wolfssl-w32/examples/pem/pem.c

1045 lines
31 KiB
C

/* pem.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef WOLFSSL_USER_SETTINGS
#include <wolfssl/options.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/asn_public.h>
#include <wolfssl/wolfcrypt/coding.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/wc_encrypt.h>
#ifdef DEBUG_WOLFSSL
#include <wolfssl/wolfcrypt/logging.h>
#endif
#include <stdio.h>
#if defined(WOLFSSL_PEM_TO_DER) && !defined(NO_FILESYSTEM)
/* Increment allocated data by this much. */
#define DATA_INC_LEN 256
/* Maximum block size of a cipher. */
#define BLOCK_SIZE_MAX 16
/* Maximum PEM type string length. */
#define PEM_TYPE_MAX_LEN 32
/* Maximum salt length. */
#define SALT_MAX_LEN 64
/* Default PBE iterations. */
#define DEFAULT_ITERATIONS 100000
/* Maps a string to a value. */
typedef struct Str2Val {
/* String to be matched. */
const char* string;
/* Corresponding value. */
int val;
} String2Val;
/* Get the value corresponding to the string.
*
* @param [in] map Map of strings to values.
* @param [in] len Number of entries in map.
* @param [in] str String to look-up.
* @param [out] val Value corresponding to string.
* @return 0 on success.
* @return 1 on failure.
*/
static int StringToVal(const String2Val* map, int len, const char* str,
int* val)
{
int ret = 1;
int i;
for (i = 0; i < len; i++) {
if (strcmp(str, map[i].string) == 0) {
*val = map[i].val;
ret = 0;
break;
}
}
return ret;
}
/* Read the contents of a file into a dynamically allocated buffer.
*
* Uses realloc as input may be stdin.
*
* @param [in] fp File pointer to read from.
* @param [out] pdata Pointer to data.
* @param [out] plen Pointer to length.
* @return 0 on success.
* @return 1 on failure.
*/
static int pemApp_ReadFile(FILE* fp, unsigned char** pdata, word32* plen)
{
int ret = 0;
word32 len = 0;
size_t read_len;
/* Allocate a minimum amount. */
unsigned char* data = (unsigned char*)malloc(DATA_INC_LEN + BLOCK_SIZE_MAX);
if (data != NULL) {
/* Read more data. */
while ((read_len = fread(data + len, 1, DATA_INC_LEN, fp)) != 0) {
unsigned char* p;
/* Add read data amount to length. */
len += (word32)read_len;
/* Stop if we are at end-of-file. */
if (feof(fp)) {
break;
}
/* Make space for more data to be added to buffer. */
p = (unsigned char*)realloc(data, len + DATA_INC_LEN +
BLOCK_SIZE_MAX);
if (p == NULL) {
/* Reallocation failed - free current buffer. */
free(data);
data = NULL;
break;
}
/* Set data to new pointer. */
data = p;
}
/* Done with file. */
fclose(fp);
}
if (data != NULL) {
/* Return data and length. */
*pdata = data;
*plen = len;
}
else {
/* Failed to allocate data. */
ret = MEMORY_E;
}
return ret;
}
/* Write the data to the file.
*
* @param [in] fp File pointer to write to.
* @param [in] data Data to write.
* @param [in] len Length of data to write in bytes.
* @return 0 on success.
* @return 1 on failure.
*/
static int WriteFile(FILE* fp, const char* data, word32 len)
{
int ret = 0;
/* Write data to file. */
if (fwrite(data, 1, len, fp) != len) {
/* Not all data was written. */
fprintf(stderr, "Failed to write\n");
ret = 1;
}
/* Close file. */
fclose(fp);
return ret;
}
/* List of known PEM types. */
static const String2Val type_map[] = {
{ "CERTIFICATE" , CERT_TYPE },
#ifdef WOLFSSL_CERT_REQ
{ "CERTIFICATE REQUEST" , CERTREQ_TYPE },
#endif
#ifndef NO_DH
{ "DH PARAMETERS" , DH_PARAM_TYPE },
{ "X9.42 DH PARAMETERS" , X942_PARAM_TYPE },
#endif
#ifndef NO_DSA
{ "DSA PARAMETERS" , DSA_PARAM_TYPE },
#endif
#ifdef HAVE_CRL
{ "X509 CRL" , CRL_TYPE },
#endif
{ "RSA PRIVATE KEY" , RSA_TYPE },
{ "RSA PUBLIC KEY" , RSA_PUBLICKEY_TYPE },
{ "PRIVATE KEY" , PKCS8_PRIVATEKEY_TYPE },
{ "ENCRYPTED PRIVATE KEY", PKCS8_ENC_PRIVATEKEY_TYPE },
#ifdef HAVE_ECC
{ "EC PRIVATE KEY" , ECC_PRIVATEKEY_TYPE },
#ifdef OPENSSL_EXTRA
{ "EC PARAMETERS" , ECC_PARAM_TYPE },
#endif /* OPENSSL_EXTRA */
#endif /* HAVE_ECC */
#ifndef NO_DSA
{ "DSA PRIVATE KEY" , DSA_PRIVATEKEY_TYPE },
#endif
{ "PUBLIC KEY" , ECC_PUBLICKEY_TYPE },
#if defined(HAVE_ED25519) || defined(HAVE_ED448)
{ "EDDSA PRIVATE KEY" , EDDSA_PRIVATEKEY_TYPE },
#endif
};
/* Number of entries in PEM type map. */
#define TYPE_MAP_LEN ((int)(sizeof(type_map) / sizeof(*type_map)))
/* Convert string to PEM type value.
*
* @param [in] str PEM type as a string.
* @param [out] type PEM type as a value.
* @return 0 on success.
* @return 1 on failure.
*/
static int StringToType(const char* str, int* type)
{
int ret = StringToVal(type_map, TYPE_MAP_LEN, str, type);
if (ret == 1) {
fprintf(stderr, "String doesn't match known PEM types: %s\n", str);
}
return ret;
}
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
/* Password callback for returning the password set in the user data.
*
* @param [out] passwd Password buffer.
* @param [in] sz Size of password buffer.
* @param [in] rw Ignored.
* @param [in] userdata Data associated with callback in EncryptedInfo.
* @return Length of password.
*/
static int password_from_userdata(char* passwd, int sz, int rw, void* userdata)
{
(void)rw;
/* Copy user data into buffer. */
strncpy(passwd, (const char*)userdata, (size_t)sz);
passwd[sz - 1] = '\0';
/* Return length of password returned. */
return (int)XSTRLEN((const char*)passwd);
}
#endif
/* Find needle in haystack.
*
* @param [in] haystack String to find needle in.
* @param [in] offset Offset into haystack to start looking.
* @param [in] len Length of haystack.
* @param [in] needle String to find in haystack.
* @param [in] needle_len Length of string to find.
* @param [out] needle_offset Offset into haystack at which needle was found.
* @return 0 on success.
* @return 1 on failure.
*/
static int FindStr(char* haystack, word32 offset, word32 len,
const char* needle, word32 needle_len, word32* needle_offset)
{
/* Assume failure. */
int ret = 1;
word32 i;
/* Ensure there is enough space for needle. */
if (len >= needle_len) {
/* Look through haystack starting at offset until not enough space for
* needle. */
for (i = offset; i <= len - needle_len; i++) {
/* Check if needle found. */
if ((haystack[i] == needle[0]) &&
(strncmp(haystack + i, needle, needle_len) == 0)) {
/* Return offset at which needle found. */
*needle_offset = i;
/* Return success. */
ret = 0;
/* Stop looking. */
break;
}
}
}
return ret;
}
/* Find the next PEM block.
*
* @param [in] data PEM data.
* @param [in] offset Offset into data to start looking.
* @param [in] len Length of PEM data.
* @param [out] start Start of Base64 encoding.
* @param [out] end End of Base64 encoding.
* @param [out] type PEM type.
* @return 0 on success.
* @return 1 on failure.
*/
static int FindPem(char* data, word32 offset, word32 len, word32* start,
word32* end, int* type)
{
int ret = 0;
word32 i;
word32 type_off;
char str[PEM_TYPE_MAX_LEN];
/* Find header. */
ret = FindStr(data, offset, len, "-----BEGIN ", 11, &i);
if (ret == 1) {
/* Got to end without finding PEM header. */
fprintf(stderr, "No PEM header found\n");
}
if (ret == 0) {
/* Return start of PEM. */
*start = i;
/* Get start of type. */
type_off = i + 11;
/* Confirm header. */
ret = FindStr(data, i + 11, len, "-----", 5, &i);
if (ret == 1) {
/* Got to end without finding rest of PEM header. */
fprintf(stderr, "Invalid PEM header\n");
}
}
if (ret == 0) {
/* Found end of header - convert type string to value. */
word32 type_len = i - type_off;
if (type_len >= PEM_TYPE_MAX_LEN) {
ret = 1;
}
if (ret == 0) {
if (type_len > 0)
memcpy(str, data + type_off, type_len);
str[type_len] = '\0';
ret = StringToType(str, type);
}
}
if (ret == 0) {
/* Find footer. */
ret = FindStr(data, i + 5, len, "-----END ", 9, &i);
if (ret == 1) {
/* Got to end without finding PEM footer. */
fprintf(stderr, "No PEM footer found\n");
}
}
if (ret == 0) {
/* Confirm header. */
ret = FindStr(data, i + 9, len, "-----", 5, &i);
if (ret == 1) {
/* Got to end without finding rest of PEM footer. */
fprintf(stderr, "Invalid PEM footer\n");
}
}
if (ret == 0) {
/* Return end of */
*end = i + 6;
}
return ret;
}
/* Convert PEM to DER and write to file.
*
* @param [in] in Array of characters that is the PEM data.
* @param [in] offset Offset into array to start looking for PEM block.
* @param [in] len Length of data in array in bytes.
* @param [out] der Buffer holding DER encoded data.
* @param [in] type PEM type. -1 indicates to determine from array.
* @param [in] info Encryption information.
* @return 0 on success.
* @return Not 0 on failure.
*/
static int ConvPemToDer(char* in, word32 offset, word32 len, DerBuffer** der,
int type, EncryptedInfo* info, int padding)
{
int ret = 0;
word32 start = 0;
word32 end = 0;
/* Set point to start looking and length. */
char* pem = in + offset;
word32 pem_len = len - offset;
/* Check if we need to discover PEM type. */
if ((ret == 0) && (type == -1)) {
/* Find PEM block and type. */
ret = FindPem(pem, 0, pem_len, &start, &end, &type);
if (ret != 0) {
fprintf(stderr, "Could not find PEM header\n");
}
/* Update start pointer and length. */
pem += start;
pem_len = end - start;
}
if (ret == 0) {
/* Convert to DER. */
ret = wc_PemToDer((unsigned char*)pem, pem_len, type, der, NULL, info,
NULL);
if (ret != 0) {
fprintf(stderr, "Could not convert PEM to DER\n");
}
}
/* Remove padding from encryption if requested. */
if ((ret == 0) && padding) {
unsigned char pad = (*der)->buffer[(*der)->length - 1];
word32 i;
/* Simple padding validation. */
if ((pad == 0) || (pad > (*der)->length)) {
fprintf(stderr, "Invalid padding: %02x\n", pad);
ret = 1;
}
else {
/* Check padding is valid. */
for (i = 1; i < pad; i++) {
if ((*der)->buffer[(*der)->length - 1 - i] != pad) {
fprintf(stderr, "Invalid padding: %d\n", pad);
ret = 1;
break;
}
}
if (ret == 0) {
/* Don't write out padding. */
(*der)->length -= pad;
}
}
}
return ret;
}
#ifdef WOLFSSL_DER_TO_PEM
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
/* List of known PBE algorithms. */
static const String2Val pbe_map[] = {
#ifndef NO_SHA
#ifndef NO_RC4
{ "SHA1_RC4_128" , ENC_PKCS8_PBE_SHA1_RC4_128 },
#endif
#ifndef NO_DES
{ "SHA1_DES3" , ENC_PKCS8_PBE_SHA1_DES3 },
{ "PBES1_SHA1_DES", ENC_PKCS8_PBES1_SHA1_DES },
#endif
#ifdef WC_RC2
{ "SHA1_40RC2_CBC", ENC_PKCS8_PBE_SHA1_40RC2_CBC },
#endif
#endif
#ifndef NO_MD5
#ifndef NO_DES
{ "PBES1_MD5_DES" , ENC_PKCS8_PBES1_MD5_DES },
#endif
#endif
{ "PBES2" , ENC_PKCS8_PBES2 },
};
/* Number of entries in PBE map. */
#define PBE_MAP_LEN ((int)(sizeof(pbe_map) / sizeof(*pbe_map)))
/* Convert string to PBE value.
*
* @param [in] str PBE as a string.
* @param [out] pbe PBE as a value.
* @return 0 on success.
* @return 1 on failure.
*/
static int StringToPbe(char* str, int* pbe)
{
int ret = StringToVal(pbe_map, PBE_MAP_LEN, str, pbe);
if (ret == 1) {
fprintf(stderr, "String doesn't match known PBE algorithms: %s\n", str);
}
return ret;
}
/* List of known PBE versions. */
static const String2Val pbe_ver_map[] = {
{ "PKCS12" , ENC_PKCS8_VER_PKCS12 },
{ "PKCS12v1", ENC_PKCS8_VER_PKCS12 },
{ "PKCS5" , ENC_PKCS8_VER_PKCS5 },
};
/* Number of entries in PBE versions map. */
#define PBE_VER_MAP_LEN ((int)(sizeof(pbe_ver_map) / sizeof(*pbe_ver_map)))
/* Convert string to PBE version value.
*
* @param [in] str PBE version as a string.
* @param [out] pbe_ver PBE version as a value.
* @return 0 on success.
* @return 1 on failure.
*/
static int StringToPbeVer(char* str, int* pbe_ver)
{
int ret = StringToVal(pbe_ver_map, PBE_VER_MAP_LEN, str, pbe_ver);
if (ret == 1) {
fprintf(stderr, "String doesn't match known PBE versions: %s\n", str);
}
return ret;
}
/* List of known PKCS#5v2 PBE encryption algorithms. */
static const String2Val pbe_alg_map[] = {
{ "AES-128-CBC", ENC_PKCS8_ALG_AES128CBC },
{ "AES-256-CBC", ENC_PKCS8_ALG_AES256CBC },
{ "DES" , ENC_PKCS8_ALG_DES },
{ "DES3" , ENC_PKCS8_ALG_DES3 },
};
/* Number of entries in PBE algorithm map. */
#define PBE_ALG_MAP_LEN ((int)(sizeof(pbe_alg_map) / sizeof(*pbe_alg_map)))
/* Convert string to PBE algorithm value.
*
* @param [in] str PBE algorithm as a string.
* @param [out] pbe_alg PBE algorithm as a value.
* @return 0 on success.
* @return 1 on failure.
*/
static int StringToPbeAlg(char* str, int* pbe_alg)
{
int ret = StringToVal(pbe_alg_map, PBE_ALG_MAP_LEN, str, pbe_alg);
if (ret == 1) {
fprintf(stderr, "String doesn't match known PBE algorithms: %s\n", str);
}
return ret;
}
/* Encrypt the DER data.
*
* @param [in] in DER data to encrypt.
* @param [in] in_len Length of DER data.
* @param [in] password Password to use to derive key for encryption.
* @param [in] iterations Number of iterations in PBE.
* @param [in] salt_sz Size of salt to use in bytes.
* @param [in] pbe PBE algorithm to use.
* @param [in] pbe_ver Version of PBE algorithm to use.
* @param [in] enc_alg_id Encryption algorithm id for when using PBES2.
* @param [out] enc DER encrypted data.
* @param [out] enc_len Length of DER encrypted data.
* @return 0 on success.
* @return 1 on failure.
*/
static int EncryptDer(unsigned char* in, word32 in_len, char* password,
unsigned int iterations, unsigned int salt_sz, int pbe, int pbe_ver,
int enc_alg_id, unsigned char** enc, word32* enc_len)
{
int ret;
WC_RNG rng;
unsigned char salt[SALT_MAX_LEN];
if (password == NULL)
return 1;
XMEMSET(&rng, 0, sizeof(rng));
/* Create a random number generator. */
ret = wc_InitRng(&rng);
if (ret == 0) {
/* Get salt from random number generator. */
ret = wc_RNG_GenerateBlock(&rng, salt, salt_sz);
}
if (ret == 0) {
/* Get length of encrypted DER data. */
ret = wc_CreateEncryptedPKCS8Key(in, in_len, NULL, enc_len, password,
(int)strlen(password), pbe_ver, pbe, enc_alg_id, salt, salt_sz,
(int)iterations, &rng, NULL);
if (ret == LENGTH_ONLY_E) {
ret = 0;
}
else if (ret == 0) {
ret = 1;
}
}
if (ret == 0) {
/* Allocate memory for encrypted DER data. */
*enc = (unsigned char*)malloc(*enc_len);
if (*enc == NULL) {
ret = 1;
}
}
if (ret == 0) {
/* Encrypt DER data. */
ret = wc_CreateEncryptedPKCS8Key(in, in_len, *enc, enc_len, password,
(int)strlen(password), pbe_ver, pbe, enc_alg_id, salt, salt_sz,
(int)iterations, &rng, NULL);
if (ret > 0) {
ret = 0;
}
}
wc_FreeRng(&rng);
return ret;
}
#endif
/* Convert DER to PEM and write to file.
*
* @param [in] in Array of bytes holding the DER encoding.
* @param [in] offset Offset into array of data to convert to PEM.
* @param [in] len Length of data in array in bytes.
* @param [out] out Allocated buffer holding PEM encoding.
* @param [out] out_len Length of PEM encoding in bytes.
* @param [in] type PEM type.
* @param [in] cipher_str String to write into encrypted key.
* @return 0 on success.
* @return Not 0 on failure.
*/
static int ConvDerToPem(unsigned char* in, word32 offset, word32 len,
unsigned char** out, word32* out_len, int type, const char* cipher_str)
{
int ret = 0;
unsigned char* pem = NULL;
unsigned int pem_len = 0;
/* Set point to start looking and length. */
unsigned char* der = in + offset;
word32 der_len = len - offset;
/* Get length of PEM based on DER. */
ret = wc_DerToPemEx(der, der_len, NULL, 0, (byte*)cipher_str, type);
if (ret <= 0) {
fprintf(stderr, "Could not determine length of PEM\n");
}
pem_len = (unsigned int)ret;
if (ret > 0) {
ret = 0;
}
if ((ret == 0) && (pem_len > 0)) {
/* Allocate memory to hold PEM encoding. */
pem = (unsigned char*)malloc(pem_len);
if (pem == NULL) {
ret = 1;
}
}
if (ret == 0) {
/* Convert DER to PEM. */
ret = wc_DerToPemEx(der, der_len, pem, pem_len, (byte*)cipher_str,
type);
if (ret <= 0) {
fprintf(stderr, "Could not convert DER to PEM\n");
free(pem);
}
if (ret > 0) {
*out = pem;
*out_len = (word32)ret;
ret = 0;
}
}
return ret;
}
#endif
/* Usage lines to show. */
const char* usage[] = {
"pem [OPTION]...",
"Convert to/from PEM and DER.",
"",
"Options:",
" -?, --help display this help and exit",
" -t --type string representing type of data",
" -in name of file to read (uses stdin otherwise)",
" -out name of file to write to (uses stdout otherwise)",
" -o --offset offset into file where data to convert starts",
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
" -p --pass password to use with encrypted keys",
#endif
#ifdef WOLFSSL_DER_TO_PEM
" -d --der input is DER and output is PEM",
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
" --padding Remove padding on decrypted data",
" -e --encrypt DER key is to be encrypted",
" -v --pbe-ver PBE version to use when encrypting key (see below)",
" -p --pbe PBE to use when encrypting key (see below)",
" -a --pbe-alg PBES2 algorithm to use when encrypting key (see below)",
" -i --iter number of iterations of PBE - default: 100000",
" -s --salt-sz length, in bytes, of salt to generate - 0-64",
#endif
#endif
#ifdef DEBUG_WOLFSSL
" -l --log turn on wolfSSL logging",
#endif
"",
};
/* Number of usage lines. */
#define USAGE_SZ ((int)(sizeof(usage) / sizeof(*usage)))
const struct string_usage_st {
const char* str;
const String2Val* map;
int len;
} known_strings[] = {
{ "Known PEM header/trailer strings:", type_map , TYPE_MAP_LEN },
#if defined(WOLFSSL_DER_TO_PEM) && defined(WOLFSSL_ENCRYPTED_KEYS) && \
!defined(NO_PWDBASED)
{ "Known PBE version strings:" , pbe_ver_map, PBE_VER_MAP_LEN },
{ "Known PBE strings:" , pbe_map , PBE_MAP_LEN },
{ "Known PBES2 algorithm strings:" , pbe_alg_map, PBE_ALG_MAP_LEN },
#endif
};
/* Number of usage lines. */
#define KNOWN_STRINGS_SZ \
((int)(sizeof(known_strings) / sizeof(*known_strings)))
/* Print out usage lines.
*/
static void Usage(void)
{
int i;
int j;
/* Usage lines. */
for (i = 0; i < USAGE_SZ; i++) {
printf("%s\n", usage[i]);
}
/* Known strings for options. */
for (j = 0; j < KNOWN_STRINGS_SZ; j++) {
printf("%s\n", known_strings[j].str);
for (i = 0; i < known_strings[j].len; i++) {
printf(" %s\n", known_strings[j].map[i].string);
}
}
}
/* Main entry of ASN.1 printing program.
*
* @param [in] argc Count of command line arguments.
* @param [in] argv Command line arguments.
* @return 0 on success.
* @return 1 on failure.
*/
int main(int argc, char* argv[])
{
int ret = 0;
/* Default to reading STDIN. */
FILE* in_file = stdin;
/* Default to writing to STDOUT. */
FILE* out_file = stdout;
const char* out_name = NULL;
unsigned char* in = NULL;
word32 in_len = 0;
word32 offset = 0;
unsigned char* out = NULL;
word32 out_len = 0;
int pem = 1;
const char* type_str = NULL;
int type = -1;
DerBuffer* der = NULL;
EncryptedInfo info;
int padding = 0;
#if defined(WOLFSSL_DER_TO_PEM) && defined(WOLFSSL_ENCRYPTED_KEYS) && \
!defined(NO_PWDBASED)
int enc_der = 0;
unsigned char* enc = NULL;
word32 enc_len = 0;
unsigned int iterations = DEFAULT_ITERATIONS;
unsigned int salt_sz = 8;
int pbe_ver = ENC_PKCS8_VER_PKCS5;
int pbe = ENC_PKCS8_PBES2;
int pbe_alg = ENC_PKCS8_ALG_AES256CBC;
#endif
#ifdef DEBUG_WOLFSSL
int log = 0;
#endif
memset(&info, 0, sizeof(info));
/* Skip over program name. */
argc--;
argv++;
while (argc > 0) {
/* PEM header type. */
if ((strcmp(argv[0], "-t") == 0) ||
(strcmp(argv[0], "--type") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No type string provided\n");
return 1;
}
type_str = argv[0];
}
/* Name of input file. */
else if (strcmp(argv[0], "-in") == 0) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No filename provided\n");
return 1;
}
in_file = fopen(argv[0], "r");
if (in_file == NULL) {
fprintf(stderr, "File not able to be read: %s\n", argv[0]);
return 1;
}
}
/* Name of output file. */
else if (strcmp(argv[0], "-out") == 0) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No filename provided\n");
return 1;
}
out_name = argv[0];
}
/* Offset into input data to start from. */
else if ((strcmp(argv[0], "-o") == 0) ||
(strcmp(argv[0], "--offset") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No filename provided\n");
return 1;
}
offset = (word32)strtoul(argv[0], NULL, 10);
}
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
/* Password to use when encrypting or decrypting keys with PEM. */
else if ((strcmp(argv[0], "-p") == 0) ||
(strcmp(argv[0], "--pass") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No password provided\n");
return 1;
}
info.passwd_cb = password_from_userdata;
info.passwd_userdata = argv[0];
}
#endif
#ifdef WOLFSSL_DER_TO_PEM
/* Input is DER and we are converting to PEM. */
else if ((strcmp(argv[0], "-d") == 0) ||
(strcmp(argv[0], "--der") == 0)) {
pem = 0;
}
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
/* Remove padding leftover from decryption. */
else if (strcmp(argv[0], "--padding") == 0) {
padding = 1;
}
/* Encrypting the DER data. */
else if ((strcmp(argv[0], "-e") == 0) ||
(strcmp(argv[0], "--encrypt") == 0)) {
enc_der = 1;
}
/* PBE version. */
else if ((strcmp(argv[0], "-v") == 0) ||
(strcmp(argv[0], "--pbe-ver") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No PBE version provided\n");
return 1;
}
if (StringToPbeVer(argv[0], &pbe_ver) != 0) {
return 1;
}
}
/* PBE algorithm. */
else if ((strcmp(argv[0], "-p") == 0) ||
(strcmp(argv[0], "--pbe") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No PBE provided\n");
return 1;
}
if (StringToPbe(argv[0], &pbe) != 0) {
return 1;
}
}
/* PBES2 algorithm. */
else if ((strcmp(argv[0], "-a") == 0) ||
(strcmp(argv[0], "--pbe-alg") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No PBE algorithm provided\n");
return 1;
}
if (StringToPbeAlg(argv[0], &pbe_alg) != 0) {
return 1;
}
}
/* Number of PBE iterations. */
else if ((strcmp(argv[0], "-i") == 0) ||
(strcmp(argv[0], "--iter") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No filename provided\n");
return 1;
}
iterations = (unsigned int)strtoul(argv[0], NULL, 10);
}
/* Size of salt to be generated. */
else if ((strcmp(argv[0], "-s") == 0) ||
(strcmp(argv[0], "--salt-sz") == 0)) {
argc--;
argv++;
if (argc == 0) {
fprintf(stderr, "No salt size provided\n");
return 1;
}
salt_sz = (unsigned int)strtoul(argv[0], NULL, 10);
if (salt_sz > SALT_MAX_LEN) {
fprintf(stderr, "Salt size must be no bigger than %d: %d\n",
SALT_MAX_LEN, salt_sz);
return 1;
}
}
#endif /* WOLFSSL_ENCRYPTED_KEYS !NO_PWDBASED */
#endif /* WOLFSSL_DER_TO_PEM */
#ifdef DEBUG_WOLFSSL
/* Turn on logging. */
else if ((strcmp(argv[0], "-l") == 0) ||
(strcmp(argv[0], "--log") == 0)) {
log = 1;
}
#endif
/* Display help/usage. */
else if ((strcmp(argv[0], "-?") == 0) ||
(strcmp(argv[0], "--help") == 0)) {
Usage();
return 0;
}
else {
fprintf(stderr, "Bad option: %s\n", argv[0]);
Usage();
return 1;
}
/* Move on to next command line argument. */
argc--;
argv++;
}
#ifdef DEBUG_WOLFSSL
if (log) {
wolfSSL_Debugging_ON();
}
#endif
/* Convert PEM type string to value. */
if (type_str != NULL) {
ret = StringToType(type_str, &type);
}
#if defined(WOLFSSL_DER_TO_PEM) && defined(WOLFSSL_ENCRYPTED_KEYS) && \
!defined(NO_PWDBASED)
/* Check whether we are encrypting DER. */
if ((!pem) && (type == PKCS8_ENC_PRIVATEKEY_TYPE)) {
enc_der = 1;
}
#endif
/* Read all of PEM file. */
if ((ret == 0) && (pemApp_ReadFile(in_file, &in, &in_len) != 0)) {
fprintf(stderr, "Reading file failed\n");
ret = 1;
}
if ((ret == 0) && pem) {
/* Convert PEM to DER. */
ret = ConvPemToDer((char*)in, offset, in_len, &der, type, &info,
padding);
if (ret == 0) {
out = der->buffer;
out_len = der->length;
}
}
else {
#ifdef WOLFSSL_DER_TO_PEM
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
if (enc_der) {
/* Encrypt DER first. */
ret = EncryptDer(in + offset, in_len - offset,
(char*)info.passwd_userdata, iterations, salt_sz, pbe, pbe_ver,
pbe_alg, &enc, &enc_len);
if (ret == 0) {
/* Convert encrypted DER data to PEM. */
ret = ConvDerToPem(enc, 0, enc_len, &out, &out_len, type,
NULL);
}
}
else
#endif /* WOLFSSL_ENCRYPTED_KEYS && !NO_PWDBASED */
{
/* Convert DER data to PEM. */
ret = ConvDerToPem(in, offset, in_len, &out, &out_len, type, NULL);
}
#else
fprintf(stderr, "DER to PEM not supported by wolfSSL\n");
ret = 1;
#endif
}
if ((ret == 0) && (out_name != NULL)) {
/*Open write named file to write to. */
out_file = fopen(out_name, "w");
if (out_file == NULL) {
fprintf(stderr, "File not able to be written: %s\n", out_name);
ret = 1;
}
}
if (ret == 0) {
/* Write out PEM. */
ret = WriteFile(out_file, out ? (const char *)out : "", out_len);
if (ret != 0) {
fprintf(stderr, "Could not write file\n");
}
}
/* Dispose of allocated data. */
if (der != NULL) {
wc_FreeDer(&der);
}
else if (out != NULL) {
free(out);
}
#if defined(WOLFSSL_DER_TO_PEM) && defined(WOLFSSL_ENCRYPTED_KEYS) && \
!defined(NO_PWDBASED)
if (enc != NULL) {
free(enc);
}
#endif
if (in != NULL) {
free(in);
}
if (ret < 0) {
fprintf(stderr, "%s\n", wc_GetErrorString(ret));
}
return (ret == 0) ? 0 : 1;
}
#else
/* Main entry of ASN.1 printing program.
*
* @param [in] argc Count of command line arguments.
* @param [in] argv Command line arguments.
* @return 0 on success.
* @return 1 on failure.
*/
int main(int argc, char* argv[])
{
(void)argc;
(void)argv;
fprintf(stderr, "PEM to DER conversion of file system support not compiled"
" in.\n");
return 0;
}
#endif /* WOLFSSL_PEM_TO_DER && !NO_FILESYSTEM */