wireguard-go/src/send.go

347 lines
7.4 KiB
Go
Raw Normal View History

2017-06-26 11:14:02 +00:00
package main
import (
"encoding/binary"
"golang.org/x/crypto/chacha20poly1305"
2017-06-26 11:14:02 +00:00
"net"
"sync"
"sync/atomic"
"time"
2017-06-26 11:14:02 +00:00
)
/* Handles outbound flow
*
* 1. TUN queue
* 2. Routing (sequential)
* 3. Nonce assignment (sequential)
* 4. Encryption (parallel)
* 5. Transmission (sequential)
2017-06-26 11:14:02 +00:00
*
* The order of packets (per peer) is maintained.
* The functions in this file occure (roughly) in the order packets are processed.
2017-06-26 11:14:02 +00:00
*/
/* A work unit
*
* The sequential consumers will attempt to take the lock,
* workers release lock when they have completed work on the packet.
*
* If the element is inserted into the "encryption queue",
* the content is preceeded by enough "junk" to contain the header
* (to allow the constuction of transport messages in-place)
*/
type QueueOutboundElement struct {
2017-07-01 21:29:22 +00:00
state uint32
mutex sync.Mutex
data [MaxMessageSize]byte
packet []byte // slice of packet (sending)
nonce uint64 // nonce for encryption
keyPair *KeyPair // key-pair for encryption
peer *Peer // related peer
2017-06-26 11:14:02 +00:00
}
func (peer *Peer) FlushNonceQueue() {
elems := len(peer.queue.nonce)
for i := 0; i < elems; i += 1 {
select {
case <-peer.queue.nonce:
default:
return
}
}
2017-06-27 15:33:06 +00:00
}
func (device *Device) NewOutboundElement() *QueueOutboundElement {
elem := new(QueueOutboundElement) // TODO: profile, consider sync.Pool
return elem
}
func (elem *QueueOutboundElement) Drop() {
atomic.StoreUint32(&elem.state, ElementStateDropped)
}
func (elem *QueueOutboundElement) IsDropped() bool {
return atomic.LoadUint32(&elem.state) == ElementStateDropped
}
func addToOutboundQueue(
queue chan *QueueOutboundElement,
element *QueueOutboundElement,
) {
for {
select {
case queue <- element:
return
default:
select {
case old := <-queue:
old.Drop()
default:
}
}
}
}
2017-06-26 11:14:02 +00:00
/* Reads packets from the TUN and inserts
* into nonce queue for peer
*
* Obs. Single instance per TUN device
*/
func (device *Device) RoutineReadFromTUN(tun TUNDevice) {
if tun == nil {
// dummy
return
}
elem := device.NewOutboundElement()
device.log.Debug.Println("Routine, TUN Reader: started")
for {
// read packet
2017-06-26 11:14:02 +00:00
if elem == nil {
elem = device.NewOutboundElement()
}
elem.packet = elem.data[MessageTransportHeaderSize:]
size, err := tun.Read(elem.packet)
if err != nil {
device.log.Error.Println("Failed to read packet from TUN device:", err)
continue
}
elem.packet = elem.packet[:size]
if len(elem.packet) < IPv4headerSize {
device.log.Error.Println("Packet too short, length:", size)
continue
}
2017-06-26 11:14:02 +00:00
// lookup peer
2017-06-26 11:14:02 +00:00
var peer *Peer
switch elem.packet[0] >> 4 {
case IPv4version:
dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
peer = device.routingTable.LookupIPv4(dst)
2017-06-26 11:14:02 +00:00
case IPv6version:
dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
peer = device.routingTable.LookupIPv6(dst)
2017-06-26 11:14:02 +00:00
default:
device.log.Debug.Println("Receieved packet with unknown IP version")
}
if peer == nil {
continue
}
if peer.endpoint == nil {
device.log.Debug.Println("No known endpoint for peer", peer.id)
continue
}
// insert into nonce/pre-handshake queue
addToOutboundQueue(peer.queue.nonce, elem)
elem = nil
2017-06-26 11:14:02 +00:00
}
}
/* Queues packets when there is no handshake.
* Then assigns nonces to packets sequentially
* and creates "work" structs for workers
2017-06-26 11:14:02 +00:00
*
* TODO: Avoid dynamic allocation of work queue elements
2017-06-26 11:14:02 +00:00
*
* Obs. A single instance per peer
2017-06-26 11:14:02 +00:00
*/
func (peer *Peer) RoutineNonce() {
var keyPair *KeyPair
var elem *QueueOutboundElement
device := peer.device
logger := device.log.Debug
logger.Println("Routine, nonce worker, started for peer", peer.id)
func() {
for {
NextPacket:
// wait for packet
if elem == nil {
select {
case elem = <-peer.queue.nonce:
case <-peer.signal.stop:
return
}
}
2017-06-26 11:14:02 +00:00
// wait for key pair
for {
select {
case <-peer.signal.newKeyPair:
default:
}
keyPair = peer.keyPairs.Current()
if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
if time.Now().Sub(keyPair.created) < RejectAfterTime {
break
}
}
2017-07-01 21:29:22 +00:00
logger.Println("Key pair:", keyPair)
sendSignal(peer.signal.handshakeBegin)
logger.Println("Waiting for key-pair, peer", peer.id)
select {
case <-peer.signal.newKeyPair:
logger.Println("Key-pair negotiated for peer", peer.id)
goto NextPacket
case <-peer.signal.flushNonceQueue:
logger.Println("Clearing queue for peer", peer.id)
peer.FlushNonceQueue()
elem = nil
goto NextPacket
case <-peer.signal.stop:
return
}
}
2017-06-26 11:14:02 +00:00
// process current packet
2017-06-26 11:14:02 +00:00
if elem != nil {
2017-06-26 11:14:02 +00:00
// create work element
2017-06-26 11:14:02 +00:00
elem.keyPair = keyPair
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
elem.peer = peer
elem.mutex.Lock()
// add to parallel processing and sequential consuming queue
addToOutboundQueue(device.queue.encryption, elem)
addToOutboundQueue(peer.queue.outbound, elem)
elem = nil
}
2017-06-26 11:14:02 +00:00
}
}()
logger.Println("Routine, nonce worker, stopped for peer", peer.id)
2017-06-26 11:14:02 +00:00
}
/* Encrypts the elements in the queue
* and marks them for sequential consumption (by releasing the mutex)
*
* Obs. One instance per core
*/
func (device *Device) RoutineEncryption() {
var nonce [chacha20poly1305.NonceSize]byte
for work := range device.queue.encryption {
2017-07-01 21:29:22 +00:00
if work.IsDropped() {
continue
}
// populate header fields
2017-07-02 13:28:38 +00:00
func() {
header := work.data[:MessageTransportHeaderSize]
2017-06-26 11:14:02 +00:00
fieldType := header[0:4]
fieldReceiver := header[4:8]
fieldNonce := header[8:16]
2017-07-02 13:28:38 +00:00
binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
binary.LittleEndian.PutUint32(fieldReceiver, work.keyPair.remoteIndex)
binary.LittleEndian.PutUint64(fieldNonce, work.nonce)
}()
2017-07-02 13:28:38 +00:00
// encrypt content
2017-06-26 11:14:02 +00:00
func() {
binary.LittleEndian.PutUint64(nonce[4:], work.nonce)
work.packet = work.keyPair.send.Seal(
work.packet[:0],
nonce[:],
work.packet,
nil,
)
work.mutex.Unlock()
}()
// reslice to include header
2017-07-02 13:28:38 +00:00
work.packet = work.data[:MessageTransportHeaderSize+len(work.packet)]
// refresh key if necessary
work.peer.KeepKeyFreshSending()
}
}
/* Sequentially reads packets from queue and sends to endpoint
*
* Obs. Single instance per peer.
* The routine terminates then the outbound queue is closed.
*/
func (peer *Peer) RoutineSequentialSender() {
logger := peer.device.log.Debug
logger.Println("Routine, sequential sender, started for peer", peer.id)
device := peer.device
for {
select {
case <-peer.signal.stop:
logger.Println("Routine, sequential sender, stopped for peer", peer.id)
return
case work := <-peer.queue.outbound:
2017-07-01 21:29:22 +00:00
if work.IsDropped() {
continue
}
work.mutex.Lock()
func() {
if work.packet == nil {
return
}
peer.mutex.RLock()
defer peer.mutex.RUnlock()
if peer.endpoint == nil {
logger.Println("No endpoint for peer:", peer.id)
return
}
device.net.mutex.RLock()
defer device.net.mutex.RUnlock()
if device.net.conn == nil {
logger.Println("No source for device")
return
}
_, err := device.net.conn.WriteToUDP(work.packet, peer.endpoint)
2017-07-01 21:29:22 +00:00
if err != nil {
return
}
atomic.AddUint64(&peer.tx_bytes, uint64(len(work.packet)))
// shift keep-alive timer
if peer.persistentKeepaliveInterval != 0 {
interval := time.Duration(peer.persistentKeepaliveInterval) * time.Second
peer.timer.sendKeepalive.Reset(interval)
}
}()
}
2017-06-26 11:14:02 +00:00
}
}