361 lines
10 KiB
C
361 lines
10 KiB
C
/* WMGlobe 1.3 - All the Earth on a WMaker Icon
|
|
* copyright (C) 1998,99,2000,01 Jerome Dumonteil <jerome.dumonteil@linuxfr.org>
|
|
* sunpos.c is taken from Xearth 1.0 (and part of 1.1):
|
|
*/
|
|
/*
|
|
* sunpos.c
|
|
* kirk johnson
|
|
* july 1993
|
|
*
|
|
* code for calculating the position on the earth's surface for which
|
|
* the sun is directly overhead (adapted from _practical astronomy
|
|
* with your calculator, third edition_, peter duffett-smith,
|
|
* cambridge university press, 1988.)
|
|
*
|
|
*
|
|
* Copyright (C) 1989, 1990, 1993, 1994, 1995 Kirk Lauritz Johnson
|
|
*
|
|
* Parts of the source code (as marked) are:
|
|
* Copyright (C) 1989, 1990, 1991 by Jim Frost
|
|
* Copyright (C) 1992 by Jamie Zawinski <jwz@lucid.com>
|
|
*
|
|
* Permission to use, copy, modify and freely distribute xearth for
|
|
* non-commercial and not-for-profit purposes is hereby granted
|
|
* without fee, provided that both the above copyright notice and this
|
|
* permission notice appear in all copies and in supporting
|
|
* documentation.
|
|
*
|
|
* Unisys Corporation holds worldwide patent rights on the Lempel Zev
|
|
* Welch (LZW) compression technique employed in the CompuServe GIF
|
|
* image file format as well as in other formats. Unisys has made it
|
|
* clear, however, that it does not require licensing or fees to be
|
|
* paid for freely distributed, non-commercial applications (such as
|
|
* xearth) that employ LZW/GIF technology. Those wishing further
|
|
* information about licensing the LZW patent should contact Unisys
|
|
* directly at (lzw_info@unisys.com) or by writing to
|
|
*
|
|
* Unisys Corporation
|
|
* Welch Licensing Department
|
|
* M/S-C1SW19
|
|
* P.O. Box 500
|
|
* Blue Bell, PA 19424
|
|
*
|
|
* The author makes no representations about the suitability of this
|
|
* software for any purpose. It is provided "as is" without express or
|
|
* implied warranty.
|
|
*
|
|
* THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT
|
|
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
|
|
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include <time.h>
|
|
|
|
#ifndef PI
|
|
#define PI 3.141592653
|
|
#endif
|
|
#define TWOPI (2*PI)
|
|
#define DegsToRads(x) ((x)*(TWOPI/360))
|
|
|
|
/*
|
|
* the epoch upon which these astronomical calculations are based is
|
|
* 1990 january 0.0, 631065600 seconds since the beginning of the
|
|
* "unix epoch" (00:00:00 GMT, Jan. 1, 1970)
|
|
*
|
|
* given a number of seconds since the start of the unix epoch,
|
|
* DaysSinceEpoch() computes the number of days since the start of the
|
|
* astronomical epoch (1990 january 0.0)
|
|
*/
|
|
|
|
#define EpochStart (631065600)
|
|
#define DaysSinceEpoch(secs) (((secs)-EpochStart)*(1.0/(24*3600)))
|
|
|
|
/*
|
|
* assuming the apparent orbit of the sun about the earth is circular,
|
|
* the rate at which the orbit progresses is given by RadsPerDay --
|
|
* TWOPI radians per orbit divided by 365.242191 days per year:
|
|
*/
|
|
|
|
#define RadsPerDay (TWOPI/365.242191)
|
|
|
|
/*
|
|
* details of sun's apparent orbit at epoch 1990.0 (after
|
|
* duffett-smith, table 6, section 46)
|
|
*
|
|
* Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees
|
|
* OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees
|
|
* Eccentricity (eccentricity of orbit) 0.016713
|
|
*/
|
|
|
|
#define Epsilon_g (DegsToRads(279.403303))
|
|
#define OmegaBar_g (DegsToRads(282.768422))
|
|
#define Eccentricity (0.016713)
|
|
|
|
/*
|
|
* MeanObliquity gives the mean obliquity of the earth's axis at epoch
|
|
* 1990.0 (computed as 23.440592 degrees according to the method given
|
|
* in duffett-smith, section 27)
|
|
*/
|
|
#define MeanObliquity (DegsToRads(23.440592))
|
|
|
|
/*
|
|
* Lunar parameters, epoch January 0, 1990.0 (from Xearth 1.1)
|
|
*/
|
|
#define MoonMeanLongitude DegsToRads(318.351648)
|
|
#define MoonMeanLongitudePerigee DegsToRads( 36.340410)
|
|
#define MoonMeanLongitudeNode DegsToRads(318.510107)
|
|
#define MoonInclination DegsToRads( 5.145396)
|
|
|
|
#define SideralMonth (27.3217)
|
|
|
|
/*
|
|
* Force an angular value into the range [-PI, +PI]
|
|
*/
|
|
#define Normalize(x) \
|
|
do { \
|
|
if ((x) < -PI) \
|
|
do (x) += TWOPI; while ((x) < -PI); \
|
|
else if ((x) > PI) \
|
|
do (x) -= TWOPI; while ((x) > PI); \
|
|
} while (0)
|
|
|
|
static double solve_keplers_equation(double M);
|
|
static double mean_sun(double D);
|
|
static double sun_ecliptic_longitude(time_t ssue);
|
|
static void ecliptic_to_equatorial(double lambda, double beta,
|
|
double *alpha, double *delta);
|
|
static double julian_date(int y, int m, int d);
|
|
static double GST(time_t ssue);
|
|
|
|
/*
|
|
* solve Kepler's equation via Newton's method
|
|
* (after duffett-smith, section 47)
|
|
*/
|
|
static double solve_keplers_equation(double M)
|
|
{
|
|
double E;
|
|
double delta;
|
|
|
|
E = M;
|
|
while (1) {
|
|
delta = E - Eccentricity * sin(E) - M;
|
|
if (fabs(delta) <= 1e-10)
|
|
break;
|
|
E -= delta / (1 - Eccentricity * cos(E));
|
|
}
|
|
return E;
|
|
}
|
|
|
|
/*
|
|
* Calculate the position of the mean sun: where the sun would
|
|
* be if the earth's orbit were circular instead of ellipictal.
|
|
*/
|
|
|
|
static double mean_sun(double D)
|
|
/* double D; days since ephemeris epoch */
|
|
{
|
|
double N, M;
|
|
|
|
N = RadsPerDay * D;
|
|
N = fmod(N, TWOPI);
|
|
if (N < 0)
|
|
N += TWOPI;
|
|
|
|
M = N + Epsilon_g - OmegaBar_g;
|
|
if (M < 0)
|
|
M += TWOPI;
|
|
return M;
|
|
}
|
|
|
|
/*
|
|
* compute ecliptic longitude of sun (in radians)
|
|
* (after duffett-smith, section 47)
|
|
*/
|
|
static double sun_ecliptic_longitude(time_t ssue)
|
|
/* seconds since unix epoch */
|
|
{
|
|
double D, N;
|
|
double M_sun, E;
|
|
double v;
|
|
|
|
D = DaysSinceEpoch(ssue);
|
|
|
|
N = RadsPerDay * D;
|
|
M_sun = mean_sun(D);
|
|
E = solve_keplers_equation(M_sun);
|
|
v = 2 * atan(sqrt((1 + Eccentricity) / (1 - Eccentricity)) *
|
|
tan(E / 2));
|
|
|
|
return (v + OmegaBar_g);
|
|
}
|
|
|
|
|
|
/*
|
|
* convert from ecliptic to equatorial coordinates
|
|
* (after duffett-smith, section 27)
|
|
*/
|
|
static void ecliptic_to_equatorial(double lambda, double beta,
|
|
double *alpha, double *delta)
|
|
/*
|
|
* double lambda; ecliptic longitude
|
|
* double beta; ecliptic latitude
|
|
* double *alpha; (return) right ascension
|
|
* double *delta; (return) declination
|
|
*/
|
|
{
|
|
double sin_e, cos_e;
|
|
|
|
sin_e = sin(MeanObliquity);
|
|
cos_e = cos(MeanObliquity);
|
|
|
|
*alpha = atan2(sin(lambda) * cos_e - tan(beta) * sin_e, cos(lambda));
|
|
*delta = asin(sin(beta) * cos_e + cos(beta) * sin_e * sin(lambda));
|
|
}
|
|
|
|
|
|
/*
|
|
* computing julian dates (assuming gregorian calendar, thus this is
|
|
* only valid for dates of 1582 oct 15 or later)
|
|
* (after duffett-smith, section 4)
|
|
*/
|
|
static double julian_date(int y, int m, int d)
|
|
/*
|
|
* int y; year (e.g. 19xx)
|
|
* int m; month (jan=1, feb=2, ...)
|
|
* int d; day of month
|
|
*/
|
|
{
|
|
int A, B, C, D;
|
|
double JD;
|
|
|
|
/* lazy test to ensure gregorian calendar */
|
|
/*
|
|
* ASSERT(y >= 1583);
|
|
*/
|
|
|
|
if ((m == 1) || (m == 2)) {
|
|
y -= 1;
|
|
m += 12;
|
|
}
|
|
A = y / 100;
|
|
B = 2 - A + (A / 4);
|
|
C = (int) (365.25 * y);
|
|
D = (int) (30.6001 * (m + 1));
|
|
|
|
JD = B + C + D + d + 1720994.5;
|
|
|
|
return JD;
|
|
}
|
|
|
|
|
|
/*
|
|
* compute greenwich mean sidereal time (GST) corresponding to a given
|
|
* number of seconds since the unix epoch
|
|
* (after duffett-smith, section 12)
|
|
*/
|
|
static double GST(time_t ssue)
|
|
/*time_t ssue; seconds since unix epoch */
|
|
{
|
|
double JD;
|
|
double T, T0;
|
|
double UT;
|
|
struct tm *tm;
|
|
|
|
tm = gmtime(&ssue);
|
|
|
|
JD = julian_date(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday);
|
|
T = (JD - 2451545) / 36525;
|
|
|
|
T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558;
|
|
|
|
T0 = fmod(T0, 24.0);
|
|
if (T0 < 0)
|
|
T0 += 24;
|
|
|
|
UT = tm->tm_hour + (tm->tm_min + tm->tm_sec / 60.0) / 60.0;
|
|
|
|
T0 += UT * 1.002737909;
|
|
T0 = fmod(T0, 24.0);
|
|
if (T0 < 0)
|
|
T0 += 24;
|
|
|
|
return T0;
|
|
}
|
|
|
|
|
|
/*
|
|
* given a particular time (expressed in seconds since the unix
|
|
* epoch), compute position on the earth (lat, lon) such that sun is
|
|
* directly overhead.
|
|
*/
|
|
void sun_position(time_t ssue, double *lat, double *lon)
|
|
/* time_t ssue; seconds since unix epoch */
|
|
/* double *lat; (return) latitude in rad */
|
|
/* double *lon; (return) longitude in rad */
|
|
{
|
|
double lambda;
|
|
double alpha, delta;
|
|
double tmp;
|
|
|
|
lambda = sun_ecliptic_longitude(ssue);
|
|
ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta);
|
|
|
|
tmp = alpha - (TWOPI / 24) * GST(ssue);
|
|
Normalize(tmp);
|
|
*lon = tmp;
|
|
*lat = delta;
|
|
}
|
|
|
|
/*
|
|
* given a particular time (expressed in seconds since the unix
|
|
* epoch), compute position on the earth (lat, lon) such that the
|
|
* moon is directly overhead.
|
|
*
|
|
* Based on duffett-smith **2nd ed** section 61; combines some steps
|
|
* into single expressions to reduce the number of extra variables.
|
|
*/
|
|
void moon_position(time_t ssue, double *lat, double *lon)
|
|
/* time_t ssue; seconds since unix epoch */
|
|
/* double *lat; (return) latitude in ra */
|
|
/* double *lon; (return) longitude in ra */
|
|
{
|
|
double lambda, beta;
|
|
double D, L, Ms, Mm, N, Ev, Ae, Ec, alpha, delta;
|
|
|
|
D = DaysSinceEpoch(ssue);
|
|
lambda = sun_ecliptic_longitude(ssue);
|
|
Ms = mean_sun(D);
|
|
|
|
L = fmod(D / SideralMonth, 1.0) * TWOPI + MoonMeanLongitude;
|
|
Normalize(L);
|
|
Mm = L - DegsToRads(0.1114041 * D) - MoonMeanLongitudePerigee;
|
|
Normalize(Mm);
|
|
N = MoonMeanLongitudeNode - DegsToRads(0.0529539 * D);
|
|
Normalize(N);
|
|
Ev = DegsToRads(1.2739) * sin(2.0 * (L - lambda) - Mm);
|
|
Ae = DegsToRads(0.1858) * sin(Ms);
|
|
Mm += Ev - Ae - DegsToRads(0.37) * sin(Ms);
|
|
Ec = DegsToRads(6.2886) * sin(Mm);
|
|
L += Ev + Ec - Ae + DegsToRads(0.214) * sin(2.0 * Mm);
|
|
L += DegsToRads(0.6583) * sin(2.0 * (L - lambda));
|
|
N -= DegsToRads(0.16) * sin(Ms);
|
|
|
|
L -= N;
|
|
lambda = (fabs(cos(L)) < 1e-12) ?
|
|
(N + sin(L) * cos(MoonInclination) * PI / 2) :
|
|
(N + atan2(sin(L) * cos(MoonInclination), cos(L)));
|
|
Normalize(lambda);
|
|
beta = asin(sin(L) * sin(MoonInclination));
|
|
ecliptic_to_equatorial(lambda, beta, &alpha, &delta);
|
|
alpha -= (TWOPI / 24) * GST(ssue);
|
|
Normalize(alpha);
|
|
*lon = alpha;
|
|
*lat = delta;
|
|
}
|