wolfssl-w32/wolfssl/wolfcrypt/sp_int.h

1196 lines
41 KiB
C
Raw Normal View History

/* sp_int.h
*
* Copyright (C) 2006-2023 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/*
DESCRIPTION
This library provides single precision (SP) integer math functions.
*/
#ifndef WOLF_CRYPT_SP_INT_H
#define WOLF_CRYPT_SP_INT_H
#ifndef WOLFSSL_LINUXKM
#include <limits.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/hash.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(WOLFSSL_SP_ARM_ARCH) && !defined(WOLFSSL_ARM_ARCH)
#define WOLFSSL_ARM_ARCH WOLFSSL_SP_ARM_ARCH
#endif
#if defined(OPENSSL_EXTRA) && !defined(NO_ASN) && \
!defined(WOLFSSL_SP_INT_NEGATIVE)
#define WOLFSSL_SP_INT_NEGATIVE
#endif
/* Find smallest type for smallest bits. */
#if UCHAR_MAX == 255
#define SP_UCHAR_BITS 8
typedef unsigned char sp_uint8;
typedef char sp_int8;
#elif UCHAR_MAX == 127
#define SP_UCHAR_BITS 7
typedef unsigned char sp_uint7;
typedef char sp_int7;
#else
#error "Size of unsigned short not detected"
#endif
#if USHRT_MAX == 65535
#define SP_USHORT_BITS 16
typedef unsigned short sp_uint16;
typedef short sp_int16;
#elif USHRT_MAX == 255
#define SP_USHORT_BITS 8
#if USHRT_MAX > UCHAR_MAX
typedef unsigned short sp_uint8;
typedef short sp_int8;
#endif
#else
#error "Size of unsigned short not detected"
#endif
#if UINT_MAX == 4294967295UL
#define SP_UINT_BITS 32
typedef unsigned int sp_uint32;
typedef int sp_int32;
#elif UINT_MAX == 65535
#define SP_UINT_BITS 16
#if UINT_MAX > USHRT_MAX
typedef unsigned int sp_uint16;
typedef int sp_int16;
#endif
#elif UINT_MAX == 255
#define SP_UINT_BITS 8
#if UINT_MAX > USHRT_MAX
typedef unsigned int sp_uint8;
typedef int sp_int8;
#endif
#else
#error "Size of unsigned int not detected"
#endif
#if defined(WOLF_C89) && !defined(NO_64BIT) && \
ULONG_MAX == 18446744073709551615UL
#define SP_ULONG_BITS 64
typedef unsigned long sp_uint64;
typedef long sp_int64;
#elif !defined(WOLF_C89) && !defined(NO_64BIT) && \
ULONG_MAX == 18446744073709551615ULL && \
4294967295UL != 18446744073709551615ULL /* verify pre-processor supports
* 64-bit ULL types */
#define SP_ULONG_BITS 64
typedef unsigned long sp_uint64;
typedef long sp_int64;
#elif ULONG_MAX == 4294967295UL
#define SP_ULONG_BITS 32
#if ULONG_MAX > UINT_MAX
typedef unsigned long sp_uint32;
typedef long sp_int32;
#endif
#elif ULONG_MAX == 65535
#define SP_ULONG_BITS 16
#if ULONG_MAX > UINT_MAX
typedef unsigned long sp_uint16;
typedef long sp_int16;
#endif
#else
#error "Size of unsigned long not detected"
#endif
#ifdef ULLONG_MAX
#if defined(WOLF_C89) && ULLONG_MAX == 18446744073709551615UL
#define SP_ULLONG_BITS 64
#if SP_ULLONG_BITS > SP_ULONG_BITS
typedef unsigned long long sp_uint64;
typedef long long sp_int64;
#endif
#elif !defined(WOLF_C89) && ULLONG_MAX == 18446744073709551615ULL
#define SP_ULLONG_BITS 64
#if SP_ULLONG_BITS > SP_ULONG_BITS
typedef unsigned long long sp_uint64;
typedef long long sp_int64;
#endif
#elif ULLONG_MAX == 4294967295UL
#define SP_ULLONG_BITS 32
#if SP_ULLONG_BITS > SP_ULONG_BITS
typedef unsigned long long sp_uint32;
typedef long long sp_int32;
#endif
#elif ULLONG_MAX == 65535
#define SP_ULLONG_BITS 16
#if SP_ULLONG_BITS > SP_ULONG_BITS
typedef unsigned long long sp_uint16;
typedef long long sp_int16;
#endif
#else
#error "Size of unsigned long long not detected"
#endif
#elif (SP_ULONG_BITS == 32) && !defined(NO_64BIT)
/* Speculatively use long long as the 64-bit type as we don't have one
* otherwise. */
typedef unsigned long long sp_uint64;
typedef long long sp_int64;
#else
#define SP_ULLONG_BITS 0
#endif
#ifdef WOLFSSL_SP_DIV_32
#define WOLFSSL_SP_DIV_WORD_HALF
#endif
/* Detect Cortex M3 (no UMAAL) */
#if defined(WOLFSSL_SP_ARM_CORTEX_M_ASM) && defined(__ARM_ARCH_7M__)
#undef WOLFSSL_SP_NO_UMAAL
#define WOLFSSL_SP_NO_UMAAL
#endif
/* Make sure WOLFSSL_SP_ASM build option defined when requested */
#if !defined(WOLFSSL_SP_ASM) && ( \
defined(WOLFSSL_SP_X86_64_ASM) || defined(WOLFSSL_SP_ARM32_ASM) || \
defined(WOLFSSL_SP_ARM64_ASM) || defined(WOLFSSL_SP_ARM_THUMB_ASM) || \
defined(WOLFSSL_SP_ARM_CORTEX_M_ASM))
#define WOLFSSL_SP_ASM
#endif
/* Determine the number of bits to use in each word. */
#ifdef SP_WORD_SIZE
#elif defined(WOLFSSL_DSP_BUILD)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_X86_64) && !defined(WOLFSSL_SP_X86_64_ASM) && \
!defined(HAVE___UINT128_T)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_X86_64_ASM) || defined(WOLFSSL_SP_X86_64)
#if SP_ULONG_BITS == 64 || SP_ULLONG_BITS == 64
#define SP_WORD_SIZE 64
#define HAVE_INTEL_AVX1
#ifndef NO_AVX2_SUPPORT
#define HAVE_INTEL_AVX2
#endif
#elif SP_ULONG_BITS == 32
#define SP_WORD_SIZE 32
#undef WOLFSSL_SP_ASM
#elif SP_ULONG_BITS == 16
#define SP_WORD_SIZE 16
#undef WOLFSSL_SP_ASM
#endif
#elif defined(WOLFSSL_SP_X86)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_ARM64_ASM) || defined(WOLFSSL_SP_ARM64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_ARM32_ASM) || defined(WOLFSSL_SP_ARM32)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_ARM_THUMB_ASM) || defined(WOLFSSL_SP_ARM_THUMB)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_PPC)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_PPC64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_MIPS)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_MIPS64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_RISCV32)
#define SP_WORD_SIZE 32
#elif defined(WOLFSSL_SP_RISCV64)
#define SP_WORD_SIZE 64
#elif defined(WOLFSSL_SP_S390X)
#define SP_WORD_SIZE 64
#endif
/* If no predefined or assembly required size then use maximum available
* with compiler.
*/
#ifndef SP_WORD_SIZE
#ifdef NO_64BIT
#define SP_WORD_SIZE 16
#elif !defined(HAVE___UINT128_T) || defined(_WIN32)
#define SP_WORD_SIZE 32
#else
#define SP_WORD_SIZE 64
#endif
#endif
/* Number of bytes in each word. */
#define SP_WORD_SIZEOF (SP_WORD_SIZE / 8)
/* Define the types used. */
#ifdef HAVE___UINT128_T
#ifdef __SIZEOF_INT128__
typedef __uint128_t sp_uint128;
typedef __int128_t sp_int128;
#else
typedef unsigned long sp_uint128 __attribute__ ((mode(TI)));
typedef long sp_int128 __attribute__ ((mode(TI)));
#endif
#ifndef WOLFSSL_UINT128_T_DEFINED
#ifdef __SIZEOF_INT128__
typedef __uint128_t uint128_t;
typedef __int128_t int128_t;
#else
typedef unsigned long uint128_t __attribute__ ((mode(TI)));
typedef long int128_t __attribute__ ((mode(TI)));
#endif
#define WOLFSSL_UINT128_T_DEFINED
#endif
#endif
#if SP_WORD_SIZE == 8
typedef sp_uint8 sp_int_digit;
typedef sp_int8 sp_int_sdigit;
typedef sp_uint16 sp_int_word;
typedef sp_int16 sp_int_sword;
#define SP_MASK 0xffU
#elif SP_WORD_SIZE == 16
typedef sp_uint16 sp_int_digit;
typedef sp_int16 sp_int_sdigit;
typedef sp_uint32 sp_int_word;
typedef sp_int32 sp_int_sword;
#define SP_MASK 0xffffU
#elif SP_WORD_SIZE == 32
typedef sp_uint32 sp_int_digit;
typedef sp_int32 sp_int_sdigit;
typedef sp_uint64 sp_int_word;
typedef sp_int64 sp_int_sword;
#define SP_MASK 0xffffffffU
#elif SP_WORD_SIZE == 64
typedef sp_uint64 sp_int_digit;
typedef sp_int64 sp_int_sdigit;
#if (defined(WOLFSSL_SP_MATH) || defined(WOLFSSL_SP_MATH_ALL)) && \
!defined(_WIN64) && defined(WOLFSSL_UINT128_T_DEFINED)
typedef sp_uint128 sp_int_word;
typedef sp_int128 sp_int_sword;
#endif
#define SP_MASK 0xffffffffffffffffUL
#else
#error Word size not defined
#endif
/* Define an SP digit. */
#ifndef WOLFSSL_SP_ASM
/* SP C code uses n/m bits and therefore needs a signed type. */
#if SP_WORD_SIZE == 8
typedef sp_int8 sp_digit;
#elif SP_WORD_SIZE == 16
typedef sp_int16 sp_digit;
#elif SP_WORD_SIZE == 32
typedef sp_int32 sp_digit;
#elif SP_WORD_SIZE == 64
typedef sp_int64 sp_digit;
#endif
#else
/* SP ASM code uses full size and needs an unsigned type. */
#if SP_WORD_SIZE == 8
typedef sp_uint8 sp_digit;
#elif SP_WORD_SIZE == 16
typedef sp_uint16 sp_digit;
#elif SP_WORD_SIZE == 32
typedef sp_uint32 sp_digit;
#elif SP_WORD_SIZE == 64
typedef sp_uint64 sp_digit;
#endif
#endif
/** Number of bits in a half a word. */
#define SP_HALF_SIZE (SP_WORD_SIZE / 2)
/** Maximum value that can be held in a half a word. */
#define SP_HALF_MAX (((sp_digit)1 << SP_HALF_SIZE) - 1)
/** Maximum value that can be held in a word. */
#define SP_DIGIT_MAX SP_MASK
/* Number of bits to shift to divide by word size. */
#if SP_WORD_SIZE == 8
#define SP_WORD_SHIFT 3
#elif SP_WORD_SIZE == 16
#define SP_WORD_SHIFT 4
#elif SP_WORD_SIZE == 32
#define SP_WORD_SHIFT 5
#elif SP_WORD_SIZE == 64
#define SP_WORD_SHIFT 6
#endif
/* Mask of word size. */
#define SP_WORD_MASK (SP_WORD_SIZE - 1)
/* For debugging only - format string for different digit sizes. */
#if SP_WORD_SIZE == 64
#if SP_ULONG_BITS == 64
#define SP_PRINT_FMT "%016lx"
#else
#define SP_PRINT_FMT "%016llx"
#endif
#elif SP_WORD_SIZE == 32
#if SP_UINT_BITS == 32
#define SP_PRINT_FMT "%08x"
#else
#define SP_PRINT_FMT "%08lx"
#endif
#elif SP_WORD_SIZE == 16
#define SP_PRINT_FMT "%04x"
#elif SP_WORD_SIZE == 8
#define SP_PRINT_FMT "%02x"
#endif
#if defined(WOLFSSL_HAVE_SP_ECC) && defined(WOLFSSL_SP_NONBLOCK)
/* Non-blocking ECC operation context. */
typedef struct sp_ecc_ctx {
#ifdef WOLFSSL_SP_521
byte data[66*80]; /* stack data */
#elif defined(WOLFSSL_SP_384)
byte data[48*80]; /* stack data */
#else
byte data[32*80]; /* stack data */
#endif
} sp_ecc_ctx_t;
#endif
#if defined(WOLFSSL_SP_MATH) || defined(WOLFSSL_SP_MATH_ALL)
#include <wolfssl/wolfcrypt/random.h>
#ifndef SP_INT_BITS
#ifdef SP_INT_DIGITS
#define SP_INT_BITS (((SP_INT_DIGITS - 1) * SP_WORD_SIZE) / 2)
#else
/* Calculate number of bits to have in an sp_int based on features
* compiled in.
*/
#ifdef WOLFSSL_MYSQL_COMPATIBLE
/* MySQL wants to be able to use 8192-bit numbers. */
#define SP_INT_BITS 8192
#elif !defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_HAVE_SP_DH) && \
!defined(WOLFSSL_HAVE_SP_ECC)
/* Not using SP - must be SP math all. */
#if !defined(NO_RSA) || !defined(NO_DH) || !defined(NO_DSA)
/* Support max size FFHDE parameters compiled in. */
#if !defined(NO_DH) && defined(HAVE_FFDHE_8192)
#define SP_INT_BITS 8192
#elif !defined(NO_DH) && defined(HAVE_FFDHE_6144)
#define SP_INT_BITS 6144
#elif !defined(NO_DH) && defined(HAVE_FFDHE_4096)
#define SP_INT_BITS 4096
#else
/* Default to max 3072 for general RSA and DH. */
#define SP_INT_BITS 3072
#endif
#elif defined(WOLFCRYPT_HAVE_SAKKE)
#define SP_INT_BITS 1024
#elif defined(HAVE_ECC)
/* P521 is the largest supported ECC algorithm curve. */
#define SP_INT_BITS 521
#elif !defined(NO_PWDBASED) && defined(HAVE_PKCS12)
/* wc_PKCS12_PBKDF_ex() */
#define SP_INT_BITS (64 * 8)
#else
#define SP_INT_BITS 128
#endif
#elif !defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_HAVE_SP_DH)
/* Not use SP_RSA or DH but are using SP ECC. */
#if defined(WOLFCRYPT_HAVE_SAKKE)
#define SP_INT_BITS 1024
#elif defined(WOLFSSL_SP_521) || defined(WOLFSSL_SP_MATH_ALL)
/* P521 is the largest supported ECC algorithm curve. */
#define SP_INT_BITS 521
#elif defined(WOLFSSL_SP_384)
/* No generic support - largest curve P384. */
#define SP_INT_BITS 384
#else
/* No generic support - largest curve P256. */
#define SP_INT_BITS 256
#endif
/* SP RSA and DH supported so base on max size of RSA/DH in SP. */
#elif defined(WOLFSSL_SP_4096)
#define SP_INT_BITS 4096
#elif !defined(WOLFSSL_SP_NO_3072) || defined(WOLFSSL_SP_MATH_ALL)
#define SP_INT_BITS 3072
#else
#define SP_INT_BITS 2048
#endif
#endif
#endif
#ifndef SP_INT_DIGITS
/* Calculate number of digits to have in an sp_int based on maximum size of
* numbers in bits that will be used.
* Double the size to hold multiplication result.
* Add one to accommodate extra digit used by sp_mul(), sp_mulmod(),
* sp_sqr(), sp_sqrmod() and sp_mont_red().
*/
#define SP_INT_DIGITS \
(((SP_INT_BITS + SP_WORD_SIZE - 1) / SP_WORD_SIZE) * 2 + 1)
#endif
#ifndef SP_INT_MAX_BITS
/* Convert number digits to number of bits. */
#define SP_INT_MAX_BITS (SP_INT_DIGITS * SP_WORD_SIZE)
#endif
#if SP_WORD_SIZE < 32
/* Maximum number of digits in a number to mul or sqr. */
#define SP_MUL_SQR_DIGITS (SP_INT_MAX_BITS / 2 / SP_WORD_SIZE)
/* Maximum value of partial in mul/sqr. */
#define SP_MUL_SQR_MAX_PARTIAL \
(SP_MUL_SQR_DIGITS * ((1 << SP_WORD_SIZE) - 1))
/* Maximum value in an sp_int_word. */
#define SP_INT_WORD_MAX ((1 << (SP_WORD_SIZE * 2)) - 1)
#if SP_MUL_SQR_MAX_PARTIAL > SP_INT_WORD_MAX
/* The sum of the partials in the multiplication/square can exceed the
* size of a word. This will overflow the word and loose data.
* Use an implementation that handles carry after every add and uses an
* extra temporary word for overflowing high word.
*/
#define SP_WORD_OVERFLOW
#endif
#endif
#ifndef NO_FILESYSTEM
/* Output is formatted to be used with script that checks calculations. */
/* Print out a number in big endian. */
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Print out a positive multi-precision number.
*
* @param [in] a SP integer to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print(a, s) \
do { \
int ii; \
fprintf(stderr, "%s=0x0", s); \
for (ii = (a)->used-1; ii >= 0; ii--) { \
fprintf(stderr, SP_PRINT_FMT, (a)->dp[ii]); \
} \
fprintf(stderr, "\n"); \
} \
while (0)
#else
/* Print out a multi-precision number.
*
* @param [in] a SP integer to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print(a, s) \
do { \
int ii; \
fprintf(stderr, "%s=0x", s); \
if ((a)->sign == MP_NEG) { \
fprintf(stderr, "-"); \
} \
fprintf(stderr, "0"); \
for (ii = (a)->used-1; ii >= 0; ii--) { \
fprintf(stderr, SP_PRINT_FMT, (a)->dp[ii]); \
} \
fprintf(stderr, "\n"); \
} \
while (0)
#endif
/* Print out a single multi-precision digit.
*
* @param [in] a SP integer digit to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print_digit(a, s) \
do { \
fprintf(stderr, "%s=0x0", s); \
fprintf(stderr, SP_PRINT_FMT, a); \
fprintf(stderr, "\n"); \
} \
while (0)
/* Print out an integer.
*
* @param [in] a Number to print.
* @param [in] s String that describes the use of the number.
*/
#define sp_print_int(a, s) \
do { \
fprintf(stderr, "%s=0x0%x\n", s, a); \
} \
while (0)
#else
/* No filesystem, no output
* TODO: Use logging API?
*/
#define sp_print(a, s) WC_DO_NOTHING
#define sp_print_digit(a, s) WC_DO_NOTHING
#define sp_print_int(a, s) WC_DO_NOTHING
#endif /* !NO_FILESYSTEM */
/* Returns whether multi-precision number is odd
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when odd.
* @return 0 when even.
*/
#define sp_isodd(a) (((a)->used != 0) && ((a)->dp[0] & 1))
/* Returns whether multi-precision number is even
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when even.
* @return 0 when odd.
*/
#define sp_iseven(a) (((a)->used != 0) && (((a)->dp[0] & 1) == 0))
/* Returns whether multi-precision number has the value zero.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when zero.
* @return 0 when not zero.
*/
#define sp_iszero(a) ((a)->used == 0)
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Returns whether multi-precision number has the value one.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isone(a) (((a)->used == 1) && ((a)->dp[0] == 1))
#else
/* Returns whether multi-precision number has the value of positive one.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isone(a) \
(((a)->used == 1) && ((a)->dp[0] == 1) && ((a)->sign == MP_ZPOS))
#endif
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Returns whether multi-precision number has the value 'd'.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isword(a, d) \
((((d) == 0) && sp_iszero(a)) || (((a)->used == 1) && ((a)->dp[0] == (d))))
#else
/* Returns whether multi-precision number has the value 'd'.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 1 when one.
* @return 0 when not one.
*/
#define sp_isword(a, d) \
((((d) == 0) && sp_iszero(a)) || \
(((a)->used == 1) && ((a)->dp[0] == (d)) && ((a)->sign == MP_ZPOS)))
#endif
#ifndef WOLFSSL_SP_INT_NEGATIVE
/* Calculate the absolute value of the multi-precision number.
*
* Negative support not compiled in so just copies.
*
* @param [in] a SP integer to calculate absolute value of.
* @param [out] r SP integer to hold result.
*
* @return MP_OKAY on success.
* @return MP_VAL when a or r is NULL.
*/
#define sp_abs(a, b) sp_copy(a, b)
/* Returns whether multi-precision number is negative.
*
* Negative support not compiled in so always returns 0 (false).
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 0 indicating not negative always.
*/
#define sp_isneg(a) (0)
/* Sets the multi-precision number negative.
*
* Negative support not compiled in, so does nothing. */
#define sp_setneg(a) WC_DO_NOTHING
#else
/* Returns whether multi-precision number is negative.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to check.
* @param [in] d SP integer digit.
* @return 1 when negative.
* @return 0 when not negative.
*/
#define sp_isneg(a) ((a)->sign == MP_NEG)
/* Sets the multi-precision number negative. */
#define sp_setneg(a) ((a)->sign = MP_NEG)
#endif
/* Number of bits used based on used field only. */
#define sp_bitsused(a) ((a)->used * SP_WORD_SIZE)
/* Updates the used count to exclude leading zeros.
*
* Assumes a is not NULL.
*
* @param [in] a SP integer to update.
*/
#define sp_clamp(a) \
do { \
int ii; \
for (ii = (int)(a)->used - 1; ii >= 0 && (a)->dp[ii] == 0; ii--) { \
} \
(a)->used = (unsigned int)ii + 1; \
} while (0)
/* Check the compiled and linked math implementation are the same.
* Use the number of bits in a digit as indication of how code was compiled.
*
* @return 1 when the number of bits are the same.
* @return 0 when the number of bits are different.
*/
#define CheckFastMathSettings() (SP_WORD_SIZE == CheckRunTimeFastMath())
/**
* A result of NO.
* e.g. Is prime? NO.
*/
#define MP_NO 0
/**
* A result of YES.
* e.g. Is prime? YES.
*/
#define MP_YES 1
#ifdef WOLFSSL_SP_INT_NEGATIVE
/** Number is 0/positive. */
#define MP_ZPOS 0
/** Number is negative. */
#define MP_NEG 1
#endif
/** Radix is base 10 or decimal. */
#define MP_RADIX_DEC 10
/** Radix is base 16 or hexadecimal. */
#define MP_RADIX_HEX 16
/** Result of comparison is that the first number is greater than second. */
#define MP_GT 1
/** Result of comparison is they are equal. */
#define MP_EQ 0
/** Result of comparison is that the first number is less than second. */
#define MP_LT (-1)
/* ERROR VALUES */
/** Error value on success. */
#define MP_OKAY 0
/** Error value when dynamic memory allocation fails. */
#define MP_MEM (-2)
/** Error value when value passed is not able to be used. */
#define MP_VAL (-3)
/** Error value when non-blocking operation is returning after partial
* completion.
*/
#define FP_WOULDBLOCK (-4)
/* Unused error. Defined for backward compatibility. */
#define MP_NOT_INF (-5)
/* Unused error. Defined for backward compatibility. */
#define MP_RANGE MP_NOT_INF
#ifdef USE_FAST_MATH
/* For old FIPS, need FP_MEM defined for old implementation. */
#define FP_MEM (-2)
#endif
/* Number of bits in each word/digit. */
#define DIGIT_BIT SP_WORD_SIZE
/* Mask of all used bits in word/digit. */
#define MP_MASK SP_MASK
#ifdef MP_LOW_MEM
/* Use algorithms that use less memory. */
#define WOLFSSL_SP_LOW_MEM
#endif
/* The number of bytes to a sp_int with 'cnt' digits.
* Must have at least one digit.
*/
#define MP_INT_SIZEOF(cnt) \
(sizeof(sp_int_minimal) + (((cnt) <= 1) ? 0 : ((cnt) - 1)) * \
sizeof(sp_int_digit))
/* The address of the next sp_int after one with 'cnt' digits. */
#define MP_INT_NEXT(t, cnt) \
(sp_int*)(((byte*)(t)) + MP_INT_SIZEOF(cnt))
/* Calculate the number of words required to support a number of bits. */
#define MP_BITS_CNT(bits) \
((((bits) + SP_WORD_SIZE - 1) / SP_WORD_SIZE) * 2 + 1)
#ifdef WOLFSSL_SMALL_STACK
/*
* Dynamic memory allocation of mp_int.
*/
/* Declare a dynamically allocated mp_int. */
#define DECL_MP_INT_SIZE_DYN(name, bits, max) \
sp_int* name = NULL
/* Declare a dynamically allocated mp_int. */
#define DECL_MP_INT_SIZE(name, bits) \
sp_int* name = NULL
/* Allocate an mp_int of minimal size and zero out. */
#define NEW_MP_INT_SIZE(name, bits, heap, type) \
do { \
(name) = (mp_int*)XMALLOC(MP_INT_SIZEOF(MP_BITS_CNT(bits)), heap, type); \
if ((name) != NULL) { \
XMEMSET(name, 0, MP_INT_SIZEOF(MP_BITS_CNT(bits))); \
} \
} \
while (0)
/* Dispose of dynamically allocated mp_int. */
#define FREE_MP_INT_SIZE(name, heap, type) \
XFREE(name, heap, type)
/* Type to cast to when using size marcos. */
#define MP_INT_SIZE sp_int
/* Must check mp_int pointer for NULL. */
#define MP_INT_SIZE_CHECK_NULL
#else
/*
* Static allocation of mp_int.
*/
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
!defined(WOLFSSL_SP_NO_DYN_STACK)
/* Declare a dynamically allocated mp_int. */
#define DECL_MP_INT_SIZE_DYN(name, bits, max) \
unsigned char name##d[MP_INT_SIZEOF(MP_BITS_CNT(bits))]; \
sp_int* (name) = (sp_int*)name##d
#elif defined(__cplusplus)
/* C++ doesn't tolerate parentheses around "name" (-Wparentheses) */
#define DECL_MP_INT_SIZE_DYN(name, bits, max) \
unsigned char name##d[MP_INT_SIZEOF(MP_BITS_CNT(max))]; \
sp_int* name = (sp_int*)name##d
#else
/* Declare a dynamically allocated mp_int. */
#define DECL_MP_INT_SIZE_DYN(name, bits, max) \
unsigned char name##d[MP_INT_SIZEOF(MP_BITS_CNT(max))]; \
sp_int* (name) = (sp_int*)name##d
#endif
/* Declare a statically allocated mp_int. */
#define DECL_MP_INT_SIZE(name, bits) \
unsigned char name##d[MP_INT_SIZEOF(MP_BITS_CNT(bits))]; \
sp_int* (name) = (sp_int*)name##d
/* Zero out mp_int of minimal size. */
#define NEW_MP_INT_SIZE(name, bits, heap, type) \
XMEMSET(name, 0, MP_INT_SIZEOF(MP_BITS_CNT(bits)))
/* Dispose of static mp_int. */
#define FREE_MP_INT_SIZE(name, heap, type) WC_DO_NOTHING
/* Type to force compiler to not complain about size. */
#define MP_INT_SIZE sp_int_minimal
#endif
/* Initialize an mp_int to a specific size. */
#define INIT_MP_INT_SIZE(name, bits) \
mp_init_size(name, MP_BITS_CNT(bits))
#ifdef HAVE_WOLF_BIGINT
/* Raw big integer as a big-endian byte array.
*
* Useful for when using hardware - canonical format.
*/
typedef struct WC_BIGINT {
/* Dynamically allocated buffer that is big-endian byte array. */
byte* buf;
/* Length of buffer in bytes. */
word32 len;
/* Hint for heap used to allocate buffer. */
void* heap;
} WC_BIGINT;
/* Ensure WC_BIGINT defined once. */
#define WOLF_BIGINT_DEFINED
#endif
/**
* SP integer.
*
* dp at end so user can allocate a smaller amount and set size.
*/
typedef struct sp_int {
/** Number of words that contain data. */
unsigned int used;
/** Maximum number of words in data. */
unsigned int size;
#ifdef WOLFSSL_SP_INT_NEGATIVE
/** Indicates whether number is 0/positive or negative. */
unsigned int sign;
#endif
#ifdef HAVE_WOLF_BIGINT
/** Unsigned binary (big endian) representation of number. */
struct WC_BIGINT raw;
#endif
/** Data of number. */
sp_int_digit dp[SP_INT_DIGITS];
} sp_int;
typedef struct sp_int_minimal {
unsigned int used;
unsigned int size;
#ifdef WOLFSSL_SP_INT_NEGATIVE
unsigned int sign;
#endif
#ifdef HAVE_WOLF_BIGINT
struct WC_BIGINT raw;
#endif
/** First digit of number. */
sp_int_digit dp[1];
} sp_int_minimal;
/* Multi-precision integer type is SP integer type. */
typedef sp_int mp_int;
/* Multi-precision integer digit type is SP integer digit type.
* Type is unsigned.
*/
typedef sp_int_digit mp_digit;
/* Include the maths operations that are not implementation specific. */
#include <wolfssl/wolfcrypt/wolfmath.h>
/*
* Function prototypes.
*/
MP_API int sp_init(sp_int* a);
MP_API int sp_init_size(sp_int* a, unsigned int size);
MP_API int sp_init_multi(sp_int* n1, sp_int* n2, sp_int* n3, sp_int* n4,
sp_int* n5, sp_int* n6);
MP_API void sp_free(sp_int* a);
MP_API int sp_grow(sp_int* a, int l);
MP_API void sp_zero(sp_int* a);
MP_API void sp_clear(sp_int* a);
MP_API void sp_forcezero(sp_int* a);
MP_API int sp_init_copy (sp_int* r, const sp_int* a);
MP_API int sp_copy(const sp_int* a, sp_int* r);
MP_API int sp_exch(sp_int* a, sp_int* b);
MP_API int sp_cond_swap_ct(sp_int* a, sp_int* b, int cnt, int swap);
MP_API int sp_cond_swap_ct_ex(sp_int* a, sp_int* b, int cnt, int swap,
sp_int* t);
#ifdef WOLFSSL_SP_INT_NEGATIVE
MP_API int sp_abs(const sp_int* a, sp_int* r);
#endif
#ifdef WOLFSSL_SP_MATH_ALL
MP_API int sp_cmp_mag(const sp_int* a, const sp_int* b);
#endif
MP_API int sp_cmp(const sp_int* a, const sp_int* b);
MP_API int sp_cmp_ct(const sp_int* a, const sp_int* b, unsigned int n);
MP_API int sp_is_bit_set(const sp_int* a, unsigned int b);
MP_API int sp_count_bits(const sp_int* a);
#if defined(HAVE_ECC) && defined(HAVE_COMP_KEY)
MP_API int sp_cnt_lsb(const sp_int* a);
#endif
MP_API int sp_leading_bit(const sp_int* a);
MP_API int sp_set_bit(sp_int* a, int i);
MP_API int sp_2expt(sp_int* a, int e);
MP_API int sp_set(sp_int* a, sp_int_digit d);
MP_API int sp_set_int(sp_int* a, unsigned long n);
MP_API int sp_cmp_d(const sp_int* a, sp_int_digit d);
MP_API int sp_add_d(const sp_int* a, sp_int_digit d, sp_int* r);
MP_API int sp_sub_d(const sp_int* a, sp_int_digit d, sp_int* r);
MP_API int sp_mul_d(const sp_int* a, sp_int_digit d, sp_int* r);
#if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || \
defined(WC_MP_TO_RADIX)
MP_API int sp_div_d(const sp_int* a, sp_int_digit d, sp_int* r,
sp_int_digit* rem);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) || (defined(HAVE_ECC) && \
defined(HAVE_COMP_KEY)) || defined(OPENSSL_EXTRA)
MP_API int sp_mod_d(const sp_int* a, sp_int_digit d, sp_int_digit* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
MP_API int sp_div_2_mod_ct(const sp_int* a, const sp_int* m, sp_int* r);
MP_API int sp_div_2(const sp_int* a, sp_int* r);
#endif
MP_API int sp_add(const sp_int* a, const sp_int* b, sp_int* r);
MP_API int sp_sub(const sp_int* a, const sp_int* b, sp_int* r);
#if (defined(WOLFSSL_SP_MATH_ALL) && !defined(WOLFSSL_RSA_VERIFY_ONLY)) || \
(!defined(WOLFSSL_SP_MATH) && defined(WOLFSSL_CUSTOM_CURVES)) || \
defined(WOLFCRYPT_HAVE_ECCSI) || defined(WOLFCRYPT_HAVE_SAKKE)
MP_API int sp_addmod(const sp_int* a, const sp_int* b, const sp_int* m,
sp_int* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) && (!defined(WOLFSSL_RSA_VERIFY_ONLY) || \
defined(HAVE_ECC))
MP_API int sp_submod(const sp_int* a, const sp_int* b, const sp_int* m,
sp_int* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
MP_API int sp_submod_ct(const sp_int* a, const sp_int* b, const sp_int* m,
sp_int* r);
MP_API int sp_addmod_ct(const sp_int* a, const sp_int* b, const sp_int* m,
sp_int* r);
#endif
MP_API int sp_lshd(sp_int* a, int s);
#ifdef WOLFSSL_SP_MATH_ALL
MP_API void sp_rshd(sp_int* a, int c);
#endif
MP_API int sp_rshb(const sp_int* a, int n, sp_int* r);
#if defined(WOLFSSL_SP_MATH_ALL) || !defined(NO_DH) || defined(HAVE_ECC) || \
(!defined(NO_RSA) && !defined(WOLFSSL_RSA_VERIFY_ONLY) && \
!defined(WOLFSSL_RSA_PUBLIC_ONLY))
MP_API int sp_div(const sp_int* a, const sp_int* d, sp_int* r, sp_int* rem);
#endif
MP_API int sp_mod(const sp_int* a, const sp_int* m, sp_int* r);
MP_API int sp_mul(const sp_int* a, const sp_int* b, sp_int* r);
MP_API int sp_mulmod(const sp_int* a, const sp_int* b, const sp_int* m,
sp_int* r);
MP_API int sp_invmod(const sp_int* a, const sp_int* m, sp_int* r);
#if defined(WOLFSSL_SP_MATH_ALL) && defined(HAVE_ECC)
MP_API int sp_invmod_mont_ct(const sp_int* a, const sp_int* m, sp_int* r,
sp_int_digit mp);
#endif
MP_API int sp_exptmod_ex(const sp_int* b, const sp_int* e, int digits,
const sp_int* m, sp_int* r);
MP_API int sp_exptmod(const sp_int* b, const sp_int* e, const sp_int* m,
sp_int* r);
#if defined(WOLFSSL_SP_MATH_ALL) || defined(WOLFSSL_HAVE_SP_DH)
MP_API int sp_exptmod_nct(const sp_int* b, const sp_int* e, const sp_int* m,
sp_int* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) || defined(OPENSSL_ALL)
MP_API int sp_div_2d(const sp_int* a, int e, sp_int* r, sp_int* rem);
MP_API int sp_mul_2d(const sp_int* a, int e, sp_int* r);
#endif
#if defined(WOLFSSL_SP_MATH_ALL) || defined(HAVE_ECC) || defined(OPENSSL_ALL)
MP_API int sp_mod_2d(const sp_int* a, int e, sp_int* r);
#endif
MP_API int sp_sqr(const sp_int* a, sp_int* r);
MP_API int sp_sqrmod(const sp_int* a, const sp_int* m, sp_int* r);
MP_API int sp_mont_red_ex(sp_int* a, const sp_int* m, sp_int_digit mp, int ct);
#define sp_mont_red(a, m, mp) sp_mont_red_ex(a, m, mp, 0)
MP_API int sp_mont_setup(const sp_int* m, sp_int_digit* rho);
MP_API int sp_mont_norm(sp_int* norm, const sp_int* m);
MP_API int sp_unsigned_bin_size(const sp_int* a);
MP_API int sp_read_unsigned_bin(sp_int* a, const byte* in, word32 inSz);
MP_API int sp_to_unsigned_bin(const sp_int* a, byte* out);
MP_API int sp_to_unsigned_bin_len(const sp_int* a, byte* out, int outSz);
MP_API int sp_to_unsigned_bin_len_ct(const sp_int* a, byte* out, int outSz);
#ifdef WOLFSSL_SP_MATH_ALL
MP_API int sp_to_unsigned_bin_at_pos(int o, const sp_int* a,
unsigned char* out);
#endif
MP_API int sp_read_radix(sp_int* a, const char* in, int radix);
MP_API int sp_tohex(const sp_int* a, char* str);
MP_API int sp_todecimal(const sp_int* a, char* str);
#if defined(WOLFSSL_SP_MATH_ALL) || defined(WC_MP_TO_RADIX)
MP_API int sp_toradix(const sp_int* a, char* str, int radix);
MP_API int sp_radix_size(const sp_int* a, int radix, int* size);
#endif
MP_API int sp_rand_prime(sp_int* r, int len, WC_RNG* rng, void* heap);
MP_API int sp_prime_is_prime(const sp_int* a, int t, int* result);
MP_API int sp_prime_is_prime_ex(const sp_int* a, int t, int* result,
WC_RNG* rng);
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)
MP_API int sp_gcd(const sp_int* a, const sp_int* b, sp_int* r);
#endif
#if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) && \
(!defined(WC_RSA_BLINDING) || defined(HAVE_FIPS) || defined(HAVE_SELFTEST))
MP_API int sp_lcm(const sp_int* a, const sp_int* b, sp_int* r);
#endif
WOLFSSL_API word32 CheckRunTimeFastMath(void);
#ifdef WOLFSSL_CHECK_MEM_ZERO
WOLFSSL_LOCAL void sp_memzero_add(const char* name, sp_int* sp);
WOLFSSL_LOCAL void sp_memzero_check(sp_int* sp);
#endif
/* Map mp functions to SP math versions. */
/* Different name or signature. */
#define mp_mul_2(a, r) sp_mul_2d(a, 1, r)
#define mp_div_3(a, r, rem) sp_div_d(a, 3, r, rem)
#define mp_rshb(A,x) sp_rshb(A,x,A)
#define mp_is_bit_set(a,b) sp_is_bit_set(a,(unsigned int)(b))
#define mp_montgomery_reduce(a, m, mp) sp_mont_red_ex(a, m, mp, 0)
#define mp_montgomery_reduce_ct(a, m, mp) sp_mont_red_ex(a, m, mp, 1)
#define mp_montgomery_setup sp_mont_setup
#define mp_montgomery_calc_normalization sp_mont_norm
/* Macros mappings. */
#define mp_isodd sp_isodd
#define mp_iseven sp_iseven
#define mp_iszero sp_iszero
#define mp_isone sp_isone
#define mp_isword sp_isword
#define mp_abs sp_abs
#define mp_isneg sp_isneg
#define mp_setneg sp_setneg
#define mp_bitsused sp_bitsused
#define mp_clamp sp_clamp
/* One to one mappings. */
#define mp_init sp_init
#define mp_init_size sp_init_size
#define mp_init_multi sp_init_multi
#define mp_free sp_free
#define mp_grow sp_grow
#define mp_zero sp_zero
#define mp_clear sp_clear
#define mp_forcezero sp_forcezero
#define mp_copy sp_copy
#define mp_init_copy sp_init_copy
#define mp_exch sp_exch
#define mp_cond_swap_ct sp_cond_swap_ct
#define mp_cond_swap_ct_ex sp_cond_swap_ct_ex
#define mp_cmp_mag sp_cmp_mag
#define mp_cmp sp_cmp
#define mp_cmp_ct sp_cmp_ct
#define mp_count_bits sp_count_bits
#define mp_cnt_lsb sp_cnt_lsb
#define mp_leading_bit sp_leading_bit
#define mp_set_bit sp_set_bit
#define mp_2expt sp_2expt
#define mp_set sp_set
#define mp_set_int sp_set_int
#define mp_cmp_d sp_cmp_d
#define mp_add_d sp_add_d
#define mp_sub_d sp_sub_d
#define mp_mul_d sp_mul_d
#define mp_div_d sp_div_d
#define mp_mod_d sp_mod_d
#define mp_div_2_mod_ct sp_div_2_mod_ct
#define mp_div_2 sp_div_2
#define mp_add sp_add
#define mp_sub sp_sub
#define mp_addmod sp_addmod
#define mp_submod sp_submod
#define mp_addmod_ct sp_addmod_ct
#define mp_submod_ct sp_submod_ct
#define mp_lshd sp_lshd
#define mp_rshd sp_rshd
#define mp_div sp_div
#define mp_mod sp_mod
#define mp_mul sp_mul
#define mp_mulmod sp_mulmod
#define mp_invmod sp_invmod
#define mp_invmod_mont_ct sp_invmod_mont_ct
#define mp_exptmod_ex sp_exptmod_ex
#define mp_exptmod sp_exptmod
#define mp_exptmod_nct sp_exptmod_nct
#define mp_div_2d sp_div_2d
#define mp_mod_2d sp_mod_2d
#define mp_mul_2d sp_mul_2d
#define mp_sqr sp_sqr
#define mp_sqrmod sp_sqrmod
#define mp_unsigned_bin_size sp_unsigned_bin_size
#define mp_read_unsigned_bin sp_read_unsigned_bin
#define mp_to_unsigned_bin sp_to_unsigned_bin
#define mp_to_unsigned_bin_len sp_to_unsigned_bin_len
#define mp_to_unsigned_bin_len_ct sp_to_unsigned_bin_len_ct
#define mp_to_unsigned_bin_at_pos sp_to_unsigned_bin_at_pos
#define mp_read_radix sp_read_radix
#define mp_tohex sp_tohex
#define mp_todecimal sp_todecimal
#define mp_toradix sp_toradix
#define mp_radix_size sp_radix_size
#define mp_rand_prime sp_rand_prime
#define mp_prime_is_prime sp_prime_is_prime
#define mp_prime_is_prime_ex sp_prime_is_prime_ex
#define mp_gcd sp_gcd
#define mp_lcm sp_lcm
#define mp_memzero_add sp_memzero_add
#define mp_memzero_check sp_memzero_check
#ifdef WOLFSSL_DEBUG_MATH
#define mp_dump(d, a, v) sp_print(a, d)
#endif
#endif /* WOLFSSL_SP_MATH || WOLFSSL_SP_MATH_ALL */
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* WOLF_CRYPT_SP_H */