wireguard-go/device/device_test.go
Josh Bleecher Snyder 91617b4c52 device: fix goroutine leak test
The leak test had rare flakes.
If a system goroutine started at just the wrong moment, you'd get a false positive.
Instead of looping until the goroutines look good and then checking,
exit completely as soon as the number of goroutines looks good.
Also, check more frequently, in an attempt to complete faster.

Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
2021-02-03 17:45:22 +01:00

420 lines
10 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved.
*/
package device
import (
"bytes"
"encoding/hex"
"errors"
"fmt"
"io/ioutil"
"math/rand"
"net"
"runtime"
"runtime/pprof"
"sync"
"sync/atomic"
"testing"
"time"
"golang.zx2c4.com/wireguard/tun/tuntest"
)
func getFreePort(tb testing.TB) string {
l, err := net.ListenPacket("udp", "localhost:0")
if err != nil {
tb.Fatal(err)
}
defer l.Close()
return fmt.Sprintf("%d", l.LocalAddr().(*net.UDPAddr).Port)
}
// uapiCfg returns a string that contains cfg formatted use with IpcSet.
// cfg is a series of alternating key/value strings.
// uapiCfg exists because editors and humans like to insert
// whitespace into configs, which can cause failures, some of which are silent.
// For example, a leading blank newline causes the remainder
// of the config to be silently ignored.
func uapiCfg(cfg ...string) string {
if len(cfg)%2 != 0 {
panic("odd number of args to uapiReader")
}
buf := new(bytes.Buffer)
for i, s := range cfg {
buf.WriteString(s)
sep := byte('\n')
if i%2 == 0 {
sep = '='
}
buf.WriteByte(sep)
}
return buf.String()
}
// genConfigs generates a pair of configs that connect to each other.
// The configs use distinct, probably-usable ports.
func genConfigs(tb testing.TB) (cfgs [2]string) {
var port1, port2 string
for port1 == port2 {
port1 = getFreePort(tb)
port2 = getFreePort(tb)
}
cfgs[0] = uapiCfg(
"private_key", "481eb0d8113a4a5da532d2c3e9c14b53c8454b34ab109676f6b58c2245e37b58",
"listen_port", port1,
"replace_peers", "true",
"public_key", "f70dbb6b1b92a1dde1c783b297016af3f572fef13b0abb16a2623d89a58e9725",
"protocol_version", "1",
"replace_allowed_ips", "true",
"allowed_ip", "1.0.0.2/32",
"endpoint", "127.0.0.1:"+port2,
)
cfgs[1] = uapiCfg(
"private_key", "98c7989b1661a0d64fd6af3502000f87716b7c4bbcf00d04fc6073aa7b539768",
"listen_port", port2,
"replace_peers", "true",
"public_key", "49e80929259cebdda4f322d6d2b1a6fad819d603acd26fd5d845e7a123036427",
"protocol_version", "1",
"replace_allowed_ips", "true",
"allowed_ip", "1.0.0.1/32",
"endpoint", "127.0.0.1:"+port1,
)
return
}
// A testPair is a pair of testPeers.
type testPair [2]testPeer
// A testPeer is a peer used for testing.
type testPeer struct {
tun *tuntest.ChannelTUN
dev *Device
ip net.IP
}
type SendDirection bool
const (
Ping SendDirection = true
Pong SendDirection = false
)
func (pair *testPair) Send(tb testing.TB, ping SendDirection, done chan struct{}) {
tb.Helper()
p0, p1 := pair[0], pair[1]
if !ping {
// pong is the new ping
p0, p1 = p1, p0
}
msg := tuntest.Ping(p0.ip, p1.ip)
p1.tun.Outbound <- msg
timer := time.NewTimer(5 * time.Second)
defer timer.Stop()
var err error
select {
case msgRecv := <-p0.tun.Inbound:
if !bytes.Equal(msg, msgRecv) {
err = errors.New("ping did not transit correctly")
}
case <-timer.C:
err = errors.New("ping did not transit")
case <-done:
}
if err != nil {
// The error may have occurred because the test is done.
select {
case <-done:
return
default:
}
// Real error.
tb.Error(err)
}
}
// genTestPair creates a testPair.
func genTestPair(tb testing.TB) (pair testPair) {
const maxAttempts = 10
NextAttempt:
for i := 0; i < maxAttempts; i++ {
cfg := genConfigs(tb)
// Bring up a ChannelTun for each config.
for i := range pair {
p := &pair[i]
p.tun = tuntest.NewChannelTUN()
if i == 0 {
p.ip = net.ParseIP("1.0.0.1")
} else {
p.ip = net.ParseIP("1.0.0.2")
}
level := LogLevelVerbose
if _, ok := tb.(*testing.B); ok && !testing.Verbose() {
level = LogLevelError
}
p.dev = NewDevice(p.tun.TUN(), NewLogger(level, fmt.Sprintf("dev%d: ", i)))
p.dev.Up()
if err := p.dev.IpcSet(cfg[i]); err != nil {
// genConfigs attempted to pick ports that were free.
// There's a tiny window between genConfigs closing the port
// and us opening it, during which another process could
// start using it. We probably just lost that race.
// Try again from the beginning.
// If there's something permanent wrong,
// we'll see that when we run out of attempts.
tb.Logf("failed to configure device %d: %v", i, err)
p.dev.Close()
continue NextAttempt
}
// The device might still not be up, e.g. due to an error
// in RoutineTUNEventReader's call to dev.Up that got swallowed.
// Assume it's due to a transient error (port in use), and retry.
if !p.dev.isUp.Get() {
tb.Logf("device %d did not come up, trying again", i)
p.dev.Close()
continue NextAttempt
}
// The device is up. Close it when the test completes.
tb.Cleanup(p.dev.Close)
}
return // success
}
tb.Fatalf("genChannelTUNs: failed %d times", maxAttempts)
return
}
func TestTwoDevicePing(t *testing.T) {
goroutineLeakCheck(t)
pair := genTestPair(t)
t.Run("ping 1.0.0.1", func(t *testing.T) {
pair.Send(t, Ping, nil)
})
t.Run("ping 1.0.0.2", func(t *testing.T) {
pair.Send(t, Pong, nil)
})
}
func TestUpDown(t *testing.T) {
goroutineLeakCheck(t)
const itrials = 200
const otrials = 10
for n := 0; n < otrials; n++ {
pair := genTestPair(t)
for i := range pair {
for k := range pair[i].dev.peers.keyMap {
pair[i].dev.IpcSet(fmt.Sprintf("public_key=%s\npersistent_keepalive_interval=1\n", hex.EncodeToString(k[:])))
}
}
var wg sync.WaitGroup
wg.Add(len(pair))
for i := range pair {
go func(d *Device) {
defer wg.Done()
for i := 0; i < itrials; i++ {
d.Up()
time.Sleep(time.Duration(rand.Intn(int(time.Nanosecond * (0x10000 - 1)))))
d.Down()
time.Sleep(time.Duration(rand.Intn(int(time.Nanosecond * (0x10000 - 1)))))
}
}(pair[i].dev)
}
wg.Wait()
for i := range pair {
pair[i].dev.Up()
pair[i].dev.Close()
}
}
}
// TestConcurrencySafety does other things concurrently with tunnel use.
// It is intended to be used with the race detector to catch data races.
func TestConcurrencySafety(t *testing.T) {
pair := genTestPair(t)
done := make(chan struct{})
const warmupIters = 10
var warmup sync.WaitGroup
warmup.Add(warmupIters)
go func() {
// Send data continuously back and forth until we're done.
// Note that we may continue to attempt to send data
// even after done is closed.
i := warmupIters
for ping := Ping; ; ping = !ping {
pair.Send(t, ping, done)
select {
case <-done:
return
default:
}
if i > 0 {
warmup.Done()
i--
}
}
}()
warmup.Wait()
applyCfg := func(cfg string) {
err := pair[0].dev.IpcSet(cfg)
if err != nil {
t.Fatal(err)
}
}
// Change persistent_keepalive_interval concurrently with tunnel use.
t.Run("persistentKeepaliveInterval", func(t *testing.T) {
cfg := uapiCfg(
"public_key", "f70dbb6b1b92a1dde1c783b297016af3f572fef13b0abb16a2623d89a58e9725",
"persistent_keepalive_interval", "1",
)
for i := 0; i < 1000; i++ {
applyCfg(cfg)
}
})
// Change private keys concurrently with tunnel use.
t.Run("privateKey", func(t *testing.T) {
bad := uapiCfg("private_key", "7777777777777777777777777777777777777777777777777777777777777777")
good := uapiCfg("private_key", "481eb0d8113a4a5da532d2c3e9c14b53c8454b34ab109676f6b58c2245e37b58")
// Set iters to a large number like 1000 to flush out data races quickly.
// Don't leave it large. That can cause logical races
// in which the handshake is interleaved with key changes
// such that the private key appears to be unchanging but
// other state gets reset, which can cause handshake failures like
// "Received packet with invalid mac1".
const iters = 1
for i := 0; i < iters; i++ {
applyCfg(bad)
applyCfg(good)
}
})
close(done)
}
func assertNil(t *testing.T, err error) {
if err != nil {
t.Fatal(err)
}
}
func assertEqual(t *testing.T, a, b []byte) {
if !bytes.Equal(a, b) {
t.Fatal(a, "!=", b)
}
}
func randDevice(t *testing.T) *Device {
sk, err := newPrivateKey()
if err != nil {
t.Fatal(err)
}
tun := newDummyTUN("dummy")
logger := NewLogger(LogLevelError, "")
device := NewDevice(tun, logger)
device.SetPrivateKey(sk)
return device
}
func BenchmarkLatency(b *testing.B) {
pair := genTestPair(b)
// Establish a connection.
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
b.ResetTimer()
for i := 0; i < b.N; i++ {
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
}
}
func BenchmarkThroughput(b *testing.B) {
pair := genTestPair(b)
// Establish a connection.
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
// Measure how long it takes to receive b.N packets,
// starting when we receive the first packet.
var recv uint64
var elapsed time.Duration
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
var start time.Time
for {
<-pair[0].tun.Inbound
new := atomic.AddUint64(&recv, 1)
if new == 1 {
start = time.Now()
}
// Careful! Don't change this to else if; b.N can be equal to 1.
if new == uint64(b.N) {
elapsed = time.Since(start)
return
}
}
}()
// Send packets as fast as we can until we've received enough.
ping := tuntest.Ping(pair[0].ip, pair[1].ip)
pingc := pair[1].tun.Outbound
var sent uint64
for atomic.LoadUint64(&recv) != uint64(b.N) {
sent++
pingc <- ping
}
wg.Wait()
b.ReportMetric(float64(elapsed)/float64(b.N), "ns/op")
b.ReportMetric(1-float64(b.N)/float64(sent), "packet-loss")
}
func BenchmarkUAPIGet(b *testing.B) {
pair := genTestPair(b)
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
pair[0].dev.IpcGetOperation(ioutil.Discard)
}
}
func goroutineLeakCheck(t *testing.T) {
goroutines := func() (int, []byte) {
p := pprof.Lookup("goroutine")
b := new(bytes.Buffer)
p.WriteTo(b, 1)
return p.Count(), b.Bytes()
}
startGoroutines, startStacks := goroutines()
t.Cleanup(func() {
if t.Failed() {
return
}
// Give goroutines time to exit, if they need it.
for i := 0; i < 10000; i++ {
if runtime.NumGoroutine() <= startGoroutines {
return
}
time.Sleep(1 * time.Millisecond)
}
endGoroutines, endStacks := goroutines()
t.Logf("starting stacks:\n%s\n", startStacks)
t.Logf("ending stacks:\n%s\n", endStacks)
t.Fatalf("expected %d goroutines, got %d, leak?", startGoroutines, endGoroutines)
})
}