssl->peerX448Key,
EC448_LITTLE_ENDIAN)) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
ssl->peerX448KeyPresent = 1;
break;
}
#endif
#ifdef HAVE_PK_CALLBACKS
/* if callback then use it for shared secret */
if (ssl->ctx->EccSharedSecretCb != NULL) {
break;
}
#endif
if (ssl->eccTempKeyPresent == 0) {
WOLFSSL_MSG("Ecc ephemeral key not made correctly");
ERROR_OUT(ECC_MAKEKEY_ERROR, exit_dcke);
}
if (ssl->peerEccKey == NULL) {
/* alloc/init on demand */
ret = AllocKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
if (ret != 0) {
goto exit_dcke;
}
}
else if (ssl->peerEccKeyPresent) {
ret = ReuseKey(ssl, DYNAMIC_TYPE_ECC,
ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
if (ret != 0) {
goto exit_dcke;
}
}
if (wc_ecc_import_x963_ex(input + args->idx,
args->length, ssl->peerEccKey,
ssl->eccTempKey->dp->id)) {
ERROR_OUT(ECC_PEERKEY_ERROR, exit_dcke);
}
ssl->peerEccKeyPresent = 1;
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
default:
ret = BAD_KEA_TYPE_E;
} /* switch (ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dcke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_DO;
} /* TLS_ASYNC_BUILD */
FALL_THROUGH;
case TLS_ASYNC_DO:
{
switch (ssl->specs.kea) {
#ifndef NO_RSA
case rsa_kea:
{
RsaKey* key = (RsaKey*)ssl->hsKey;
int lenErrMask;
ret = RsaDec(ssl,
input + args->idx,
args->length,
&args->output,
&args->sigSz,
key,
#ifdef HAVE_PK_CALLBACKS
ssl->buffers.key
#else
NULL
#endif
);
/* Errors that can occur here that should be
* indistinguishable:
* RSA_BUFFER_E, RSA_PAD_E and RSA_PRIVATE_ERROR
*/
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret == WC_PENDING_E)
goto exit_dcke;
#endif
if (ret == BAD_FUNC_ARG)
goto exit_dcke;
lenErrMask = 0 - (SECRET_LEN != args->sigSz);
args->lastErr = (ret & (~lenErrMask)) |
(RSA_PAD_E & lenErrMask);
ret = 0;
break;
} /* rsa_kea */
#endif /* !NO_RSA */
#ifndef NO_PSK
case psk_kea:
{
break;
}
#endif /* !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
void* private_key = ssl->eccTempKey;
(void)private_key;
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
ret = X25519SharedSecret(ssl,
(curve25519_key*)private_key,
ssl->peerX25519Key,
input + args->idx, &args->length,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
WOLFSSL_SERVER_END
);
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
ret = X448SharedSecret(ssl,
(curve448_key*)private_key,
ssl->peerX448Key,
input + args->idx, &args->length,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
WOLFSSL_SERVER_END
);
break;
}
#endif
#ifdef HAVE_ECC
if (ssl->specs.static_ecdh) {
private_key = ssl->hsKey;
}
/* Generate shared secret */
ret = EccSharedSecret(ssl,
(ecc_key*)private_key, ssl->peerEccKey,
input + args->idx, &args->length,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
WOLFSSL_SERVER_END
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
FreeKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
}
#endif
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifndef NO_DH
case diffie_hellman_kea:
{
ret = DhAgree(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_Priv.buffer,
ssl->buffers.serverDH_Priv.length,
input + args->idx,
(word16)args->sigSz,
ssl->arrays->preMasterSecret,
&ssl->arrays->preMasterSz,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length);
break;
}
#endif /* !NO_DH */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
ret = DhAgree(ssl, ssl->buffers.serverDH_Key,
ssl->buffers.serverDH_Priv.buffer,
ssl->buffers.serverDH_Priv.length,
input + args->idx,
(word16)args->sigSz,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&ssl->arrays->preMasterSz,
ssl->buffers.serverDH_P.buffer,
ssl->buffers.serverDH_P.length);
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID) {
ret = X25519SharedSecret(ssl,
(curve25519_key*)ssl->eccTempKey,
ssl->peerX25519Key,
input + args->idx, &args->length,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&args->sigSz,
WOLFSSL_SERVER_END
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
FreeKey(ssl, DYNAMIC_TYPE_CURVE25519,
(void**)&ssl->peerX25519Key);
ssl->peerX25519KeyPresent = 0;
}
break;
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID) {
ret = X448SharedSecret(ssl,
(curve448_key*)ssl->eccTempKey,
ssl->peerX448Key,
input + args->idx, &args->length,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&args->sigSz,
WOLFSSL_SERVER_END
);
#ifdef WOLFSSL_ASYNC_CRYPT
if (ret != WC_PENDING_E)
#endif
{
FreeKey(ssl, DYNAMIC_TYPE_CURVE448,
(void**)&ssl->peerX448Key);
ssl->peerX448KeyPresent = 0;
}
break;
}
#endif
/* Generate shared secret */
ret = EccSharedSecret(ssl,
ssl->eccTempKey, ssl->peerEccKey,
input + args->idx, &args->length,
ssl->arrays->preMasterSecret + OPAQUE16_LEN,
&args->sigSz,
WOLFSSL_SERVER_END
);
if (!ssl->specs.static_ecdh
#ifdef WOLFSSL_ASYNC_CRYPT
&& ret != WC_PENDING_E
#endif
) {
FreeKey(ssl, DYNAMIC_TYPE_ECC,
(void**)&ssl->peerEccKey);
ssl->peerEccKeyPresent = 0;
}
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
default:
ret = BAD_KEA_TYPE_E;
} /* switch (ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dcke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_VERIFY;
} /* TLS_ASYNC_DO */
FALL_THROUGH;
case TLS_ASYNC_VERIFY:
{
switch (ssl->specs.kea) {
#ifndef NO_RSA
case rsa_kea:
{
byte *tmpRsa;
byte mask;
/* Add the signature length to idx */
args->idx += args->length;
#ifdef DEBUG_WOLFSSL
/* check version (debug warning message only) */
if (args->output != NULL) {
if (args->output[0] != ssl->chVersion.major ||
args->output[1] != ssl->chVersion.minor) {
WOLFSSL_MSG("preMasterSecret version mismatch");
}
}
#endif
/* RFC5246 7.4.7.1:
* Treat incorrectly formatted message blocks and/or
* mismatched version numbers in a manner
* indistinguishable from correctly formatted RSA blocks
*/
ret = args->lastErr;
args->lastErr = 0; /* reset */
/* On error 'ret' will be negative */
mask = ((unsigned int)ret >>
((sizeof(ret) * 8) - 1)) - 1;
/* build PreMasterSecret */
ssl->arrays->preMasterSecret[0] = ssl->chVersion.major;
ssl->arrays->preMasterSecret[1] = ssl->chVersion.minor;
tmpRsa = input + args->idx - VERSION_SZ - SECRET_LEN;
ctMaskCopy(~mask, (byte*)&args->output, (byte*)&tmpRsa,
sizeof(args->output));
if (args->output != NULL) {
int i;
/* Use random secret on error */
for (i = VERSION_SZ; i < SECRET_LEN; i++) {
ssl->arrays->preMasterSecret[i] =
ctMaskSel(mask, args->output[i],
ssl->arrays->preMasterSecret[i]);
}
}
/* preMasterSecret has RNG and version set
* return proper length and ignore error
* error will be caught as decryption error
*/
args->sigSz = SECRET_LEN;
ret = 0;
break;
} /* rsa_kea */
#endif /* !NO_RSA */
#ifndef NO_PSK
case psk_kea:
{
break;
}
#endif /* !NO_PSK */
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)
case ecc_diffie_hellman_kea:
{
/* skip past the imported peer key */
args->idx += args->length;
break;
}
#endif /* HAVE_ECC || HAVE_CURVE25519 || HAVE_CURVE448 */
#ifndef NO_DH
case diffie_hellman_kea:
{
args->idx += (word16)args->sigSz;
break;
}
#endif /* !NO_DH */
#if !defined(NO_DH) && !defined(NO_PSK)
case dhe_psk_kea:
{
byte* pms = ssl->arrays->preMasterSecret;
word16 clientSz = (word16)args->sigSz;
args->idx += clientSz;
c16toa((word16)ssl->arrays->preMasterSz, pms);
ssl->arrays->preMasterSz += OPAQUE16_LEN;
pms += ssl->arrays->preMasterSz;
/* Use the PSK hint to look up the PSK and add it to the
* preMasterSecret here. */
ssl->arrays->psk_keySz = ssl->options.server_psk_cb(ssl,
ssl->arrays->client_identity, ssl->arrays->psk_key,
MAX_PSK_KEY_LEN);
if (ssl->arrays->psk_keySz == 0 ||
ssl->arrays->psk_keySz > MAX_PSK_KEY_LEN) {
#if defined(WOLFSSL_EXTRA_ALERTS) || \
defined(WOLFSSL_PSK_IDENTITY_ALERT)
SendAlert(ssl, alert_fatal,
unknown_psk_identity);
#endif
ERROR_OUT(PSK_KEY_ERROR, exit_dcke);
}
/* SERVER: Pre-shared Key for peer authentication. */
ssl->options.peerAuthGood = 1;
c16toa((word16) ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMCPY(pms, ssl->arrays->psk_key,
ssl->arrays->psk_keySz);
ssl->arrays->preMasterSz += ssl->arrays->psk_keySz +
OPAQUE16_LEN;
break;
}
#endif /* !NO_DH && !NO_PSK */
#if (defined(HAVE_ECC) || defined(HAVE_CURVE25519) || \
defined(HAVE_CURVE448)) && !defined(NO_PSK)
case ecdhe_psk_kea:
{
byte* pms = ssl->arrays->preMasterSecret;
word16 clientSz = (word16)args->sigSz;
/* skip past the imported peer key */
args->idx += args->length;
/* Add preMasterSecret */
c16toa(clientSz, pms);
ssl->arrays->preMasterSz = OPAQUE16_LEN + clientSz;
pms += ssl->arrays->preMasterSz;
/* Use the PSK hint to look up the PSK and add it to the
* preMasterSecret here. */
ssl->arrays->psk_keySz = ssl->options.server_psk_cb(ssl,
ssl->arrays->client_identity, ssl->arrays->psk_key,
MAX_PSK_KEY_LEN);
if (ssl->arrays->psk_keySz == 0 ||
ssl->arrays->psk_keySz > MAX_PSK_KEY_LEN) {
ERROR_OUT(PSK_KEY_ERROR, exit_dcke);
}
/* SERVER: Pre-shared Key for peer authentication. */
ssl->options.peerAuthGood = 1;
c16toa((word16) ssl->arrays->psk_keySz, pms);
pms += OPAQUE16_LEN;
XMEMCPY(pms, ssl->arrays->psk_key, ssl->arrays->psk_keySz);
ssl->arrays->preMasterSz +=
ssl->arrays->psk_keySz + OPAQUE16_LEN;
break;
}
#endif /* (HAVE_ECC || CURVE25519 || CURVE448) && !NO_PSK */
default:
ret = BAD_KEA_TYPE_E;
} /* switch (ssl->specs.kea) */
/* Check for error */
if (ret != 0) {
goto exit_dcke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_FINALIZE;
} /* TLS_ASYNC_VERIFY */
FALL_THROUGH;
case TLS_ASYNC_FINALIZE:
{
if (IsEncryptionOn(ssl, 0)) {
args->idx += ssl->keys.padSz;
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
if (ssl->options.startedETMRead)
args->idx += MacSize(ssl);
#endif
}
ret = MakeMasterSecret(ssl);
/* Check for error */
if (ret != 0) {
goto exit_dcke;
}
/* Advance state and proceed */
ssl->options.asyncState = TLS_ASYNC_END;
} /* TLS_ASYNC_FINALIZE */
FALL_THROUGH;
case TLS_ASYNC_END:
{
/* Set final index */
*inOutIdx = args->idx;
ssl->options.clientState = CLIENT_KEYEXCHANGE_COMPLETE;
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH)
if (ssl->options.verifyPeer) {
ret = BuildCertHashes(ssl, &ssl->hsHashes->certHashes);
}
#endif
break;
} /* TLS_ASYNC_END */
default:
ret = INPUT_CASE_ERROR;
} /* switch(ssl->options.asyncState) */
exit_dcke:
WOLFSSL_LEAVE("DoClientKeyExchange", ret);
WOLFSSL_END(WC_FUNC_CLIENT_KEY_EXCHANGE_DO);
#ifdef WOLFSSL_ASYNC_CRYPT
/* Handle async operation */
if (ret == WC_PENDING_E) {
/* Mark message as not received so it can process again */
ssl->msgsReceived.got_client_key_exchange = 0;
return ret;
}
/* Cleanup async */
FreeAsyncCtx(ssl, 0);
#else
FreeDckeArgs(ssl, args);
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef OPENSSL_ALL
/* add error ret value to error queue */
if (ret != 0) {
WOLFSSL_ERROR(ret);
}
#endif
/* Cleanup PMS */
if (ssl->arrays->preMasterSecret != NULL) {
ForceZero(ssl->arrays->preMasterSecret, ssl->arrays->preMasterSz);
}
ssl->arrays->preMasterSz = 0;
/* Final cleanup */
FreeKeyExchange(ssl);
return ret;
}
#endif /* !WOLFSSL_NO_TLS12 */
#ifdef HAVE_SNI
int SNI_Callback(WOLFSSL* ssl)
{
int ad = 0;
int sniRet = 0;
int ret = 0;
/* OpenSSL defaults alert to SSL_AD_UNRECOGNIZED_NAME, use this if
WOLFSSL_EXTRA_ALERTS is defined, indicating user is OK with
potential information disclosure from alerts. */
#if defined(OPENSSL_EXTRA) && defined(WOLFSSL_EXTRA_ALERTS)
ad = SSL_AD_UNRECOGNIZED_NAME;
#endif
/* Stunnel supports a custom sni callback to switch an SSL's ctx
* when SNI is received. Call it now if exists */
if(ssl && ssl->ctx && ssl->ctx->sniRecvCb) {
WOLFSSL_MSG("Calling custom sni callback");
sniRet = ssl->ctx->sniRecvCb(ssl, &ad, ssl->ctx->sniRecvCbArg);
switch (sniRet) {
case warning_return:
WOLFSSL_MSG("Error in custom sni callback. Warning alert");
ret = SendAlert(ssl, alert_warning, ad);
break;
case fatal_return:
WOLFSSL_MSG("Error in custom sni callback. Fatal alert");
SendAlert(ssl, alert_fatal, ad);
return FATAL_ERROR;
case noack_return:
WOLFSSL_MSG("Server quietly not acking servername.");
break;
default:
break;
}
}
return ret;
}
#endif /* HAVE_SNI */
#endif /* NO_WOLFSSL_SERVER */
#ifdef WOLFSSL_ASYNC_CRYPT
int wolfSSL_AsyncPop(WOLFSSL* ssl, byte* state)
{
int ret = 0;
WC_ASYNC_DEV* asyncDev;
WOLF_EVENT* event;
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
/* check for pending async */
asyncDev = ssl->asyncDev;
if (asyncDev) {
/* grab event pointer */
event = &asyncDev->event;
ret = wolfAsync_EventPop(event, WOLF_EVENT_TYPE_ASYNC_WOLFSSL);
if (ret != WC_NO_PENDING_E && ret != WC_PENDING_E) {
/* advance key share state if doesn't need called again */
if (state && (asyncDev->event.flags & WC_ASYNC_FLAG_CALL_AGAIN) == 0) {
(*state)++;
}
/* clear event and async device */
XMEMSET(&asyncDev->event, 0, sizeof(WOLF_EVENT));
ssl->asyncDev = NULL;
}
/* for crypto or PK callback, if pending remove from queue */
#if (defined(WOLF_CRYPTO_CB) || defined(HAVE_PK_CALLBACKS)) && \
!defined(WOLFSSL_ASYNC_CRYPT_SW) && !defined(HAVE_INTEL_QA) && \
!defined(HAVE_CAVIUM)
else if (ret == WC_PENDING_E) {
/* Allow the underlying crypto API to be called again to trigger the
* crypto or PK callback. The actual callback must be called, since
* the completion is not detected in the poll like Intel QAT or
* Nitrox */
ret = wolfEventQueue_Remove(&ssl->ctx->event_queue, event);
}
#endif
}
else {
ret = WC_NO_PENDING_E;
}
WOLFSSL_LEAVE("wolfSSL_AsyncPop", ret);
return ret;
}
int wolfSSL_AsyncInit(WOLFSSL* ssl, WC_ASYNC_DEV* asyncDev, word32 flags)
{
int ret;
WOLF_EVENT* event;
if (ssl == NULL || asyncDev == NULL) {
return BAD_FUNC_ARG;
}
/* grab event pointer */
event = &asyncDev->event;
/* init event */
ret = wolfAsync_EventInit(event, WOLF_EVENT_TYPE_ASYNC_WOLFSSL, ssl, flags);
WOLFSSL_LEAVE("wolfSSL_AsyncInit", ret);
return ret;
}
int wolfSSL_AsyncPush(WOLFSSL* ssl, WC_ASYNC_DEV* asyncDev)
{
int ret;
WOLF_EVENT* event;
if (ssl == NULL || asyncDev == NULL) {
return BAD_FUNC_ARG;
}
/* grab event pointer */
event = &asyncDev->event;
/* store reference to active async operation */
ssl->asyncDev = asyncDev;
/* place event into queue */
ret = wolfAsync_EventQueuePush(&ssl->ctx->event_queue, event);
/* success means return WC_PENDING_E */
if (ret == 0) {
ret = WC_PENDING_E;
}
WOLFSSL_LEAVE("wolfSSL_AsyncPush", ret);
return ret;
}
#endif /* WOLFSSL_ASYNC_CRYPT */
/**
* Return the max fragment size. This is essentially the maximum
* fragment_length available.
* @param ssl WOLFSSL object containing ciphersuite information.
* @param maxFragment The amount of space we want to check is available. This
* is only the fragment length WITHOUT the (D)TLS headers.
* @return Max fragment size
*/
int wolfSSL_GetMaxFragSize(WOLFSSL* ssl, int maxFragment)
{
(void) ssl; /* Avoid compiler warnings */
if (maxFragment > MAX_RECORD_SIZE) {
maxFragment = MAX_RECORD_SIZE;
}
#ifdef HAVE_MAX_FRAGMENT
if ((ssl->max_fragment != 0) && ((word16)maxFragment > ssl->max_fragment)) {
maxFragment = ssl->max_fragment;
}
#endif /* HAVE_MAX_FRAGMENT */
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
int outputSz, mtuSz;
/* Given a input buffer size of maxFragment, how big will the
* encrypted output be? */
if (IsEncryptionOn(ssl, 1)) {
outputSz = BuildMessage(ssl, NULL, 0, NULL,
maxFragment + DTLS_HANDSHAKE_HEADER_SZ,
application_data, 0, 1, 0, CUR_ORDER);
}
else {
outputSz = maxFragment + DTLS_RECORD_HEADER_SZ +
DTLS_HANDSHAKE_HEADER_SZ;
}
/* Readjust maxFragment for MTU size. */
#if defined(WOLFSSL_DTLS_MTU)
mtuSz = ssl->dtlsMtuSz;
#else
mtuSz = MAX_MTU;
#endif
maxFragment = ModifyForMTU(ssl, maxFragment, outputSz, mtuSz);
}
#endif
return maxFragment;
}
#if defined(WOLFSSL_IOTSAFE) && defined(HAVE_PK_CALLBACKS)
IOTSAFE *wolfSSL_get_iotsafe_ctx(WOLFSSL *ssl)
{
if (ssl == NULL)
return NULL;
return &ssl->iotsafe;
}
int wolfSSL_set_iotsafe_ctx(WOLFSSL *ssl, IOTSAFE *iotsafe)
{
if ((ssl == NULL) || (iotsafe == NULL))
return BAD_FUNC_ARG;
XMEMCPY(&ssl->iotsafe, iotsafe, sizeof(IOTSAFE));
return 0;
}
#endif
#if defined(OPENSSL_ALL) && !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
/* create an instance of WOLFSSL_BY_DIR_HASH structure */
WOLFSSL_BY_DIR_HASH* wolfSSL_BY_DIR_HASH_new(void)
{
WOLFSSL_BY_DIR_HASH* dir_hash;
WOLFSSL_ENTER("wolfSSL_BY_DIR_HASH_new");
dir_hash = (WOLFSSL_BY_DIR_HASH*)XMALLOC(sizeof(WOLFSSL_BY_DIR_HASH), NULL,
DYNAMIC_TYPE_OPENSSL);
if (dir_hash) {
XMEMSET(dir_hash, 0, sizeof(WOLFSSL_BY_DIR_HASH));
}
return dir_hash;
}
/* release a WOLFSSL_BY_DIR_HASH resource */
void wolfSSL_BY_DIR_HASH_free(WOLFSSL_BY_DIR_HASH* dir_hash)
{
if (dir_hash == NULL)
return;
XFREE(dir_hash, NULL, DYNAMIC_TYPE_OPENSSL);
}
/* create an instance of WOLFSSL_STACK for STACK_TYPE_BY_DIR_hash */
WOLFSSL_STACK* wolfSSL_sk_BY_DIR_HASH_new_null(void)
{
WOLFSSL_STACK* sk = wolfSSL_sk_new_node(NULL);
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_HASH_new_null");
if (sk) {
sk->type = STACK_TYPE_BY_DIR_hash;
}
return sk;
}
/* returns value less than 0 on fail to match
* On a successful match the priority level found is returned
*/
int wolfSSL_sk_BY_DIR_HASH_find(
WOLF_STACK_OF(WOLFSSL_BY_DIR_HASH)* sk, const WOLFSSL_BY_DIR_HASH* toFind)
{
WOLFSSL_STACK* next;
int i, sz;
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_HASH_find");
if (sk == NULL || toFind == NULL) {
return WOLFSSL_FAILURE;
}
sz = wolfSSL_sk_BY_DIR_HASH_num(sk);
next = sk;
for (i = 0; i < sz && next != NULL; i++) {
if (next->data.dir_hash->hash_value == toFind->hash_value) {
return sz - i; /* reverse because stack pushed highest on first */
}
next = next->next;
}
return -1;
}
/* return a number of WOLFSSL_BY_DIR_HASH in stack */
int wolfSSL_sk_BY_DIR_HASH_num(const WOLF_STACK_OF(WOLFSSL_BY_DIR_HASH) *sk)
{
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_HASH_num");
if (sk == NULL)
return -1;
return (int)sk->num;
}
/* return WOLFSSL_BY_DIR_HASH instance at i */
WOLFSSL_BY_DIR_HASH* wolfSSL_sk_BY_DIR_HASH_value(
const WOLF_STACK_OF(WOLFSSL_BY_DIR_HASH) *sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_HASH_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (i != 0 || sk == NULL)
return NULL;
return sk->data.dir_hash;
}
/* pop WOLFSSL_BY_DIR_HASH instance, and remove its node from stack */
WOLFSSL_BY_DIR_HASH* wolfSSL_sk_BY_DIR_HASH_pop(
WOLF_STACK_OF(WOLFSSL_BY_DIR_HASH)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_BY_DIR_HASH* hash;
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_HASH_pop");
if (sk == NULL) {
return NULL;
}
node = sk->next;
hash = sk->data.dir_hash;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.dir_hash = node->data.dir_hash;
sk->next = node->next;
wolfSSL_sk_free_node(node);
}
else { /* last x509 in stack */
sk->data.dir_hash = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return hash;
}
/* release all contents in stack, and then release stack itself. */
/* Second argument is a function pointer to release resources. */
/* It calls the function to release resources when it is passed */
/* instead of wolfSSL_BY_DIR_HASH_free(). */
void wolfSSL_sk_BY_DIR_HASH_pop_free(WOLF_STACK_OF(BY_DIR_HASH)* sk,
void (*f) (WOLFSSL_BY_DIR_HASH*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_HASH_pop_free");
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.dir_hash);
else
wolfSSL_BY_DIR_HASH_free(tmp->data.dir_hash);
tmp->data.dir_hash = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.dir_hash);
else
wolfSSL_BY_DIR_HASH_free(sk->data.dir_hash);
sk->data.dir_hash = NULL;
}
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
}
/* release all contents in stack, and then release stack itself */
void wolfSSL_sk_BY_DIR_HASH_free(WOLF_STACK_OF(WOLFSSL_BY_DIR_HASH) *sk)
{
wolfSSL_sk_BY_DIR_HASH_pop_free(sk, NULL);
}
/* Adds the WOLFSSL_BY_DIR_HASH to the stack "sk". "sk" takes control of "in" and
* tries to free it when the stack is free'd.
*
* return 1 on success 0 on fail
*/
int wolfSSL_sk_BY_DIR_HASH_push(WOLF_STACK_OF(WOLFSSL_BY_DIR_HASH)* sk,
WOLFSSL_BY_DIR_HASH* in)
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_HASH_push");
if (sk == NULL || in == NULL) {
return WOLFSSL_FAILURE;
}
/* no previous values in stack */
if (sk->data.dir_hash == NULL) {
sk->data.dir_hash = in;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new obj onto head of stack */
node->data.dir_hash = sk->data.dir_hash;
node->next = sk->next;
node->type = sk->type;
sk->next = node;
sk->data.dir_hash = in;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* create an instance of WOLFSSL_BY_DIR_entry structure */
WOLFSSL_BY_DIR_entry* wolfSSL_BY_DIR_entry_new(void)
{
WOLFSSL_BY_DIR_entry* entry;
WOLFSSL_ENTER("wolfSSL_BY_DIR_entry_new");
entry = (WOLFSSL_BY_DIR_entry*)XMALLOC(sizeof(WOLFSSL_BY_DIR_entry), NULL,
DYNAMIC_TYPE_OPENSSL);
if (entry) {
XMEMSET(entry, 0, sizeof(WOLFSSL_BY_DIR_entry));
}
return entry;
}
/* release a WOLFSSL_BY_DIR_entry resource */
void wolfSSL_BY_DIR_entry_free(WOLFSSL_BY_DIR_entry* entry)
{
WOLFSSL_ENTER("wolfSSL_BY_DIR_entry_free");
if (entry == NULL)
return;
if (entry->hashes) {
wolfSSL_sk_BY_DIR_HASH_free(entry->hashes);
}
if (entry->dir_name != NULL) {
XFREE(entry->dir_name, NULL, DYNAMIC_TYPE_OPENSSL);
}
XFREE(entry, NULL, DYNAMIC_TYPE_OPENSSL);
}
WOLFSSL_STACK* wolfSSL_sk_BY_DIR_entry_new_null(void)
{
WOLFSSL_STACK* sk = wolfSSL_sk_new_node(NULL);
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_entry_new_null");
if (sk) {
sk->type = STACK_TYPE_BY_DIR_entry;
}
return sk;
}
/* return a number of WOLFSSL_BY_DIR_entry in stack */
int wolfSSL_sk_BY_DIR_entry_num(const WOLF_STACK_OF(WOLFSSL_BY_DIR_entry) *sk)
{
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_entry_num");
if (sk == NULL)
return -1;
return (int)sk->num;
}
/* return WOLFSSL_BY_DIR_entry instance at i */
WOLFSSL_BY_DIR_entry* wolfSSL_sk_BY_DIR_entry_value(
const WOLF_STACK_OF(WOLFSSL_BY_DIR_entry) *sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_entry_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (i != 0 || sk == NULL)
return NULL;
return sk->data.dir_entry;
}
/* pop WOLFSSL_BY_DIR_entry instance first, and remove its node from stack */
WOLFSSL_BY_DIR_entry* wolfSSL_sk_BY_DIR_entry_pop(
WOLF_STACK_OF(WOLFSSL_BY_DIR_entry)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_BY_DIR_entry* entry;
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_entry_pop");
if (sk == NULL) {
return NULL;
}
node = sk->next;
entry = sk->data.dir_entry;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.dir_entry = node->data.dir_entry;
sk->next = node->next;
wolfSSL_sk_free_node(node);
}
else { /* last x509 in stack */
sk->data.dir_entry = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return entry;
}
/* release all contents in stack, and then release stack itself. */
/* Second argument is a function pointer to release resources. */
/* It calls the function to release resources when it is passed */
/* instead of wolfSSL_BY_DIR_entry_free(). */
void wolfSSL_sk_BY_DIR_entry_pop_free(WOLF_STACK_OF(WOLFSSL_BY_DIR_entry)* sk,
void (*f) (WOLFSSL_BY_DIR_entry*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_BY_DIR_entry_pop_free");
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.dir_entry);
else
wolfSSL_BY_DIR_entry_free(tmp->data.dir_entry);
tmp->data.dir_entry = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.dir_entry);
else
wolfSSL_BY_DIR_entry_free(sk->data.dir_entry);
sk->data.dir_entry = NULL;
}
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
}
/* release all contents in stack, and then release stack itself */
void wolfSSL_sk_BY_DIR_entry_free(WOLF_STACK_OF(wolfSSL_BY_DIR_entry) *sk)
{
wolfSSL_sk_BY_DIR_entry_pop_free(sk, NULL);
}
/* Adds the wolfSSL_BY_DIR_entry to the stack "sk". "sk" takes control of "in" and
* tries to free it when the stack is free'd.
*
* return 1 on success 0 on fail
*/
int wolfSSL_sk_BY_DIR_entry_push(WOLF_STACK_OF(WOLFSSL_BY_DIR_entry)* sk,
WOLFSSL_BY_DIR_entry* in)
{
WOLFSSL_STACK* node;
if (sk == NULL || in == NULL) {
return WOLFSSL_FAILURE;
}
/* no previous values in stack */
if (sk->data.dir_entry == NULL) {
sk->data.dir_entry = in;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new obj onto head of stack */
node->data.dir_entry = sk->data.dir_entry;
node->next = sk->next;
node->type = sk->type;
sk->next = node;
sk->data.dir_entry = in;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_ALL */
#if defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS)
/*
* Converts a DER formatted certificate to a SecCertificateRef
*
* @param derCert pointer to the DER formatted certificate
* @param derLen length of the DER formatted cert, in bytes
*
* @return The newly created SecCertificateRef. Must be freed by caller when
* no longer in use
*/
static SecCertificateRef ConvertToSecCertificateRef(const byte* derCert,
int derLen)
{
CFDataRef derData = NULL;
SecCertificateRef secCert = NULL;
WOLFSSL_ENTER("ConvertToSecCertificateRef");
/* Create a CFDataRef from the DER encoded certificate */
derData = CFDataCreate(kCFAllocatorDefault, derCert, derLen);
if (!derData) {
WOLFSSL_MSG("Error: can't create CFDataRef object for DER cert");
goto cleanup;
}
/* Create a SecCertificateRef from the CFDataRef */
secCert = SecCertificateCreateWithData(kCFAllocatorDefault, derData);
if (!secCert) {
WOLFSSL_MSG("Error: can't create SecCertificateRef from CFDataRef");
goto cleanup;
}
cleanup:
if (derData) {
CFRelease(derData);
}
WOLFSSL_LEAVE("ConvertToSecCertificateRef", !!secCert);
return secCert;
}
/*
* Validates a chain of certificates using the Apple system trust APIs
*
* @param certs pointer to the certificate chain to validate
* @param totalCerts the number of certificates in certs
*
* @return 1 if chain is valid and trusted
* @return 0 if chain is invalid or untrusted
*
* As of MacOS 14.0 we are still able to access system certificates and load
* them manually into wolfSSL. For other apple devices, apple has removed the
* ability to obtain certificates from the trust store, so we can't use
* wolfSSL's built-in certificate validation mechanisms anymore. We instead
* must call into the Security Framework APIs to authenticate peer certificates
*/
static int DoAppleNativeCertValidation(const WOLFSSL_BUFFER_INFO* certs,
int totalCerts)
{
int i;
int ret;
OSStatus status;
CFMutableArrayRef certArray = NULL;
SecCertificateRef secCert = NULL;
SecTrustRef trust = NULL;
SecPolicyRef policy = NULL ;
WOLFSSL_ENTER("DoAppleNativeCertValidation");
certArray = CFArrayCreateMutable(kCFAllocatorDefault,
totalCerts,
&kCFTypeArrayCallBacks);
if (!certArray) {
WOLFSSL_MSG("Error: can't allocate CFArray for certificates");
ret = 0;
goto cleanup;
}
for (i = 0; i < totalCerts; i++) {
secCert = ConvertToSecCertificateRef(certs[i].buffer, certs[i].length);
if (!secCert) {
WOLFSSL_MSG("Error: can't convert DER cert to SecCertificateRef");
ret = 0;
goto cleanup;
}
else {
CFArrayAppendValue(certArray, secCert);
/* Release, since the array now holds the reference */
CFRelease(secCert);
}
}
/* Create trust object for SecCertifiate Ref */
policy = SecPolicyCreateSSL(true, NULL);
status = SecTrustCreateWithCertificates(certArray, policy, &trust);
if (status != errSecSuccess) {
WOLFSSL_MSG_EX("Error creating trust object, "
"SecTrustCreateWithCertificates returned %d",status);
ret = 0;
goto cleanup;
}
/* Evaluate the certificate's authenticity */
if (SecTrustEvaluateWithError(trust, NULL) == 1) {
WOLFSSL_MSG("Cert chain is trusted");
ret = 1;
}
else {
WOLFSSL_MSG("Cert chain trust evaluation failed"
"SecTrustEvaluateWithError returned 0");
ret = 0;
}
/* Cleanup */
cleanup:
if (certArray) {
CFRelease(certArray);
}
if (trust) {
CFRelease(trust);
}
if (policy) {
CFRelease(policy);
}
WOLFSSL_LEAVE("DoAppleNativeCertValidation", ret);
return ret;
}
#endif /* defined(__APPLE__) && defined(WOLFSSL_SYS_CA_CERTS) */
#undef ERROR_OUT
#endif /* WOLFCRYPT_ONLY */