wireguard-go/device/send.go
Josh Bleecher Snyder 7ee95e053c device: remove QueueOutboundElement.dropped
If we block when enqueuing encryption elements to the queue,
then we never drop them.

Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
2021-01-20 19:57:05 +01:00

547 lines
14 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2020 WireGuard LLC. All Rights Reserved.
*/
package device
import (
"bytes"
"encoding/binary"
"net"
"sync"
"sync/atomic"
"time"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
)
/* Outbound flow
*
* 1. TUN queue
* 2. Routing (sequential)
* 3. Nonce assignment (sequential)
* 4. Encryption (parallel)
* 5. Transmission (sequential)
*
* The functions in this file occur (roughly) in the order in
* which the packets are processed.
*
* Locking, Producers and Consumers
*
* The order of packets (per peer) must be maintained,
* but encryption of packets happen out-of-order:
*
* The sequential consumers will attempt to take the lock,
* workers release lock when they have completed work (encryption) on the packet.
*
* If the element is inserted into the "encryption queue",
* the content is preceded by enough "junk" to contain the transport header
* (to allow the construction of transport messages in-place)
*/
type QueueOutboundElement struct {
sync.Mutex
buffer *[MaxMessageSize]byte // slice holding the packet data
packet []byte // slice of "buffer" (always!)
nonce uint64 // nonce for encryption
keypair *Keypair // keypair for encryption
peer *Peer // related peer
}
func (device *Device) NewOutboundElement() *QueueOutboundElement {
elem := device.GetOutboundElement()
elem.buffer = device.GetMessageBuffer()
elem.Mutex = sync.Mutex{}
elem.nonce = 0
// keypair and peer were cleared (if necessary) by clearPointers.
return elem
}
// clearPointers clears elem fields that contain pointers.
// This makes the garbage collector's life easier and
// avoids accidentally keeping other objects around unnecessarily.
// It also reduces the possible collateral damage from use-after-free bugs.
func (elem *QueueOutboundElement) clearPointers() {
elem.buffer = nil
elem.packet = nil
elem.keypair = nil
elem.peer = nil
}
func addToNonceQueue(queue chan *QueueOutboundElement, elem *QueueOutboundElement, device *Device) {
for {
select {
case queue <- elem:
return
default:
select {
case old := <-queue:
device.PutMessageBuffer(old.buffer)
device.PutOutboundElement(old)
default:
}
}
}
}
/* Queues a keepalive if no packets are queued for peer
*/
func (peer *Peer) SendKeepalive() bool {
peer.queue.RLock()
defer peer.queue.RUnlock()
if len(peer.queue.nonce) != 0 || peer.queue.packetInNonceQueueIsAwaitingKey.Get() || !peer.isRunning.Get() {
return false
}
elem := peer.device.NewOutboundElement()
elem.packet = nil
select {
case peer.queue.nonce <- elem:
peer.device.log.Debug.Println(peer, "- Sending keepalive packet")
return true
default:
peer.device.PutMessageBuffer(elem.buffer)
peer.device.PutOutboundElement(elem)
return false
}
}
func (peer *Peer) SendHandshakeInitiation(isRetry bool) error {
if !isRetry {
atomic.StoreUint32(&peer.timers.handshakeAttempts, 0)
}
peer.handshake.mutex.RLock()
if time.Since(peer.handshake.lastSentHandshake) < RekeyTimeout {
peer.handshake.mutex.RUnlock()
return nil
}
peer.handshake.mutex.RUnlock()
peer.handshake.mutex.Lock()
if time.Since(peer.handshake.lastSentHandshake) < RekeyTimeout {
peer.handshake.mutex.Unlock()
return nil
}
peer.handshake.lastSentHandshake = time.Now()
peer.handshake.mutex.Unlock()
peer.device.log.Debug.Println(peer, "- Sending handshake initiation")
msg, err := peer.device.CreateMessageInitiation(peer)
if err != nil {
peer.device.log.Error.Println(peer, "- Failed to create initiation message:", err)
return err
}
var buff [MessageInitiationSize]byte
writer := bytes.NewBuffer(buff[:0])
binary.Write(writer, binary.LittleEndian, msg)
packet := writer.Bytes()
peer.cookieGenerator.AddMacs(packet)
peer.timersAnyAuthenticatedPacketTraversal()
peer.timersAnyAuthenticatedPacketSent()
err = peer.SendBuffer(packet)
if err != nil {
peer.device.log.Error.Println(peer, "- Failed to send handshake initiation:", err)
}
peer.timersHandshakeInitiated()
return err
}
func (peer *Peer) SendHandshakeResponse() error {
peer.handshake.mutex.Lock()
peer.handshake.lastSentHandshake = time.Now()
peer.handshake.mutex.Unlock()
peer.device.log.Debug.Println(peer, "- Sending handshake response")
response, err := peer.device.CreateMessageResponse(peer)
if err != nil {
peer.device.log.Error.Println(peer, "- Failed to create response message:", err)
return err
}
var buff [MessageResponseSize]byte
writer := bytes.NewBuffer(buff[:0])
binary.Write(writer, binary.LittleEndian, response)
packet := writer.Bytes()
peer.cookieGenerator.AddMacs(packet)
err = peer.BeginSymmetricSession()
if err != nil {
peer.device.log.Error.Println(peer, "- Failed to derive keypair:", err)
return err
}
peer.timersSessionDerived()
peer.timersAnyAuthenticatedPacketTraversal()
peer.timersAnyAuthenticatedPacketSent()
err = peer.SendBuffer(packet)
if err != nil {
peer.device.log.Error.Println(peer, "- Failed to send handshake response:", err)
}
return err
}
func (device *Device) SendHandshakeCookie(initiatingElem *QueueHandshakeElement) error {
device.log.Debug.Println("Sending cookie response for denied handshake message for", initiatingElem.endpoint.DstToString())
sender := binary.LittleEndian.Uint32(initiatingElem.packet[4:8])
reply, err := device.cookieChecker.CreateReply(initiatingElem.packet, sender, initiatingElem.endpoint.DstToBytes())
if err != nil {
device.log.Error.Println("Failed to create cookie reply:", err)
return err
}
var buff [MessageCookieReplySize]byte
writer := bytes.NewBuffer(buff[:0])
binary.Write(writer, binary.LittleEndian, reply)
device.net.bind.Send(writer.Bytes(), initiatingElem.endpoint)
return nil
}
func (peer *Peer) keepKeyFreshSending() {
keypair := peer.keypairs.Current()
if keypair == nil {
return
}
nonce := atomic.LoadUint64(&keypair.sendNonce)
if nonce > RekeyAfterMessages || (keypair.isInitiator && time.Since(keypair.created) > RekeyAfterTime) {
peer.SendHandshakeInitiation(false)
}
}
/* Reads packets from the TUN and inserts
* into nonce queue for peer
*
* Obs. Single instance per TUN device
*/
func (device *Device) RoutineReadFromTUN() {
logDebug := device.log.Debug
logError := device.log.Error
defer func() {
logDebug.Println("Routine: TUN reader - stopped")
device.state.stopping.Done()
}()
logDebug.Println("Routine: TUN reader - started")
var elem *QueueOutboundElement
for {
if elem != nil {
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
}
elem = device.NewOutboundElement()
// read packet
offset := MessageTransportHeaderSize
size, err := device.tun.device.Read(elem.buffer[:], offset)
if err != nil {
if !device.isClosed.Get() {
logError.Println("Failed to read packet from TUN device:", err)
device.Close()
}
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
return
}
if size == 0 || size > MaxContentSize {
continue
}
elem.packet = elem.buffer[offset : offset+size]
// lookup peer
var peer *Peer
switch elem.packet[0] >> 4 {
case ipv4.Version:
if len(elem.packet) < ipv4.HeaderLen {
continue
}
dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
peer = device.allowedips.LookupIPv4(dst)
case ipv6.Version:
if len(elem.packet) < ipv6.HeaderLen {
continue
}
dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
peer = device.allowedips.LookupIPv6(dst)
default:
logDebug.Println("Received packet with unknown IP version")
}
if peer == nil {
continue
}
// insert into nonce/pre-handshake queue
peer.queue.RLock()
if peer.isRunning.Get() {
if peer.queue.packetInNonceQueueIsAwaitingKey.Get() {
peer.SendHandshakeInitiation(false)
}
addToNonceQueue(peer.queue.nonce, elem, device)
elem = nil
}
peer.queue.RUnlock()
}
}
func (peer *Peer) FlushNonceQueue() {
select {
case peer.signals.flushNonceQueue <- struct{}{}:
default:
}
}
/* Queues packets when there is no handshake.
* Then assigns nonces to packets sequentially
* and creates "work" structs for workers
*
* Obs. A single instance per peer
*/
func (peer *Peer) RoutineNonce() {
var keypair *Keypair
device := peer.device
logDebug := device.log.Debug
flush := func() {
for {
select {
case elem := <-peer.queue.nonce:
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
default:
return
}
}
}
defer func() {
flush()
logDebug.Println(peer, "- Routine: nonce worker - stopped")
peer.queue.packetInNonceQueueIsAwaitingKey.Set(false)
device.queue.encryption.wg.Done() // no more writes from us
close(peer.queue.outbound) // no more writes to this channel
peer.routines.stopping.Done()
}()
logDebug.Println(peer, "- Routine: nonce worker - started")
NextPacket:
for {
peer.queue.packetInNonceQueueIsAwaitingKey.Set(false)
select {
case <-peer.routines.stop:
return
case <-peer.signals.flushNonceQueue:
flush()
continue NextPacket
case elem, ok := <-peer.queue.nonce:
if !ok {
return
}
// make sure to always pick the newest key
for {
// check validity of newest key pair
keypair = peer.keypairs.Current()
if keypair != nil && atomic.LoadUint64(&keypair.sendNonce) < RejectAfterMessages {
if time.Since(keypair.created) < RejectAfterTime {
break
}
}
peer.queue.packetInNonceQueueIsAwaitingKey.Set(true)
// no suitable key pair, request for new handshake
select {
case <-peer.signals.newKeypairArrived:
default:
}
peer.SendHandshakeInitiation(false)
// wait for key to be established
logDebug.Println(peer, "- Awaiting keypair")
select {
case <-peer.signals.newKeypairArrived:
logDebug.Println(peer, "- Obtained awaited keypair")
case <-peer.signals.flushNonceQueue:
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
flush()
continue NextPacket
case <-peer.routines.stop:
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
return
}
}
peer.queue.packetInNonceQueueIsAwaitingKey.Set(false)
// populate work element
elem.peer = peer
elem.nonce = atomic.AddUint64(&keypair.sendNonce, 1) - 1
// double check in case of race condition added by future code
if elem.nonce >= RejectAfterMessages {
atomic.StoreUint64(&keypair.sendNonce, RejectAfterMessages)
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
continue NextPacket
}
elem.keypair = keypair
elem.Lock()
// add to parallel and sequential queue
peer.queue.outbound <- elem
device.queue.encryption.c <- elem
}
}
}
func calculatePaddingSize(packetSize, mtu int) int {
lastUnit := packetSize
if mtu == 0 {
return ((lastUnit + PaddingMultiple - 1) & ^(PaddingMultiple - 1)) - lastUnit
}
if lastUnit > mtu {
lastUnit %= mtu
}
paddedSize := ((lastUnit + PaddingMultiple - 1) & ^(PaddingMultiple - 1))
if paddedSize > mtu {
paddedSize = mtu
}
return paddedSize - lastUnit
}
/* Encrypts the elements in the queue
* and marks them for sequential consumption (by releasing the mutex)
*
* Obs. One instance per core
*/
func (device *Device) RoutineEncryption() {
var nonce [chacha20poly1305.NonceSize]byte
logDebug := device.log.Debug
defer logDebug.Println("Routine: encryption worker - stopped")
logDebug.Println("Routine: encryption worker - started")
for elem := range device.queue.encryption.c {
// populate header fields
header := elem.buffer[:MessageTransportHeaderSize]
fieldType := header[0:4]
fieldReceiver := header[4:8]
fieldNonce := header[8:16]
binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
binary.LittleEndian.PutUint32(fieldReceiver, elem.keypair.remoteIndex)
binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
// pad content to multiple of 16
paddingSize := calculatePaddingSize(len(elem.packet), int(atomic.LoadInt32(&device.tun.mtu)))
for i := 0; i < paddingSize; i++ {
elem.packet = append(elem.packet, 0)
}
// encrypt content and release to consumer
binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
elem.packet = elem.keypair.send.Seal(
header,
nonce[:],
elem.packet,
nil,
)
elem.Unlock()
}
}
/* Sequentially reads packets from queue and sends to endpoint
*
* Obs. Single instance per peer.
* The routine terminates then the outbound queue is closed.
*/
func (peer *Peer) RoutineSequentialSender() {
device := peer.device
logDebug := device.log.Debug
logError := device.log.Error
defer logDebug.Println(peer, "- Routine: sequential sender - stopped")
logDebug.Println(peer, "- Routine: sequential sender - started")
for elem := range peer.queue.outbound {
elem.Lock()
if !peer.isRunning.Get() {
// peer has been stopped; return re-usable elems to the shared pool.
// This is an optimization only. It is possible for the peer to be stopped
// immediately after this check, in which case, elem will get processed.
// The timers and SendBuffer code are resilient to a few stragglers.
// TODO(josharian): rework peer shutdown order to ensure
// that we never accidentally keep timers alive longer than necessary.
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
continue
}
peer.timersAnyAuthenticatedPacketTraversal()
peer.timersAnyAuthenticatedPacketSent()
// send message and return buffer to pool
err := peer.SendBuffer(elem.packet)
if len(elem.packet) != MessageKeepaliveSize {
peer.timersDataSent()
}
device.PutMessageBuffer(elem.buffer)
device.PutOutboundElement(elem)
if err != nil {
logError.Println(peer, "- Failed to send data packet", err)
continue
}
peer.keepKeyFreshSending()
}
}