Rewrite timers and related state machines

This commit is contained in:
Jason A. Donenfeld 2018-05-07 22:27:03 +02:00
parent 375dcbd4ae
commit 233f079a94
14 changed files with 453 additions and 602 deletions

View file

@ -12,21 +12,18 @@ import (
/* Specification constants */
const (
RekeyAfterMessages = (1 << 64) - (1 << 16) - 1
RejectAfterMessages = (1 << 64) - (1 << 4) - 1
RekeyAfterTime = time.Second * 120
RekeyAttemptTime = time.Second * 90
RekeyTimeout = time.Second * 5
RejectAfterTime = time.Second * 180
KeepaliveTimeout = time.Second * 10
CookieRefreshTime = time.Second * 120
HandshakeInitationRate = time.Second / 20
PaddingMultiple = 16
)
const (
RekeyAfterTimeReceiving = RejectAfterTime - KeepaliveTimeout - RekeyTimeout
NewHandshakeTime = KeepaliveTimeout + RekeyTimeout // upon failure to acknowledge transport message
RekeyAfterMessages = (1 << 64) - (1 << 16) - 1
RejectAfterMessages = (1 << 64) - (1 << 4) - 1
RekeyAfterTime = time.Second * 120
RekeyAttemptTime = time.Second * 90
RekeyTimeout = time.Second * 5
MaxTimerHandshakes = 90 / 5 /* RekeyAttemptTime / RekeyTimeout */
RekeyTimeoutJitterMaxMs = 334
RejectAfterTime = time.Second * 180
KeepaliveTimeout = time.Second * 10
CookieRefreshTime = time.Second * 120
HandshakeInitationRate = time.Second / 20
PaddingMultiple = 16
)
/* Implementation specific constants */

View file

@ -74,8 +74,8 @@ type Device struct {
handshake chan QueueHandshakeElement
}
signal struct {
stop Signal
signals struct {
stop chan struct{}
}
tun struct {
@ -302,7 +302,7 @@ func NewDevice(tun TUNDevice, logger *Logger) *Device {
// prepare signals
device.signal.stop = NewSignal()
device.signals.stop = make(chan struct{}, 1)
// prepare net
@ -400,7 +400,7 @@ func (device *Device) Close() {
device.isUp.Set(false)
device.signal.stop.Broadcast()
close(device.signals.stop)
device.state.stopping.Wait()
device.FlushPacketQueues()
@ -413,5 +413,5 @@ func (device *Device) Close() {
}
func (device *Device) Wait() chan struct{} {
return device.signal.stop.Wait()
return device.signals.stop
}

View file

@ -1,43 +0,0 @@
package main
import (
"sync/atomic"
"time"
)
type Event struct {
guard int32
next time.Time
interval time.Duration
C chan struct{}
}
func newEvent(interval time.Duration) *Event {
return &Event{
guard: 0,
next: time.Now(),
interval: interval,
C: make(chan struct{}, 1),
}
}
func (e *Event) Clear() {
select {
case <-e.C:
default:
}
}
func (e *Event) Fire() {
if e == nil || atomic.SwapInt32(&e.guard, 1) != 0 {
return
}
if now := time.Now(); now.After(e.next) {
select {
case e.C <- struct{}{}:
default:
}
e.next = now.Add(e.interval)
}
atomic.StoreInt32(&e.guard, 0)
}

View file

@ -18,7 +18,7 @@ import (
type IndexTableEntry struct {
peer *Peer
handshake *Handshake
keyPair *KeyPair
keyPair *Keypair
}
type IndexTable struct {

View file

@ -18,7 +18,7 @@ import (
* we plan to resolve this issue; whenever Go allows us to do so.
*/
type KeyPair struct {
type Keypair struct {
sendNonce uint64
send cipher.AEAD
receive cipher.AEAD
@ -29,20 +29,20 @@ type KeyPair struct {
remoteIndex uint32
}
type KeyPairs struct {
type Keypairs struct {
mutex sync.RWMutex
current *KeyPair
previous *KeyPair
next *KeyPair // not yet "confirmed by transport"
current *Keypair
previous *Keypair
next *Keypair // not yet "confirmed by transport"
}
func (kp *KeyPairs) Current() *KeyPair {
func (kp *Keypairs) Current() *Keypair {
kp.mutex.RLock()
defer kp.mutex.RUnlock()
return kp.current
}
func (device *Device) DeleteKeyPair(key *KeyPair) {
func (device *Device) DeleteKeypair(key *Keypair) {
if key != nil {
device.indices.Delete(key.localIndex)
}

15
main.go
View file

@ -30,6 +30,8 @@ func printUsage() {
}
func warning() {
shouldQuit := false
fmt.Fprintln(os.Stderr, "WARNING WARNING WARNING WARNING WARNING WARNING WARNING")
fmt.Fprintln(os.Stderr, "W G")
fmt.Fprintln(os.Stderr, "W This is alpha software. It will very likely not G")
@ -37,6 +39,8 @@ func warning() {
fmt.Fprintln(os.Stderr, "W horribly wrong. You have been warned. Proceed G")
fmt.Fprintln(os.Stderr, "W at your own risk. G")
if runtime.GOOS == "linux" {
shouldQuit = os.Getenv("WG_I_PREFER_BUGGY_USERSPACE_TO_POLISHED_KMOD") != "1"
fmt.Fprintln(os.Stderr, "W G")
fmt.Fprintln(os.Stderr, "W Furthermore, you are running this software on a G")
fmt.Fprintln(os.Stderr, "W Linux kernel, which is probably unnecessary and G")
@ -46,9 +50,20 @@ func warning() {
fmt.Fprintln(os.Stderr, "W program. For more information on installing the G")
fmt.Fprintln(os.Stderr, "W kernel module, please visit: G")
fmt.Fprintln(os.Stderr, "W https://www.wireguard.com/install G")
if shouldQuit {
fmt.Fprintln(os.Stderr, "W G")
fmt.Fprintln(os.Stderr, "W If you still want to use this program, against G")
fmt.Fprintln(os.Stderr, "W the sage advice here, please first export this G")
fmt.Fprintln(os.Stderr, "W environment variable: G")
fmt.Fprintln(os.Stderr, "W WG_I_PREFER_BUGGY_USERSPACE_TO_POLISHED_KMOD=1 G")
}
}
fmt.Fprintln(os.Stderr, "W G")
fmt.Fprintln(os.Stderr, "WARNING WARNING WARNING WARNING WARNING WARNING WARNING")
if shouldQuit {
os.Exit(1)
}
}
func main() {

View file

@ -1,6 +1,6 @@
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2017-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (C) 2015-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*/
package main
@ -488,7 +488,7 @@ func (device *Device) ConsumeMessageResponse(msg *MessageResponse) *Peer {
/* Derives a new key-pair from the current handshake state
*
*/
func (peer *Peer) NewKeyPair() *KeyPair {
func (peer *Peer) NewKeypair() *Keypair {
device := peer.device
handshake := &peer.handshake
handshake.mutex.Lock()
@ -528,7 +528,7 @@ func (peer *Peer) NewKeyPair() *KeyPair {
// create AEAD instances
keyPair := new(KeyPair)
keyPair := new(Keypair)
keyPair.send, _ = chacha20poly1305.New(sendKey[:])
keyPair.receive, _ = chacha20poly1305.New(recvKey[:])
@ -559,24 +559,27 @@ func (peer *Peer) NewKeyPair() *KeyPair {
kp := &peer.keyPairs
kp.mutex.Lock()
peer.timersSessionDerived()
previous := kp.previous
next := kp.next
current := kp.current
if isInitiator {
if kp.previous != nil {
device.DeleteKeyPair(kp.previous)
kp.previous = nil
}
if kp.next != nil {
kp.previous = kp.next
kp.next = keyPair
if next != nil {
kp.next = nil
kp.previous = next
device.DeleteKeypair(current)
} else {
kp.previous = kp.current
kp.current = keyPair
peer.event.newKeyPair.Fire()
kp.previous = current
}
device.DeleteKeypair(previous)
kp.current = keyPair
} else {
kp.next = keyPair
device.DeleteKeypair(next)
kp.previous = nil
device.DeleteKeypair(previous)
}
kp.mutex.Unlock()

View file

@ -102,8 +102,8 @@ func TestNoiseHandshake(t *testing.T) {
t.Log("deriving keys")
key1 := peer1.NewKeyPair()
key2 := peer2.NewKeyPair()
key1 := peer1.NewKeypair()
key2 := peer2.NewKeypair()
if key1 == nil {
t.Fatal("failed to dervice key-pair for peer 1")

78
peer.go
View file

@ -14,14 +14,13 @@ import (
)
const (
PeerRoutineNumber = 4
EventInterval = 10 * time.Millisecond
PeerRoutineNumber = 3
)
type Peer struct {
isRunning AtomicBool
mutex sync.RWMutex
keyPairs KeyPairs
keyPairs Keypairs
handshake Handshake
device *Device
endpoint Endpoint
@ -34,34 +33,28 @@ type Peer struct {
lastHandshakeNano int64 // nano seconds since epoch
}
time struct {
mutex sync.RWMutex
lastSend time.Time // last send message
lastHandshake time.Time // last completed handshake
nextKeepalive time.Time
timers struct {
retransmitHandshake *Timer
sendKeepalive *Timer
newHandshake *Timer
zeroKeyMaterial *Timer
persistentKeepalive *Timer
handshakeAttempts uint
needAnotherKeepalive bool
sentLastMinuteHandshake bool
lastSentHandshake time.Time
}
event struct {
dataSent *Event
dataReceived *Event
anyAuthenticatedPacketReceived *Event
anyAuthenticatedPacketTraversal *Event
handshakeCompleted *Event
handshakePushDeadline *Event
handshakeBegin *Event
ephemeralKeyCreated *Event
newKeyPair *Event
flushNonceQueue *Event
}
timer struct {
sendLastMinuteHandshake AtomicBool
signals struct {
newKeypairArrived chan struct{}
flushNonceQueue chan struct{}
}
queue struct {
nonce chan *QueueOutboundElement // nonce / pre-handshake queue
outbound chan *QueueOutboundElement // sequential ordering of work
inbound chan *QueueInboundElement // sequential ordering of work
nonce chan *QueueOutboundElement // nonce / pre-handshake queue
outbound chan *QueueOutboundElement // sequential ordering of work
inbound chan *QueueInboundElement // sequential ordering of work
packetInNonceQueueIsAwaitingKey bool
}
routines struct {
@ -188,6 +181,8 @@ func (peer *Peer) Start() {
peer.routines.starting.Wait()
peer.routines.stopping.Wait()
peer.routines.stop = make(chan struct{})
peer.routines.starting.Add(PeerRoutineNumber)
peer.routines.stopping.Add(PeerRoutineNumber)
// prepare queues
@ -195,28 +190,13 @@ func (peer *Peer) Start() {
peer.queue.outbound = make(chan *QueueOutboundElement, QueueOutboundSize)
peer.queue.inbound = make(chan *QueueInboundElement, QueueInboundSize)
// events
peer.event.dataSent = newEvent(EventInterval)
peer.event.dataReceived = newEvent(EventInterval)
peer.event.anyAuthenticatedPacketReceived = newEvent(EventInterval)
peer.event.anyAuthenticatedPacketTraversal = newEvent(EventInterval)
peer.event.handshakeCompleted = newEvent(EventInterval)
peer.event.handshakePushDeadline = newEvent(EventInterval)
peer.event.handshakeBegin = newEvent(EventInterval)
peer.event.ephemeralKeyCreated = newEvent(EventInterval)
peer.event.newKeyPair = newEvent(EventInterval)
peer.event.flushNonceQueue = newEvent(EventInterval)
peer.isRunning.Set(true)
peer.timersInit()
peer.signals.newKeypairArrived = make(chan struct{}, 1)
peer.signals.flushNonceQueue = make(chan struct{}, 1)
// wait for routines to start
peer.routines.starting.Add(PeerRoutineNumber)
peer.routines.stopping.Add(PeerRoutineNumber)
go peer.RoutineNonce()
go peer.RoutineTimerHandler()
go peer.RoutineSequentialSender()
go peer.RoutineSequentialReceiver()
@ -238,6 +218,8 @@ func (peer *Peer) Stop() {
device := peer.device
device.log.Debug.Println(peer, ": Stopping...")
peer.timersStop()
// stop & wait for ongoing peer routines
peer.routines.starting.Wait()
@ -255,9 +237,9 @@ func (peer *Peer) Stop() {
kp := &peer.keyPairs
kp.mutex.Lock()
device.DeleteKeyPair(kp.previous)
device.DeleteKeyPair(kp.current)
device.DeleteKeyPair(kp.next)
device.DeleteKeypair(kp.previous)
device.DeleteKeypair(kp.current)
device.DeleteKeypair(kp.next)
kp.previous = nil
kp.current = nil
@ -271,4 +253,6 @@ func (peer *Peer) Stop() {
device.indices.Delete(hs.localIndex)
hs.Clear()
hs.mutex.Unlock()
peer.FlushNonceQueue()
}

View file

@ -31,7 +31,7 @@ type QueueInboundElement struct {
buffer *[MaxMessageSize]byte
packet []byte
counter uint64
keyPair *KeyPair
keyPair *Keypair
endpoint Endpoint
}
@ -99,6 +99,21 @@ func (device *Device) addToHandshakeQueue(
}
}
/* Called when a new authenticated message has been received
*
* NOTE: Not thread safe, but called by sequential receiver!
*/
func (peer *Peer) keepKeyFreshReceiving() {
if peer.timers.sentLastMinuteHandshake {
return
}
kp := peer.keyPairs.Current()
if kp != nil && kp.isInitiator && time.Now().Sub(kp.created) > (RejectAfterTime-KeepaliveTimeout-RekeyTimeout) {
peer.timers.sentLastMinuteHandshake = true
peer.SendHandshakeInitiation(false)
}
}
/* Receives incoming datagrams for the device
*
* Every time the bind is updated a new routine is started for
@ -245,7 +260,7 @@ func (device *Device) RoutineDecryption() {
for {
select {
case <-device.signal.stop.Wait():
case <-device.signals.stop:
return
case elem, ok := <-device.queue.decryption:
@ -317,7 +332,7 @@ func (device *Device) RoutineHandshake() {
for {
select {
case elem, ok = <-device.queue.handshake:
case <-device.signal.stop.Wait():
case <-device.signals.stop:
return
}
@ -441,8 +456,8 @@ func (device *Device) RoutineHandshake() {
// update timers
peer.event.anyAuthenticatedPacketTraversal.Fire()
peer.event.anyAuthenticatedPacketReceived.Fire()
peer.timersAnyAuthenticatedPacketTraversal()
peer.timersAnyAuthenticatedPacketReceived()
// update endpoint
@ -460,10 +475,11 @@ func (device *Device) RoutineHandshake() {
continue
}
peer.TimerEphemeralKeyCreated()
peer.NewKeyPair()
if peer.NewKeypair() == nil {
continue
}
logDebug.Println(peer, ": Creating handshake response")
logDebug.Println(peer, ": Sending handshake response")
writer := bytes.NewBuffer(temp[:0])
binary.Write(writer, binary.LittleEndian, response)
@ -472,9 +488,10 @@ func (device *Device) RoutineHandshake() {
// send response
peer.timers.lastSentHandshake = time.Now()
err = peer.SendBuffer(packet)
if err == nil {
peer.event.anyAuthenticatedPacketTraversal.Fire()
peer.timersAnyAuthenticatedPacketTraversal()
} else {
logError.Println(peer, ": Failed to send handshake response", err)
}
@ -510,18 +527,23 @@ func (device *Device) RoutineHandshake() {
logDebug.Println(peer, ": Received handshake response")
peer.TimerEphemeralKeyCreated()
// update timers
peer.event.anyAuthenticatedPacketTraversal.Fire()
peer.event.anyAuthenticatedPacketReceived.Fire()
peer.event.handshakeCompleted.Fire()
peer.timersAnyAuthenticatedPacketTraversal()
peer.timersAnyAuthenticatedPacketReceived()
// derive key-pair
peer.NewKeyPair()
peer.SendKeepAlive()
if peer.NewKeypair() == nil {
continue
}
peer.timersHandshakeComplete()
peer.SendKeepalive()
select {
case peer.signals.newKeypairArrived <- struct{}{}:
default:
}
}
}
}
@ -569,38 +591,41 @@ func (peer *Peer) RoutineSequentialReceiver() {
continue
}
peer.event.anyAuthenticatedPacketTraversal.Fire()
peer.event.anyAuthenticatedPacketReceived.Fire()
peer.KeepKeyFreshReceiving()
// check if using new key-pair
kp := &peer.keyPairs
kp.mutex.Lock()
if kp.next == elem.keyPair {
peer.event.handshakeCompleted.Fire()
if kp.previous != nil {
device.DeleteKeyPair(kp.previous)
}
kp.previous = kp.current
kp.current = kp.next
kp.next = nil
}
kp.mutex.Unlock()
// update endpoint
peer.mutex.Lock()
peer.endpoint = elem.endpoint
peer.mutex.Unlock()
// check for keep-alive
// check if using new key-pair
kp := &peer.keyPairs
kp.mutex.Lock() //TODO: make this into an RW lock to reduce contention here for the equality check which is rarely true
if kp.next == elem.keyPair {
old := kp.previous
kp.previous = kp.current
device.DeleteKeypair(old)
kp.current = kp.next
kp.next = nil
peer.timersHandshakeComplete()
select {
case peer.signals.newKeypairArrived <- struct{}{}:
default:
}
}
kp.mutex.Unlock()
peer.keepKeyFreshReceiving()
peer.timersAnyAuthenticatedPacketTraversal()
peer.timersAnyAuthenticatedPacketReceived()
// check for keepalive
if len(elem.packet) == 0 {
logDebug.Println(peer, ": Received keep-alive")
logDebug.Println(peer, ": Receiving keepalive packet")
continue
}
peer.event.dataReceived.Fire()
peer.timersDataReceived()
// verify source and strip padding

134
send.go
View file

@ -6,6 +6,7 @@
package main
import (
"bytes"
"encoding/binary"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/net/ipv4"
@ -46,21 +47,10 @@ type QueueOutboundElement struct {
buffer *[MaxMessageSize]byte // slice holding the packet data
packet []byte // slice of "buffer" (always!)
nonce uint64 // nonce for encryption
keyPair *KeyPair // key-pair for encryption
keyPair *Keypair // key-pair for encryption
peer *Peer // related peer
}
func (peer *Peer) flushNonceQueue() {
elems := len(peer.queue.nonce)
for i := 0; i < elems; i++ {
select {
case <-peer.queue.nonce:
default:
return
}
}
}
func (device *Device) NewOutboundElement() *QueueOutboundElement {
return &QueueOutboundElement{
dropped: AtomicFalse,
@ -114,6 +104,73 @@ func addToEncryptionQueue(
}
}
/* Queues a keepalive if no packets are queued for peer
*/
func (peer *Peer) SendKeepalive() bool {
if len(peer.queue.nonce) != 0 || peer.queue.packetInNonceQueueIsAwaitingKey {
return false
}
elem := peer.device.NewOutboundElement()
elem.packet = nil
select {
case peer.queue.nonce <- elem:
peer.device.log.Debug.Println(peer, ": Sending keepalive packet")
return true
default:
return false
}
}
/* Sends a new handshake initiation message to the peer (endpoint)
*/
func (peer *Peer) SendHandshakeInitiation(isRetry bool) error {
if !isRetry {
peer.timers.handshakeAttempts = 0
}
if time.Now().Sub(peer.timers.lastSentHandshake) < RekeyTimeout {
return nil
}
peer.timers.lastSentHandshake = time.Now() //TODO: locking for this variable?
// create initiation message
msg, err := peer.device.CreateMessageInitiation(peer)
if err != nil {
return err
}
peer.device.log.Debug.Println(peer, ": Sending handshake initiation")
// marshal handshake message
var buff [MessageInitiationSize]byte
writer := bytes.NewBuffer(buff[:0])
binary.Write(writer, binary.LittleEndian, msg)
packet := writer.Bytes()
peer.mac.AddMacs(packet)
// send to endpoint
peer.timersAnyAuthenticatedPacketTraversal()
peer.timersHandshakeInitiated()
return peer.SendBuffer(packet)
}
/* Called when a new authenticated message has been send
*
*/
func (peer *Peer) keepKeyFreshSending() {
kp := peer.keyPairs.Current()
if kp == nil {
return
}
nonce := atomic.LoadUint64(&kp.sendNonce)
if nonce > RekeyAfterMessages || (kp.isInitiator && time.Now().Sub(kp.created) > RekeyAfterTime) {
peer.SendHandshakeInitiation(false)
}
}
/* Reads packets from the TUN and inserts
* into nonce queue for peer
*
@ -180,13 +237,22 @@ func (device *Device) RoutineReadFromTUN() {
// insert into nonce/pre-handshake queue
if peer.isRunning.Get() {
peer.event.handshakePushDeadline.Fire()
if peer.queue.packetInNonceQueueIsAwaitingKey {
peer.SendHandshakeInitiation(false)
}
addToOutboundQueue(peer.queue.nonce, elem)
elem = device.NewOutboundElement()
}
}
}
func (peer *Peer) FlushNonceQueue() {
select {
case peer.signals.flushNonceQueue <- struct{}{}:
default:
}
}
/* Queues packets when there is no handshake.
* Then assigns nonces to packets sequentially
* and creates "work" structs for workers
@ -194,13 +260,14 @@ func (device *Device) RoutineReadFromTUN() {
* Obs. A single instance per peer
*/
func (peer *Peer) RoutineNonce() {
var keyPair *KeyPair
var keyPair *Keypair
device := peer.device
logDebug := device.log.Debug
defer func() {
logDebug.Println(peer, ": Routine: nonce worker - stopped")
peer.queue.packetInNonceQueueIsAwaitingKey = false
peer.routines.stopping.Done()
}()
@ -209,8 +276,7 @@ func (peer *Peer) RoutineNonce() {
for {
NextPacket:
peer.event.flushNonceQueue.Clear()
peer.queue.packetInNonceQueueIsAwaitingKey = false
select {
case <-peer.routines.stop:
@ -225,34 +291,48 @@ func (peer *Peer) RoutineNonce() {
// wait for key pair
for {
peer.event.newKeyPair.Clear()
keyPair = peer.keyPairs.Current()
if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
if time.Now().Sub(keyPair.created) < RejectAfterTime {
break
}
}
peer.queue.packetInNonceQueueIsAwaitingKey = true
peer.event.handshakeBegin.Fire()
select {
case <-peer.signals.newKeypairArrived:
default:
}
peer.SendHandshakeInitiation(false)
logDebug.Println(peer, ": Awaiting key-pair")
select {
case <-peer.event.newKeyPair.C:
case <-peer.signals.newKeypairArrived:
logDebug.Println(peer, ": Obtained awaited key-pair")
case <-peer.event.flushNonceQueue.C:
goto NextPacket
case <-peer.signals.flushNonceQueue:
for {
select {
case <-peer.queue.nonce:
default:
goto NextPacket
}
}
case <-peer.routines.stop:
return
}
}
peer.queue.packetInNonceQueueIsAwaitingKey = false
// populate work element
elem.peer = peer
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
// double check in case of race condition added by future code
if elem.nonce >= RejectAfterMessages {
goto NextPacket
}
elem.keyPair = keyPair
elem.dropped = AtomicFalse
elem.mutex.Lock()
@ -288,7 +368,7 @@ func (device *Device) RoutineEncryption() {
// fetch next element
select {
case <-device.signal.stop.Wait():
case <-device.signals.stop:
return
case elem, ok := <-device.queue.encryption:
@ -389,11 +469,11 @@ func (peer *Peer) RoutineSequentialSender() {
// update timers
peer.event.anyAuthenticatedPacketTraversal.Fire()
peer.timersAnyAuthenticatedPacketTraversal()
if len(elem.packet) != MessageKeepaliveSize {
peer.event.dataSent.Fire()
peer.timersDataSent()
}
peer.KeepKeyFreshSending()
peer.keepKeyFreshSending()
}
}
}

View file

@ -1,71 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2017-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*/
package main
func signalSend(s chan<- struct{}) {
select {
case s <- struct{}{}:
default:
}
}
type Signal struct {
enabled AtomicBool
C chan struct{}
}
func NewSignal() (s Signal) {
s.C = make(chan struct{}, 1)
s.Enable()
return
}
func (s *Signal) Close() {
close(s.C)
}
func (s *Signal) Disable() {
s.enabled.Set(false)
s.Clear()
}
func (s *Signal) Enable() {
s.enabled.Set(true)
}
/* Unblock exactly one listener
*/
func (s *Signal) Send() {
if s.enabled.Get() {
select {
case s.C <- struct{}{}:
default:
}
}
}
/* Clear the signal if already fired
*/
func (s Signal) Clear() {
select {
case <-s.C:
default:
}
}
/* Unblocks all listeners (forever)
*/
func (s Signal) Broadcast() {
if s.enabled.Get() {
close(s.C)
}
}
/* Wait for the signal
*/
func (s Signal) Wait() chan struct{} {
return s.C
}

512
timers.go
View file

@ -1,355 +1,221 @@
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2017-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (C) 2015-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*
* This is based heavily on timers.c from the kernel implementation.
*/
package main
import (
"bytes"
"encoding/binary"
"math/rand"
"sync/atomic"
"time"
)
/* NOTE:
* Notion of validity
/* This Timer structure and related functions should roughly copy the interface of
* the Linux kernel's struct timer_list.
*/
/* Called when a new authenticated message has been send
*
*/
func (peer *Peer) KeepKeyFreshSending() {
kp := peer.keyPairs.Current()
if kp == nil {
return
}
nonce := atomic.LoadUint64(&kp.sendNonce)
if nonce > RekeyAfterMessages {
peer.event.handshakeBegin.Fire()
}
if kp.isInitiator && time.Now().Sub(kp.created) > RekeyAfterTime {
peer.event.handshakeBegin.Fire()
}
type Timer struct {
timer *time.Timer
isPending bool
}
/* Called when a new authenticated message has been received
*
* NOTE: Not thread safe, but called by sequential receiver!
*/
func (peer *Peer) KeepKeyFreshReceiving() {
if peer.timer.sendLastMinuteHandshake.Get() {
return
}
kp := peer.keyPairs.Current()
if kp == nil {
return
}
if !kp.isInitiator {
return
}
nonce := atomic.LoadUint64(&kp.sendNonce)
send := nonce > RekeyAfterMessages || time.Now().Sub(kp.created) > RekeyAfterTimeReceiving
if send {
// do a last minute attempt at initiating a new handshake
peer.timer.sendLastMinuteHandshake.Set(true)
peer.event.handshakeBegin.Fire()
}
}
/* Queues a keep-alive if no packets are queued for peer
*/
func (peer *Peer) SendKeepAlive() bool {
if len(peer.queue.nonce) != 0 {
return false
}
elem := peer.device.NewOutboundElement()
elem.packet = nil
select {
case peer.queue.nonce <- elem:
return true
default:
return false
}
}
/* Called after successfully completing a handshake.
* i.e. after:
*
* - Valid handshake response
* - First transport message under the "next" key
*/
// peer.device.log.Info.Println(peer, ": New handshake completed")
/* Event:
* An ephemeral key is generated
*
* i.e. after:
*
* CreateMessageInitiation
* CreateMessageResponse
*
* Action:
* Schedule the deletion of all key material
* upon failure to complete a handshake
*/
func (peer *Peer) TimerEphemeralKeyCreated() {
peer.event.ephemeralKeyCreated.Fire()
// peer.timer.zeroAllKeys.Reset(RejectAfterTime * 3)
}
/* Sends a new handshake initiation message to the peer (endpoint)
*/
func (peer *Peer) sendNewHandshake() error {
// create initiation message
msg, err := peer.device.CreateMessageInitiation(peer)
if err != nil {
return err
}
// marshal handshake message
var buff [MessageInitiationSize]byte
writer := bytes.NewBuffer(buff[:0])
binary.Write(writer, binary.LittleEndian, msg)
packet := writer.Bytes()
peer.mac.AddMacs(packet)
// send to endpoint
peer.event.anyAuthenticatedPacketTraversal.Fire()
return peer.SendBuffer(packet)
}
func newTimer() *time.Timer {
timer := time.NewTimer(time.Hour)
timer.Stop()
func (peer *Peer) NewTimer(expirationFunction func(*Peer)) *Timer {
timer := &Timer{}
timer.timer = time.AfterFunc(time.Hour, func() {
timer.isPending = false
expirationFunction(peer)
})
timer.timer.Stop()
return timer
}
func (peer *Peer) RoutineTimerHandler() {
func (timer *Timer) Mod(d time.Duration) {
timer.isPending = true
timer.timer.Reset(d)
}
device := peer.device
func (timer *Timer) Del() {
timer.isPending = false
timer.timer.Stop()
}
logInfo := device.log.Info
logDebug := device.log.Debug
func (peer *Peer) timersActive() bool {
return peer.isRunning.Get() && peer.device != nil && peer.device.isUp.Get() && len(peer.device.peers.keyMap) > 0
}
defer func() {
logDebug.Println(peer, ": Routine: timer handler - stopped")
peer.routines.stopping.Done()
}()
func expiredRetransmitHandshake(peer *Peer) {
if peer.timers.handshakeAttempts > MaxTimerHandshakes {
peer.device.log.Debug.Printf("%s: Handshake did not complete after %d attempts, giving up\n", peer, MaxTimerHandshakes+2)
logDebug.Println(peer, ": Routine: timer handler - started")
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
// reset all timers
/* We drop all packets without a keypair and don't try again,
* if we try unsuccessfully for too long to make a handshake.
*/
peer.FlushNonceQueue()
enableHandshake := true
pendingHandshakeNew := false
pendingKeepalivePassive := false
needAnotherKeepalive := false
/* We set a timer for destroying any residue that might be left
* of a partial exchange.
*/
if peer.timersActive() && !peer.timers.zeroKeyMaterial.isPending {
peer.timers.zeroKeyMaterial.Mod(RejectAfterTime * 3)
}
} else {
peer.timers.handshakeAttempts++
peer.device.log.Debug.Printf("%s: Handshake did not complete after %d seconds, retrying (try %d)\n", peer, int(RekeyTimeout.Seconds()), peer.timers.handshakeAttempts+1)
timerKeepalivePassive := newTimer()
timerHandshakeDeadline := newTimer()
timerHandshakeTimeout := newTimer()
timerHandshakeNew := newTimer()
timerZeroAllKeys := newTimer()
timerKeepalivePersistent := newTimer()
/* We clear the endpoint address src address, in case this is the cause of trouble. */
peer.mutex.Lock()
if peer.endpoint != nil {
peer.endpoint.ClearSrc()
}
peer.mutex.Unlock()
interval := peer.persistentKeepaliveInterval
if interval > 0 {
duration := time.Duration(interval) * time.Second
timerKeepalivePersistent.Reset(duration)
peer.SendHandshakeInitiation(true)
}
}
// signal synchronised setup complete
peer.routines.starting.Done()
// handle timer events
for {
select {
/* stopping */
case <-peer.routines.stop:
return
/* events */
case <-peer.event.dataSent.C:
timerKeepalivePassive.Stop()
if !pendingHandshakeNew {
timerHandshakeNew.Reset(NewHandshakeTime)
}
case <-peer.event.dataReceived.C:
if pendingKeepalivePassive {
needAnotherKeepalive = true
} else {
timerKeepalivePassive.Reset(KeepaliveTimeout)
}
case <-peer.event.anyAuthenticatedPacketTraversal.C:
interval := peer.persistentKeepaliveInterval
if interval > 0 {
duration := time.Duration(interval) * time.Second
timerKeepalivePersistent.Reset(duration)
}
case <-peer.event.handshakeBegin.C:
if !enableHandshake {
continue
}
logDebug.Println(peer, ": Event, Handshake Begin")
err := peer.sendNewHandshake()
// set timeout
jitter := time.Millisecond * time.Duration(rand.Int31n(334))
timerKeepalivePassive.Stop()
timerHandshakeTimeout.Reset(RekeyTimeout + jitter)
if err != nil {
logInfo.Println(peer, ": Failed to send handshake initiation", err)
} else {
logDebug.Println(peer, ": Send handshake initiation (initial)")
}
timerHandshakeDeadline.Reset(RekeyAttemptTime)
// disable further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = false
case <-peer.event.handshakeCompleted.C:
logInfo.Println(peer, ": Handshake completed")
atomic.StoreInt64(
&peer.stats.lastHandshakeNano,
time.Now().UnixNano(),
)
timerHandshakeTimeout.Stop()
timerHandshakeDeadline.Stop()
peer.timer.sendLastMinuteHandshake.Set(false)
// allow further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = true
/* timers */
case <-timerKeepalivePersistent.C:
interval := peer.persistentKeepaliveInterval
if interval > 0 {
logDebug.Println(peer, ": Send keep-alive (persistent)")
timerKeepalivePassive.Stop()
peer.SendKeepAlive()
}
case <-timerKeepalivePassive.C:
logDebug.Println(peer, ": Send keep-alive (passive)")
peer.SendKeepAlive()
if needAnotherKeepalive {
timerKeepalivePassive.Reset(KeepaliveTimeout)
needAnotherKeepalive = false
}
case <-timerZeroAllKeys.C:
logDebug.Println(peer, ": Clear all key-material (timer event)")
hs := &peer.handshake
hs.mutex.Lock()
kp := &peer.keyPairs
kp.mutex.Lock()
// remove key-pairs
if kp.previous != nil {
device.DeleteKeyPair(kp.previous)
kp.previous = nil
}
if kp.current != nil {
device.DeleteKeyPair(kp.current)
kp.current = nil
}
if kp.next != nil {
device.DeleteKeyPair(kp.next)
kp.next = nil
}
kp.mutex.Unlock()
// zero out handshake
device.indices.Delete(hs.localIndex)
hs.Clear()
hs.mutex.Unlock()
case <-timerHandshakeTimeout.C:
// allow new handshake to be send
enableHandshake = true
// clear source (in case this is causing problems)
peer.mutex.Lock()
if peer.endpoint != nil {
peer.endpoint.ClearSrc()
}
peer.mutex.Unlock()
// send new handshake
err := peer.sendNewHandshake()
// set timeout
jitter := time.Millisecond * time.Duration(rand.Int31n(334))
timerKeepalivePassive.Stop()
timerHandshakeTimeout.Reset(RekeyTimeout + jitter)
if err != nil {
logInfo.Println(peer, ": Failed to send handshake initiation", err)
} else {
logDebug.Println(peer, ": Send handshake initiation (subsequent)")
}
// disable further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = false
case <-timerHandshakeDeadline.C:
// clear all queued packets and stop keep-alive
logInfo.Println(peer, ": Handshake negotiation timed-out")
peer.flushNonceQueue()
peer.event.flushNonceQueue.Fire()
// renable further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = true
func expiredSendKeepalive(peer *Peer) {
peer.SendKeepalive()
if peer.timers.needAnotherKeepalive {
peer.timers.needAnotherKeepalive = false
if peer.timersActive() {
peer.timers.sendKeepalive.Mod(KeepaliveTimeout)
}
}
}
func expiredNewHandshake(peer *Peer) {
peer.device.log.Debug.Printf("%s: Retrying handshake because we stopped hearing back after %d seconds\n", peer, int((KeepaliveTimeout + RekeyTimeout).Seconds()))
/* We clear the endpoint address src address, in case this is the cause of trouble. */
peer.mutex.Lock()
if peer.endpoint != nil {
peer.endpoint.ClearSrc()
}
peer.mutex.Unlock()
peer.SendHandshakeInitiation(false)
}
func expiredZeroKeyMaterial(peer *Peer) {
peer.device.log.Debug.Printf(":%s Removing all keys, since we haven't received a new one in %d seconds\n", peer, int((RejectAfterTime * 3).Seconds()))
hs := &peer.handshake
hs.mutex.Lock()
kp := &peer.keyPairs
kp.mutex.Lock()
if kp.previous != nil {
peer.device.DeleteKeypair(kp.previous)
kp.previous = nil
}
if kp.current != nil {
peer.device.DeleteKeypair(kp.current)
kp.current = nil
}
if kp.next != nil {
peer.device.DeleteKeypair(kp.next)
kp.next = nil
}
kp.mutex.Unlock()
peer.device.indices.Delete(hs.localIndex)
hs.Clear()
hs.mutex.Unlock()
}
func expiredPersistentKeepalive(peer *Peer) {
if peer.persistentKeepaliveInterval > 0 {
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
peer.SendKeepalive()
}
}
/* Should be called after an authenticated data packet is sent. */
func (peer *Peer) timersDataSent() {
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
if peer.timersActive() && !peer.timers.newHandshake.isPending {
peer.timers.newHandshake.Mod(KeepaliveTimeout + RekeyTimeout)
}
}
/* Should be called after an authenticated data packet is received. */
func (peer *Peer) timersDataReceived() {
if peer.timersActive() {
if !peer.timers.sendKeepalive.isPending {
peer.timers.sendKeepalive.Mod(KeepaliveTimeout)
} else {
peer.timers.needAnotherKeepalive = true
}
}
}
/* Should be called after any type of authenticated packet is received -- keepalive or data. */
func (peer *Peer) timersAnyAuthenticatedPacketReceived() {
if peer.timersActive() {
peer.timers.newHandshake.Del()
}
}
/* Should be called after a handshake initiation message is sent. */
func (peer *Peer) timersHandshakeInitiated() {
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
peer.timers.retransmitHandshake.Mod(RekeyTimeout + time.Millisecond*time.Duration(rand.Int31n(RekeyTimeoutJitterMaxMs)))
}
}
/* Should be called after a handshake response message is received and processed or when getting key confirmation via the first data message. */
func (peer *Peer) timersHandshakeComplete() {
if peer.timersActive() {
peer.timers.retransmitHandshake.Del()
}
peer.timers.handshakeAttempts = 0
peer.timers.sentLastMinuteHandshake = false
atomic.StoreInt64(&peer.stats.lastHandshakeNano, time.Now().UnixNano())
}
/* Should be called after an ephemeral key is created, which is before sending a handshake response or after receiving a handshake response. */
func (peer *Peer) timersSessionDerived() {
if peer.timersActive() {
peer.timers.zeroKeyMaterial.Mod(RejectAfterTime * 3)
}
}
/* Should be called before a packet with authentication -- data, keepalive, either handshake -- is sent, or after one is received. */
func (peer *Peer) timersAnyAuthenticatedPacketTraversal() {
if peer.persistentKeepaliveInterval > 0 && peer.timersActive() {
peer.timers.persistentKeepalive.Mod(time.Duration(peer.persistentKeepaliveInterval) * time.Second)
}
}
func (peer *Peer) timersInit() {
peer.timers.retransmitHandshake = peer.NewTimer(expiredRetransmitHandshake)
peer.timers.sendKeepalive = peer.NewTimer(expiredSendKeepalive)
peer.timers.newHandshake = peer.NewTimer(expiredNewHandshake)
peer.timers.zeroKeyMaterial = peer.NewTimer(expiredZeroKeyMaterial)
peer.timers.persistentKeepalive = peer.NewTimer(expiredPersistentKeepalive)
peer.timers.handshakeAttempts = 0
peer.timers.sentLastMinuteHandshake = false
peer.timers.needAnotherKeepalive = false
peer.timers.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
}
func (peer *Peer) timersStop() {
peer.timers.retransmitHandshake.Del()
peer.timers.sendKeepalive.Del()
peer.timers.newHandshake.Del()
peer.timers.zeroKeyMaterial.Del()
peer.timers.persistentKeepalive.Del()
}

11
uapi.go
View file

@ -256,8 +256,6 @@ func ipcSetOperation(device *Device, socket *bufio.ReadWriter) *IPCError {
logDebug.Println("UAPI: Created new peer:", peer)
}
peer.event.handshakePushDeadline.Fire()
case "remove":
// remove currently selected peer from device
@ -288,8 +286,6 @@ func ipcSetOperation(device *Device, socket *bufio.ReadWriter) *IPCError {
return &IPCError{Code: ipcErrorInvalid}
}
peer.event.handshakePushDeadline.Fire()
case "endpoint":
// set endpoint destination
@ -304,7 +300,6 @@ func ipcSetOperation(device *Device, socket *bufio.ReadWriter) *IPCError {
return err
}
peer.endpoint = endpoint
peer.event.handshakePushDeadline.Fire()
return nil
}()
@ -315,7 +310,7 @@ func ipcSetOperation(device *Device, socket *bufio.ReadWriter) *IPCError {
case "persistent_keepalive_interval":
// update keep-alive interval
// update persistent keepalive interval
logDebug.Println("UAPI: Updating persistent_keepalive_interval for peer:", peer)
@ -328,7 +323,7 @@ func ipcSetOperation(device *Device, socket *bufio.ReadWriter) *IPCError {
old := peer.persistentKeepaliveInterval
peer.persistentKeepaliveInterval = uint16(secs)
// send immediate keep-alive
// send immediate keepalive if we're turning it on and before it wasn't on
if old == 0 && secs != 0 {
if err != nil {
@ -336,7 +331,7 @@ func ipcSetOperation(device *Device, socket *bufio.ReadWriter) *IPCError {
return &IPCError{Code: ipcErrorIO}
}
if device.isUp.Get() && !dummy {
peer.SendKeepAlive()
peer.SendKeepalive()
}
}