405 lines
9.3 KiB
C
405 lines
9.3 KiB
C
#include <string.h>
|
|
#include "CalcEphem.h"
|
|
|
|
|
|
void CalcEphem(date, UT, c)
|
|
long int date; /* integer containing the date (e.g. 960829) */
|
|
double UT; /* Universal Time */
|
|
CTrans *c; /* structure containing all the relevent coord trans info */
|
|
{
|
|
|
|
int year, month, day;
|
|
double TU, TU2, TU3, T0, gmst;
|
|
double varep, varpi;
|
|
double eccen, epsilon;
|
|
double days, M, E, nu, lambnew;
|
|
double r0, earth_sun_distance;
|
|
double RA, DEC, RA_Moon, DEC_Moon;
|
|
double TDT, AGE, LambdaMoon, BetaMoon, R;
|
|
double jd(), hour24(), angle2pi(), angle360(), kepler(), Moon(), NewMoon();
|
|
double Ta, Tb, Tc, frac();
|
|
double SinGlat, CosGlat, SinGlon, CosGlon, Tau, lmst, x, y, z;
|
|
double SinTau, CosTau, SinDec, CosDec;
|
|
|
|
|
|
|
|
|
|
|
|
c->UT = UT;
|
|
year = (int)(date/10000);
|
|
month = (int)( (date - year*10000)/100 );
|
|
day = (int)( date - year*10000 - month*100 );
|
|
c->year = year;
|
|
c->month = month;
|
|
c->day = day;
|
|
|
|
c->doy = DayofYear(year, month, day);
|
|
c->dow = DayofWeek(year, month, day, c->dowstr);
|
|
|
|
|
|
|
|
/*
|
|
* Compute Greenwich Mean Sidereal Time (gmst)
|
|
* The TU here is number of Julian centuries
|
|
* since 2000 January 1.5
|
|
* From the 1996 astronomical almanac
|
|
*/
|
|
TU = (jd(year, month, day, 0.0) - 2451545.0)/36525.0;
|
|
TU2 = TU*TU;
|
|
TU3 = TU2*TU;
|
|
T0 = (6.0 + 41.0/60.0 + 50.54841/3600.0) + 8640184.812866/3600.0*TU
|
|
+ 0.093104/3600.0*TU2 - 6.2e-6/3600.0*TU3;
|
|
T0 = hour24(T0);
|
|
c->gmst = hour24(T0 + UT*1.002737909);
|
|
|
|
|
|
/* convert to radians for ease later on */
|
|
gmst = c->gmst*15.0*M_PI/180.0;
|
|
|
|
lmst = 24.0*frac( (c->gmst - c->Glon/15.0) / 24.0 );
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
*
|
|
* Construct Transformation Matrix from GEI to GSE systems
|
|
*
|
|
*
|
|
* First compute:
|
|
* mean ecliptic longitude of sun at epoch TU (varep)
|
|
* elciptic longitude of perigee at epoch TU (varpi)
|
|
* eccentricity of orbit at epoch TU (eccen)
|
|
*
|
|
* The TU here is the number of Julian centuries since
|
|
* 1900 January 0.0 (= 2415020.0)
|
|
*/
|
|
TDT = UT + 59.0/3600.0;
|
|
TU = (jd(year, month, day, TDT) - 2415020.0)/36525.0;
|
|
varep = (279.6966778 + 36000.76892*TU + 0.0003025*TU*TU)*RadPerDeg;
|
|
varpi = (281.2208444 + 1.719175*TU + 0.000452778*TU*TU)*RadPerDeg;
|
|
eccen = 0.01675104 - 0.0000418*TU - 0.000000126*TU*TU;
|
|
c->eccentricity = eccen;
|
|
|
|
|
|
|
|
/*
|
|
* Compute the Obliquity of the Ecliptic at epoch TU
|
|
* The TU in this formula is the number of Julian
|
|
* centuries since epoch 2000 January 1.5
|
|
*/
|
|
TU = (jd(year, month, day, TDT) - jd(2000, 1, 1, 12.0))/36525.0;
|
|
epsilon = (23.43929167 - 0.013004166*TU - 1.6666667e-7*TU*TU
|
|
- 5.0277777778e-7*TU*TU*TU)*RadPerDeg;
|
|
c->epsilon = epsilon;
|
|
|
|
|
|
/*
|
|
* Compute:
|
|
* Number of Days since epoch 1990.0 (days)
|
|
* The Mean Anomaly (M)
|
|
* The True Anomaly (nu)
|
|
* The Eccentric Anomaly via Keplers equation (E)
|
|
*
|
|
*
|
|
*/
|
|
days = jd(year, month, day, TDT) - jd(year, month, day, TDT);
|
|
M = angle2pi(2.0*M_PI/365.242191*days + varep - varpi);
|
|
E = kepler(M, eccen);
|
|
nu = 2.0*atan( sqrt((1.0+eccen)/(1.0-eccen))*tan(E/2.0) );
|
|
lambnew = angle2pi(nu + varpi);
|
|
c->lambda_sun = lambnew;
|
|
|
|
|
|
/*
|
|
* Compute distance from earth to the sun
|
|
*/
|
|
r0 = 1.495985e8; /* in km */
|
|
earth_sun_distance = r0*(1-eccen*eccen)/(1.0 + eccen*cos(nu))/6371.2;
|
|
c->earth_sun_dist = earth_sun_distance;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Compute Right Ascension and Declination of the Sun
|
|
*/
|
|
RA = angle360(atan2(sin(lambnew)*cos(epsilon), cos(lambnew))*180.0/M_PI);
|
|
DEC = asin(sin(epsilon)*sin(lambnew))*180.0/M_PI;
|
|
c->RA_sun = RA;
|
|
c->DEC_sun = DEC;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Compute Moon Phase and AGE Stuff. The AGE that comes out of Moon()
|
|
* is actually the Phase converted to days. Since AGE is actually defined
|
|
* to be time since last NewMoon, we need to figure out what the JD of the
|
|
* last new moon was. Thats done below....
|
|
*/
|
|
TU = (jd(year, month, day, TDT) - 2451545.0)/36525.0;
|
|
c->MoonPhase = Moon(TU, &LambdaMoon, &BetaMoon, &R, &AGE);
|
|
LambdaMoon *= RadPerDeg;
|
|
BetaMoon *= RadPerDeg;
|
|
|
|
|
|
RA_Moon = angle360(atan2(sin(LambdaMoon)*cos(epsilon)-tan(BetaMoon)*sin(epsilon), cos(LambdaMoon))*DegPerRad);
|
|
DEC_Moon = asin( sin(BetaMoon)*cos(epsilon) + cos(BetaMoon)*sin(epsilon)*sin(LambdaMoon))*DegPerRad;
|
|
c->RA_moon = RA_Moon;
|
|
c->DEC_moon = DEC_Moon;
|
|
|
|
|
|
/*
|
|
* Compute Alt/Az coords
|
|
*/
|
|
Tau = (15.0*lmst - RA_Moon)*RadPerDeg;
|
|
CosGlat = cos(c->Glat*RadPerDeg); SinGlat = sin(c->Glat*RadPerDeg);
|
|
CosGlon = cos(c->Glon*RadPerDeg); SinGlon = sin(c->Glon*RadPerDeg);
|
|
CosTau = cos(Tau); SinTau = sin(Tau);
|
|
SinDec = sin(DEC_Moon*RadPerDeg); CosDec = cos(DEC_Moon*RadPerDeg);
|
|
x = CosDec*CosTau*SinGlat - SinDec*CosGlat;
|
|
y = CosDec*SinTau;
|
|
z = CosDec*CosTau*CosGlat + SinDec*SinGlat;
|
|
c->A_moon = DegPerRad*atan2(y, x);
|
|
c->h_moon = DegPerRad*asin(z);
|
|
c->Visible = (c->h_moon < 0.0) ? 0 : 1;
|
|
|
|
|
|
|
|
/*
|
|
* Compute accurate AGE of the Moon
|
|
*/
|
|
Tb = TU - AGE/36525.0; /* should be very close to minimum */
|
|
Ta = Tb - 0.4/36525.0;
|
|
Tc = Tb + 0.4/36525.0;
|
|
c->MoonAge = (TU - NewMoon(Ta, Tb, Tc))*36525.0;
|
|
|
|
|
|
|
|
/*
|
|
* Compute Earth-Moon distance
|
|
*/
|
|
c->EarthMoonDistance = R;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double kepler(M, e)
|
|
double M, e;
|
|
{
|
|
int n=0;
|
|
double E, Eold, eps = 1.0e-8;
|
|
|
|
|
|
|
|
E = M + e*sin(M);
|
|
do{
|
|
Eold = E;
|
|
E = Eold + (M-Eold+e*sin(Eold))
|
|
/(1.0-e*cos(Eold));
|
|
++n;
|
|
}while((fabs(E-Eold) > eps) && (n < 100));
|
|
return(E);
|
|
}
|
|
|
|
|
|
|
|
|
|
int DayofYear(year, month, day)
|
|
int year, month, day;
|
|
{
|
|
double jd();
|
|
return((int)(jd(year, month, day, 0.0) - jd(year, 1, 0, 0.0)));
|
|
}
|
|
|
|
|
|
|
|
|
|
int DayofWeek(year, month, day, dowstr)
|
|
int year, month, day;
|
|
char dowstr[];
|
|
{
|
|
double JD, A, Afrac, jd();
|
|
int n, iA;
|
|
|
|
JD = jd(year, month, day, 0.0);
|
|
A = (JD + 1.5)/7.0;
|
|
iA = (int)A;
|
|
Afrac = A - (double)iA;
|
|
n = (int)(Afrac*7.0 + 0.5);
|
|
switch(n){
|
|
case 0:
|
|
strcpy(dowstr, "Sunday");
|
|
break;
|
|
case 1:
|
|
strcpy(dowstr, "Monday");
|
|
break;
|
|
case 2:
|
|
strcpy(dowstr, "Tuesday");
|
|
break;
|
|
case 3:
|
|
strcpy(dowstr, "Wednesday");
|
|
break;
|
|
case 4:
|
|
strcpy(dowstr, "Thursday");
|
|
break;
|
|
case 5:
|
|
strcpy(dowstr, "Friday");
|
|
break;
|
|
case 6:
|
|
strcpy(dowstr, "Saturday");
|
|
break;
|
|
}
|
|
return(n);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
* Compute the Julian Day number for the given date.
|
|
* Julian Date is the number of days since noon of Jan 1 4713 B.C.
|
|
*/
|
|
double jd(ny, nm, nd, UT)
|
|
int ny, nm, nd;
|
|
double UT;
|
|
{
|
|
double A, B, C, D, JD, day;
|
|
|
|
day = nd + UT/24.0;
|
|
|
|
|
|
if ((nm == 1) || (nm == 2)){
|
|
ny = ny - 1;
|
|
nm = nm + 12;
|
|
}
|
|
|
|
if (((double)ny+nm/12.0+day/365.25)>=(1582.0+10.0/12.0+15.0/365.25)){
|
|
A = ((int)(ny / 100.0));
|
|
B = 2.0 - A + (int)(A/4.0);
|
|
}
|
|
else{
|
|
B = 0.0;
|
|
}
|
|
|
|
if (ny < 0.0){
|
|
C = (int)((365.25*(double)ny) - 0.75);
|
|
}
|
|
else{
|
|
C = (int)(365.25*(double)ny);
|
|
}
|
|
|
|
D = (int)(30.6001*(double)(nm+1));
|
|
|
|
|
|
JD = B + C + D + day + 1720994.5;
|
|
return(JD);
|
|
|
|
}
|
|
|
|
double hour24(hour)
|
|
double hour;
|
|
{
|
|
int n;
|
|
|
|
if (hour < 0.0){
|
|
n = (int)(hour/24.0) - 1;
|
|
return(hour-n*24.0);
|
|
}
|
|
else if (hour > 24.0){
|
|
n = (int)(hour/24.0);
|
|
return(hour-n*24.0);
|
|
}
|
|
else{
|
|
return(hour);
|
|
}
|
|
}
|
|
|
|
double angle2pi(angle)
|
|
double angle;
|
|
{
|
|
int n;
|
|
double a;
|
|
a = 2.0*M_PI;
|
|
|
|
if (angle < 0.0){
|
|
n = (int)(angle/a) - 1;
|
|
return(angle-n*a);
|
|
}
|
|
else if (angle > a){
|
|
n = (int)(angle/a);
|
|
return(angle-n*a);
|
|
}
|
|
else{
|
|
return(angle);
|
|
}
|
|
}
|
|
|
|
double angle360(angle)
|
|
double angle;
|
|
{
|
|
int n;
|
|
|
|
if (angle < 0.0){
|
|
n = (int)(angle/360.0) - 1;
|
|
return(angle-n*360.0);
|
|
}
|
|
else if (angle > 360.0){
|
|
n = (int)(angle/360.0);
|
|
return(angle-n*360.0);
|
|
}
|
|
else{
|
|
return(angle);
|
|
}
|
|
}
|
|
|
|
|
|
void Radec_to_Cart(ra, dec, r)
|
|
double ra, dec; /* RA and DEC */
|
|
Vector *r; /* returns corresponding cartesian unit vector */
|
|
{
|
|
|
|
/*
|
|
* Convert ra/dec from degrees to radians
|
|
*/
|
|
ra *= RadPerDeg;
|
|
dec *= RadPerDeg;
|
|
|
|
|
|
/*
|
|
* Compute cartesian coordinates (in GEI)
|
|
*/
|
|
r->x = cos(dec) * cos(ra);
|
|
r->y = cos(dec) * sin(ra);
|
|
r->z = sin(dec);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int LeapYear(year)
|
|
int year;
|
|
{
|
|
if ((year%100 == 0)&&(year%400 != 0)) return(0);
|
|
else if (year%4 == 0) return(1);
|
|
else return(0);
|
|
}
|
|
|
|
|
|
|
|
|