wolfssl-w32/IDE/iotsafe/devices.c

458 lines
12 KiB
C

/* devices.c
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/* Minimalist BSP for IoT-Safe example based on
* ST P-L596G-CELL02 + Quectel BG96 modem
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "devices.h"
#define RTSCTS 0
#define AUTOBR 0
#define NVIC_UART1_IRQN (37)
#define NVIC_UART2_IRQN (38)
static char modem_rx_buf[256];
static uint32_t modem_rx_idx = 0;
static uint32_t modem_parser_idx = 0;
static void usart1_init(void)
{
uint32_t reg;
/* Enable PWR */
RCC_APB1_ENR |= PWR_APB1_CLOCK_ER_VAL;
/* Enable GPIOG */
RCC_AHB2_ENR |= GPIOG_AHB2_CLOCK_ER_VAL;
/* Enable VDDIO2 */
while ((PWR_CR2 & PWR_CR2_IOSV) == 0) {
PWR_CR2 |= PWR_CR2_IOSV;
printf("Turning on VDDIO2\n");
sleep_ms(1000);
}
/* Enable GPIOB */
RCC_AHB2_ENR |= GPIOB_AHB2_CLOCK_ER_VAL;
/* Set mode = AF */
reg = GPIO_MODE(GPIOG_BASE) & ~(0x03 << (USART1_PIN_RX * 2));
GPIO_MODE(GPIOG_BASE) = reg | (0x02 << (USART1_PIN_RX * 2));
reg = GPIO_MODE(GPIOB_BASE) & ~(0x03 << (USART1_PIN_TX * 2));
GPIO_MODE(GPIOB_BASE) = reg | (0x02 << (USART1_PIN_TX * 2));
reg = GPIO_PUPD(GPIOG_BASE) & (0x03 << (USART1_PIN_RX * 2));
reg = GPIO_PUPD(GPIOB_BASE) & (0x03 << (USART1_PIN_TX * 2));
GPIO_PUPD(GPIOB_BASE) = reg | (0x01 << (USART1_PIN_TX * 2));
#if RTSCTS
reg = GPIO_MODE(GPIOG_BASE) & ~(0x03 << (USART1_PIN_RTS * 2));
GPIO_MODE(GPIOG_BASE) = reg | (0x02 << (USART1_PIN_RTS * 2));
GPIO_PUPD(GPIOG_BASE) &= (0x03 << (USART1_PIN_RTS * 2));
reg = GPIO_MODE(GPIOG_BASE) & ~(0x03 << (USART1_PIN_CTS * 2));
GPIO_MODE(GPIOG_BASE) = reg | (0x02 << (USART1_PIN_CTS * 2));
GPIO_PUPD(GPIOG_BASE) &= (0x03 << (USART1_PIN_CTS * 2));
#endif
/* Set alternate functions */
reg = GPIO_AFH(GPIOG_BASE) & ~(0xf << ((USART1_PIN_RX - 8) * 4));
GPIO_AFH(GPIOG_BASE) = reg | (7 << ((USART1_PIN_RX - 8) * 4));
reg = GPIO_AFL(GPIOB_BASE) & ~(0xf << ((USART1_PIN_TX) * 4));
GPIO_AFL(GPIOB_BASE) = reg | (7 << ((USART1_PIN_TX) * 4));
#if RTSCTS
/* RTS/CTS alt fn */
reg = GPIO_AFH(GPIOG_BASE) & ~(0xf << ((USART1_PIN_RTS - 8) * 4));
GPIO_AFH(GPIOG_BASE) = reg | (USART1_AF << ((USART1_PIN_RTS - 8) * 4));
reg = GPIO_AFH(GPIOG_BASE) & ~(0xf << ((USART1_PIN_CTS - 8) * 4));
GPIO_AFH(GPIOG_BASE) = reg | (USART1_AF << ((USART1_PIN_CTS - 8) * 4));
#endif
/* Enable USART clock */
RCC_APB2_ENR |= USART1_APB2_CLOCK_ER_VAL;
}
static void usart2_init(void)
{
uint32_t reg;
RCC_AHB2_ENR |= GPIOD_AHB2_CLOCK_ER_VAL | GPIOA_AHB2_CLOCK_ER_VAL;
/* Set mode = AF */
reg = GPIO_MODE(GPIOD_BASE) & ~(0x03 << (USART2_PIN_RX * 2));
GPIO_MODE(GPIOD_BASE) = reg | (0x02 << (USART2_PIN_RX * 2));
reg = GPIO_MODE(GPIOA_BASE) & ~(0x03 << (USART2_PIN_TX * 2));
GPIO_MODE(GPIOA_BASE) = reg | (0x02 << (USART2_PIN_TX * 2));
/* Set alternate functions */
reg = GPIO_AFL(GPIOD_BASE) & ~(0xf << ((USART2_PIN_RX) * 4));
GPIO_AFL(GPIOD_BASE) = reg | (7 << ((USART2_PIN_RX) * 4));
reg = GPIO_AFL(GPIOA_BASE) & ~(0xf << ((USART2_PIN_TX) * 4));
GPIO_AFL(GPIOA_BASE) = reg | (7 << ((USART2_PIN_TX) * 4));
/* Enable USART clock */
RCC_APB1_ENR |= USART2_APB1_CLOCK_ER_VAL;
}
int usart_tx(uint32_t dev, const uint8_t c)
{
volatile uint32_t reg;
do {
reg = USART_ISR(dev);
} while ((reg & USART_ISR_TXE) == 0);
USART_TDR(dev) = c;
return 1;
}
int usart_rx(uint32_t dev, uint8_t *c)
{
int ret = 0;
if (dev == USART1_BASE) {
if (modem_rx_idx > modem_parser_idx) {
*c = (uint8_t)(modem_rx_buf[modem_parser_idx++]);
if (modem_rx_idx == modem_parser_idx) {
modem_rx_idx = 0;
modem_parser_idx = 0;
}
ret = 1;
}
} else {
volatile uint32_t reg = USART_ISR(dev);
if ((reg & USART_ISR_RXNE) != 0) {
reg = USART_RDR(dev);
*c = (uint8_t)(reg & 0xff);
ret = 1;
}
}
return ret;
}
int usart_init(uint32_t dev, uint32_t bitrate, uint8_t data, char parity, uint8_t stop)
{
int rtscts = 0;
if (dev == USART1_BASE) {
usart1_init();
#if RTSCTS
rtscts = 1;
#endif
}
else if (dev == USART2_BASE)
usart2_init();
else
return -1;
/* Turn off the device */
USART_CR1(dev) &= ~(USART_CR1_ENABLE);
/* Configure for TX + RX */
USART_CR1(dev) |= (USART_CR1_TX_ENABLE | USART_CR1_RX_ENABLE);
/* Configure clock */
USART_BRR(dev) = CLOCK_SPEED / (bitrate);
/* Configure data bits */
if (data == 8)
USART_CR1(dev) &= ~USART_CR1_SYMBOL_LEN;
else
USART_CR1(dev) |= USART_CR1_SYMBOL_LEN;
/* Configure parity */
switch (parity) {
case 'O':
USART_CR1(dev) |= USART_CR1_PARITY_ODD;
/* fall through to enable parity */
/* FALL THROUGH */
case 'E':
USART_CR1(dev) |= USART_CR1_PARITY_ENABLED;
break;
default:
USART_CR1(dev) &= ~(USART_CR1_PARITY_ENABLED | USART_CR1_PARITY_ODD);
}
/* Set stop bits (not supported) */
(void)stop;
/* Set rtscts */
if (rtscts)
USART_CR3(dev) |= USART_CR3_CTSE | USART_CR3_RTSE;
#if AUTOBR
/* Enable ABR */
USART_CR2(dev) |= USART_CR2_ABREN;
#endif
if (dev == USART1_BASE) {
USART_CR1(dev) |= USART_CR1_RXNEIE | USART_CR1_PEIE;
USART_CR3(dev) |= USART_CR3_EIE;
nvic_irq_enable(NVIC_UART1_IRQN);
nvic_irq_setprio(NVIC_UART1_IRQN, 0);
}
/* Turn on uart */
USART_CR1(dev) |= USART_CR1_ENABLE;
return 0;
}
/* STDOUT on USART2 */
int _write(void *r, uint8_t *text, int len)
{
char *p = (char *)text;
(void)r;
while(*p && (p < (char *)(text + len))) {
usart_tx(USART2_BASE, *p);
p++;
}
return len;
}
/* newlib backend calls */
extern unsigned int _start_heap;
void * _sbrk(unsigned int incr)
{
static unsigned char *heap = NULL;
void *old_heap = heap;
if (((incr >> 2) << 2) != incr)
incr = ((incr >> 2) + 1) << 2;
if (old_heap == NULL)
old_heap = heap = (unsigned char *)&_start_heap;
heap += incr;
return old_heap;
}
void * _sbrk_r(unsigned int incr)
{
static unsigned char *heap = NULL;
void *old_heap = heap;
if (((incr >> 2) << 2) != incr)
incr = ((incr >> 2) + 1) << 2;
if (old_heap == NULL)
old_heap = heap = (unsigned char *)&_start_heap;
heap += incr;
return old_heap;
}
int _close(int fd)
{
return -1;
}
int _fstat(int fd)
{
return -1;
}
int _lseek(int fd, int whence, int off)
{
return -1;
}
int _read(uint8_t *buf, int len)
{
return -1;
}
int _isatty(int fd)
{
return 1;
}
/* Clock + waitstates settings */
static void flash_set_waitstates(unsigned int waitstates)
{
uint32_t reg = FLASH_ACR;
if ((reg & FLASH_ACR_LATENCY_MASK) != waitstates)
FLASH_ACR |= ((reg & ~FLASH_ACR_LATENCY_MASK) | waitstates);
}
void clock_pll_on(void)
{
uint32_t reg32;
uint32_t cpu_freq;
uint32_t hpre, ppre1, ppre2;
uint32_t flash_waitstates;
/* Select clock parameters (CPU Speed = 80MHz) */
cpu_freq = 80000000;
flash_waitstates = 4;
flash_set_waitstates(flash_waitstates);
/* Configure + enable internal high-speed oscillator. */
RCC_CR = (RCC_CR & (~RCC_CR_MSIRANGE_Msk)) | RCC_CR_MSIRANGE_6;
RCC_CR |= RCC_CR_MSIRGSEL;
RCC_CR |= RCC_CR_MSION;
DMB();
while ((RCC_CR & RCC_CR_MSIRDY) == 0)
;
/* Select MSI as SYSCLK source. */
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_SW_MASK);
RCC_CFGR = (reg32 | RCC_CFGR_SW_MSI);
DMB();
/*
* Set prescalers
*/
hpre = RCC_PRESCALER_DIV_NONE;
ppre1 = RCC_PRESCALER_DIV_NONE;
ppre2 = RCC_PRESCALER_DIV_NONE;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT);
RCC_CFGR = (hpre & RCC_CFGR_HPRE_MASK) << RCC_CFGR_HPRE_SHIFT;
DMB();
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT);
RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT));
DMB();
reg32 &= ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT);
RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT));
DMB();
/* Set PLLCFGR parameter */
RCC_PLLCFGR = PLLCFGR_PLLM | PLLCFGR_PLLN |
PLLCFGR_PLLP | PLLCFGR_PLLQ |
PLLCFGR_PLLR | RCC_PLLCFGR_PLLP_EN |
RCC_PLLCFGR_PLLQ_EN | RCC_PLLCFGR_PLLR_EN |
RCC_PLLCFGR_PLLSRC_MSI;
/* Enable PLL oscillator and wait for it to stabilize. */
RCC_CR |= RCC_CR_PLLON;
DMB();
while ((RCC_CR & RCC_CR_PLLRDY) == 0)
;
/* Select PLL as SYSCLK source. */
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_SW_MASK);
RCC_CFGR = (reg32 | RCC_CFGR_SW_PLL);
DMB();
/* Wait for PLL clock to be selected (via SWS, bits 3:2) */
while (((RCC_CFGR >> 2) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL)
;
RCC_CCIPR |= (1 << 26);
PWR_CR1 |= PWR_CR1_DBP;
}
/* Modem via STMod+ connector */
static int stmod_en_init = 0;
static void stmod_pin_init(void)
{
uint32_t reg;
RCC_AHB2_ENR |=
GPIOA_AHB2_CLOCK_ER_VAL |
GPIOB_AHB2_CLOCK_ER_VAL |
GPIOC_AHB2_CLOCK_ER_VAL |
GPIOD_AHB2_CLOCK_ER_VAL |
GPIOI_AHB2_CLOCK_ER_VAL;
/* 'enable' pin */
reg = GPIO_MODE(STMOD_EN_PORT) & ~(0x03 << (STMOD_EN_PIN * 2));
GPIO_MODE(STMOD_EN_PORT) = reg | (0x01 << (STMOD_EN_PIN * 2));
/* RST pin */
reg = GPIO_MODE(STMOD_MODEM_RST_PORT) & ~(0x03 << (STMOD_MODEM_RST_PIN * 2));
GPIO_MODE(STMOD_MODEM_RST_PORT) = reg | (0x01 << (STMOD_MODEM_RST_PIN * 2));
/* DTR pin */
reg = GPIO_MODE(STMOD_MODEM_DTR_PORT) & ~(0x03 << (STMOD_MODEM_DTR_PIN * 2));
GPIO_MODE(STMOD_MODEM_DTR_PORT) = reg | (0x01 << (STMOD_MODEM_DTR_PIN * 2));
/* Sim select pins */
reg = GPIO_MODE(STMOD_SIM_SELECT0_PORT) & ~(0x03 << (STMOD_SIM_SELECT0_PIN * 2));
GPIO_MODE(STMOD_SIM_SELECT0_PORT) = reg | (0x01 << (STMOD_SIM_SELECT0_PIN * 2));
reg = GPIO_MODE(STMOD_SIM_SELECT1_PORT) & ~(0x03 << (STMOD_SIM_SELECT1_PIN * 2));
GPIO_MODE(STMOD_SIM_SELECT1_PORT) = reg | (0x01 << (STMOD_SIM_SELECT1_PIN * 2));
}
void stmod_modem_enable(void)
{
if (!stmod_en_init) {
stmod_pin_init();
stmod_en_init = 1;
}
/* initial pin state */
gpio_set(STMOD_EN_PORT, STMOD_EN_PIN);
gpio_set(STMOD_MODEM_RST_PORT, STMOD_MODEM_RST_PIN);
gpio_set(STMOD_MODEM_DTR_PORT, STMOD_MODEM_DTR_PIN);
sleep_ms(200);
gpio_clear(STMOD_MODEM_RST_PORT, STMOD_MODEM_RST_PIN);
gpio_clear(STMOD_EN_PORT, STMOD_EN_PIN);
sleep_ms(2500);
/* ON/OFF sequence to clear state */
gpio_set(STMOD_EN_PORT, STMOD_EN_PIN);
sleep_ms(700);
gpio_clear(STMOD_EN_PORT, STMOD_EN_PIN);
sleep_ms(1000);
gpio_set(STMOD_EN_PORT, STMOD_EN_PIN);
sleep_ms(50);
gpio_clear(STMOD_EN_PORT, STMOD_EN_PIN);
sleep_ms(30);
gpio_set(STMOD_EN_PORT, STMOD_EN_PIN); /* Modem is on. */
printf("Modem booting...\n");
sleep_ms(5000);
printf("Modem is on.\r\n");
}
void stmod_modem_disable(void)
{
if (!stmod_en_init) {
stmod_pin_init();
stmod_en_init = 1;
}
gpio_clear(STMOD_EN_PORT, STMOD_EN_PIN);
}
extern volatile unsigned jiffies;
void systick_enable(void)
{
SYSTICK_RVR = ((CLOCK_SPEED / 1000) - 1);
SYSTICK_CVR = 0;
SYSTICK_CSR |= 0x07;
}
void sleep_ms(unsigned ms)
{
unsigned end = jiffies + ms;
while(jiffies < end)
__asm__ volatile("wfi");
}
void isr_usart1(void)
{
uint32_t reg;
reg = USART_ISR(USART1_BASE);
if (reg & USART_ISR_RXNE) {
modem_rx_buf[modem_rx_idx++] = (char)USART_RDR(USART1_BASE);
} else {
USART_ICR(USART1_BASE) |= 2 | USART_ICR_CMCF; /* FECF + CMCF*/
}
}