Improved readability of send/receive code

This commit is contained in:
Mathias Hall-Andersen 2017-09-09 15:03:01 +02:00
parent 89d0045214
commit f212795e51
2 changed files with 199 additions and 239 deletions

View file

@ -128,7 +128,7 @@ func (device *Device) RoutineReceiveIncomming() {
// read next datagram // read next datagram
size, raddr, err := conn.ReadFromUDP(buffer[:]) // Blocks sometimes size, raddr, err := conn.ReadFromUDP(buffer[:])
if err != nil { if err != nil {
break break
@ -222,7 +222,7 @@ func (device *Device) RoutineReceiveIncomming() {
} }
func (device *Device) RoutineDecryption() { func (device *Device) RoutineDecryption() {
var elem *QueueInboundElement
var nonce [chacha20poly1305.NonceSize]byte var nonce [chacha20poly1305.NonceSize]byte
logDebug := device.log.Debug logDebug := device.log.Debug
@ -230,10 +230,11 @@ func (device *Device) RoutineDecryption() {
for { for {
select { select {
case elem = <-device.queue.decryption:
case <-device.signal.stop: case <-device.signal.stop:
logDebug.Println("Routine, decryption worker, stopped")
return return
}
case elem := <-device.queue.decryption:
// check if dropped // check if dropped
@ -248,7 +249,6 @@ func (device *Device) RoutineDecryption() {
// decrypt with key-pair // decrypt with key-pair
var err error
copy(nonce[4:], counter) copy(nonce[4:], counter)
elem.counter = binary.LittleEndian.Uint64(counter) elem.counter = binary.LittleEndian.Uint64(counter)
elem.keyPair.receive.mutex.RLock() elem.keyPair.receive.mutex.RLock()
@ -256,6 +256,7 @@ func (device *Device) RoutineDecryption() {
// very unlikely (the key was deleted during queuing) // very unlikely (the key was deleted during queuing)
elem.Drop() elem.Drop()
} else { } else {
var err error
elem.packet, err = elem.keyPair.receive.aead.Open( elem.packet, err = elem.keyPair.receive.aead.Open(
elem.buffer[:0], elem.buffer[:0],
nonce[:], nonce[:],
@ -266,14 +267,14 @@ func (device *Device) RoutineDecryption() {
elem.Drop() elem.Drop()
} }
} }
elem.keyPair.receive.mutex.RUnlock() elem.keyPair.receive.mutex.RUnlock()
elem.mutex.Unlock() elem.mutex.Unlock()
} }
}
} }
/* Handles incomming packets related to handshake /* Handles incomming packets related to handshake
*
*
*/ */
func (device *Device) RoutineHandshake() { func (device *Device) RoutineHandshake() {
@ -473,7 +474,6 @@ func (device *Device) RoutineHandshake() {
} }
func (peer *Peer) RoutineSequentialReceiver() { func (peer *Peer) RoutineSequentialReceiver() {
var elem *QueueInboundElement
device := peer.device device := peer.device
@ -483,17 +483,17 @@ func (peer *Peer) RoutineSequentialReceiver() {
logDebug.Println("Routine, sequential receiver, started for peer", peer.id) logDebug.Println("Routine, sequential receiver, started for peer", peer.id)
for { for {
// wait for decryption
select { select {
case <-peer.signal.stop: case <-peer.signal.stop:
logDebug.Println("Routine, sequential receiver, stopped for peer", peer.id)
return return
case elem = <-peer.queue.inbound:
} case elem := <-peer.queue.inbound:
// wait for decryption
elem.mutex.Lock() elem.mutex.Lock()
// process packet
if elem.IsDropped() { if elem.IsDropped() {
continue continue
} }
@ -597,4 +597,5 @@ func (peer *Peer) RoutineSequentialReceiver() {
logError.Println("Failed to write packet to TUN device:", err) logError.Println("Failed to write packet to TUN device:", err)
} }
} }
}
} }

View file

@ -35,7 +35,7 @@ type QueueOutboundElement struct {
dropped int32 dropped int32
mutex sync.Mutex mutex sync.Mutex
buffer *[MaxMessageSize]byte // slice holding the packet data buffer *[MaxMessageSize]byte // slice holding the packet data
packet []byte // slice of "data" (always!) packet []byte // slice of "buffer" (always!)
nonce uint64 // nonce for encryption nonce uint64 // nonce for encryption
keyPair *KeyPair // key-pair for encryption keyPair *KeyPair // key-pair for encryption
peer *Peer // related peer peer *Peer // related peer
@ -52,11 +52,6 @@ func (peer *Peer) FlushNonceQueue() {
} }
} }
var (
ErrorNoEndpoint = errors.New("No known endpoint for peer")
ErrorNoConnection = errors.New("No UDP socket for device")
)
func (device *Device) NewOutboundElement() *QueueOutboundElement { func (device *Device) NewOutboundElement() *QueueOutboundElement {
return &QueueOutboundElement{ return &QueueOutboundElement{
dropped: AtomicFalse, dropped: AtomicFalse,
@ -118,14 +113,13 @@ func (peer *Peer) SendBuffer(buffer []byte) (int, error) {
defer peer.mutex.RUnlock() defer peer.mutex.RUnlock()
endpoint := peer.endpoint endpoint := peer.endpoint
conn := peer.device.net.conn
if endpoint == nil { if endpoint == nil {
return 0, ErrorNoEndpoint return 0, errors.New("No known endpoint for peer")
} }
conn := peer.device.net.conn
if conn == nil { if conn == nil {
return 0, ErrorNoConnection return 0, errors.New("No UDP socket for device")
} }
return conn.WriteToUDP(buffer, endpoint) return conn.WriteToUDP(buffer, endpoint)
@ -189,16 +183,6 @@ func (device *Device) RoutineReadFromTUN() {
continue continue
} }
// check if known endpoint (drop early)
peer.mutex.RLock()
if peer.endpoint == nil {
peer.mutex.RUnlock()
logDebug.Println("No known endpoint for peer", peer.String())
continue
}
peer.mutex.RUnlock()
// insert into nonce/pre-handshake queue // insert into nonce/pre-handshake queue
signalSend(peer.signal.handshakeReset) signalSend(peer.signal.handshakeReset)
@ -211,86 +195,61 @@ func (device *Device) RoutineReadFromTUN() {
* Then assigns nonces to packets sequentially * Then assigns nonces to packets sequentially
* and creates "work" structs for workers * and creates "work" structs for workers
* *
* TODO: Avoid dynamic allocation of work queue elements
*
* Obs. A single instance per peer * Obs. A single instance per peer
*/ */
func (peer *Peer) RoutineNonce() { func (peer *Peer) RoutineNonce() {
var keyPair *KeyPair var keyPair *KeyPair
var elem *QueueOutboundElement
device := peer.device device := peer.device
logDebug := device.log.Debug logDebug := device.log.Debug
logDebug.Println("Routine, nonce worker, started for peer", peer.String()) logDebug.Println("Routine, nonce worker, started for peer", peer.String())
func() {
for { for {
NextPacket: NextPacket:
// wait for packet
if elem == nil {
select { select {
case elem = <-peer.queue.nonce:
case <-peer.signal.stop: case <-peer.signal.stop:
return return
}
} case elem := <-peer.queue.nonce:
// wait for key pair // wait for key pair
for { for {
select {
case <-peer.signal.newKeyPair:
default:
}
keyPair = peer.keyPairs.Current() keyPair = peer.keyPairs.Current()
if keyPair != nil && keyPair.sendNonce < RejectAfterMessages { if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
if time.Now().Sub(keyPair.created) < RejectAfterTime { if time.Now().Sub(keyPair.created) < RejectAfterTime {
break break
} }
} }
signalSend(peer.signal.handshakeBegin) signalSend(peer.signal.handshakeBegin)
logDebug.Println("Awaiting key-pair for", peer.String()) logDebug.Println("Awaiting key-pair for", peer.String())
select { select {
case <-peer.signal.newKeyPair: case <-peer.signal.newKeyPair:
logDebug.Println("Key-pair negotiated for", peer.String())
goto NextPacket
case <-peer.signal.flushNonceQueue: case <-peer.signal.flushNonceQueue:
logDebug.Println("Clearing queue for", peer.String()) logDebug.Println("Clearing queue for", peer.String())
peer.FlushNonceQueue() peer.FlushNonceQueue()
elem = nil
goto NextPacket goto NextPacket
case <-peer.signal.stop: case <-peer.signal.stop:
return return
} }
} }
// process current packet // populate work element
if elem != nil {
// create work element
elem.keyPair = keyPair
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
elem.dropped = AtomicFalse
elem.peer = peer elem.peer = peer
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
elem.keyPair = keyPair
elem.dropped = AtomicFalse
elem.mutex.Lock() elem.mutex.Lock()
// add to parallel and sequential queue // add to parallel and sequential queue
addToEncryptionQueue(device.queue.encryption, elem) addToEncryptionQueue(device.queue.encryption, elem)
addToOutboundQueue(peer.queue.outbound, elem) addToOutboundQueue(peer.queue.outbound, elem)
elem = nil
} }
} }
}()
} }
/* Encrypts the elements in the queue /* Encrypts the elements in the queue
@ -300,7 +259,6 @@ func (peer *Peer) RoutineNonce() {
*/ */
func (device *Device) RoutineEncryption() { func (device *Device) RoutineEncryption() {
var elem *QueueOutboundElement
var nonce [chacha20poly1305.NonceSize]byte var nonce [chacha20poly1305.NonceSize]byte
logDebug := device.log.Debug logDebug := device.log.Debug
@ -311,11 +269,11 @@ func (device *Device) RoutineEncryption() {
// fetch next element // fetch next element
select { select {
case elem = <-device.queue.encryption:
case <-device.signal.stop: case <-device.signal.stop:
logDebug.Println("Routine, encryption worker, stopped") logDebug.Println("Routine, encryption worker, stopped")
return return
}
case elem := <-device.queue.encryption:
// check if dropped // check if dropped
@ -335,15 +293,14 @@ func (device *Device) RoutineEncryption() {
binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex) binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex)
binary.LittleEndian.PutUint64(fieldNonce, elem.nonce) binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
// pad content to MTU size // pad content to multiple of 16
mtu := int(atomic.LoadInt32(&device.tun.mtu)) mtu := int(atomic.LoadInt32(&device.tun.mtu))
pad := len(elem.packet) % PaddingMultiple rem := len(elem.packet) % PaddingMultiple
if pad > 0 { if rem > 0 {
for i := 0; i < PaddingMultiple-pad && len(elem.packet) < mtu; i++ { for i := 0; i < PaddingMultiple-rem && len(elem.packet) < mtu; i++ {
elem.packet = append(elem.packet, 0) elem.packet = append(elem.packet, 0)
} }
// TODO: How good is this code
} }
// encrypt content (append to header) // encrypt content (append to header)
@ -361,13 +318,14 @@ func (device *Device) RoutineEncryption() {
nil, nil,
) )
} }
elem.keyPair.send.mutex.RUnlock()
elem.mutex.Unlock() elem.mutex.Unlock()
elem.keyPair.send.mutex.RUnlock()
// refresh key if necessary // refresh key if necessary
elem.peer.KeepKeyFreshSending() elem.peer.KeepKeyFreshSending()
} }
}
} }
/* Sequentially reads packets from queue and sends to endpoint /* Sequentially reads packets from queue and sends to endpoint
@ -399,6 +357,7 @@ func (peer *Peer) RoutineSequentialSender() {
_, err := peer.SendBuffer(elem.packet) _, err := peer.SendBuffer(elem.packet)
device.PutMessageBuffer(elem.buffer) device.PutMessageBuffer(elem.buffer)
if err != nil { if err != nil {
logDebug.Println("Failed to send authenticated packet to peer", peer.String())
continue continue
} }
atomic.AddUint64(&peer.stats.txBytes, length) atomic.AddUint64(&peer.stats.txBytes, length)