#define _GNU_SOURCE #include #include #include #include #include #include #include "libacpi.h" extern char *state[]; extern global_t *globals; /* temp buffer */ char buf[512]; /* local proto */ int acpi_get_design_cap(int batt); /* initialise the batteries */ int init_batteries(void) { DIR *battdir; struct dirent *batt; char *name, *tmp1, *tmp2; char *names[MAXBATT]; int i, j; /* now enumerate batteries */ batt_count = 0; battdir = opendir("/proc/acpi/battery"); if (battdir == NULL) { fprintf(stderr, "No batteries or ACPI not supported\n"); return 1; } while ((batt = readdir(battdir))) { /* there's a serious problem with this code when there's * more than one battery: the readdir won't return the * entries in sorted order, so battery one won't * necessarily be the first one returned. So, we need * to sort them ourselves before adding them to the * batteries array. */ name = batt->d_name; /* skip . and .. */ if (!strncmp(".", name, 1) || !strncmp("..", name, 2)) continue; names[batt_count] = strdup(name); batt_count++; } closedir(battdir); /* A nice quick insertion sort, ala CLR. */ for (i = 1; i < batt_count; i++) { tmp1 = names[i]; j = i - 1; while ((j >= 0) && ((strcmp(tmp1, names[j])) < 0)) { tmp2 = names[j+1]; names[j+1] = names[j]; names[j] = tmp2; } } for (i = 0; i < batt_count; i++) { snprintf(batteries[i].name, MAX_NAME, "%s", names[i]); snprintf(batteries[i].info_file, MAX_NAME, "/proc/acpi/battery/%s/info", names[i]); snprintf(batteries[i].state_file, MAX_NAME, "/proc/acpi/battery/%s/state", names[i]); eprint(0, "battery detected at %s\n", batteries[i].info_file); fprintf(stderr, "found battery %s\n", names[i]); } /* tell user some info */ eprint(0, "%d batteries detected\n", batt_count); fprintf(stderr, "libacpi: found %d batter%s\n", batt_count, (batt_count == 1) ? "y" : "ies"); return 0; } /* the actual name of the subdirectory under ac_adapter may * be anything, so we need to read the directory and use the * name we find there. */ int init_ac_adapters(void) { DIR *acdir; struct dirent *adapter; adapter_t *ap = &globals->adapter; char *name; acdir = opendir("/proc/acpi/ac_adapter"); if (acdir == NULL) { fprintf(stderr, "Unable to open /proc/acpi/ac_adapter -" " are you sure this system supports ACPI?\n"); return 1; } name = NULL; while ((adapter = readdir(acdir)) != NULL) { name = adapter->d_name; if (!strncmp(".", name, 1) || !strncmp("..", name, 2)) continue; fprintf(stderr, "found adapter %s\n", name); } /* we /should/ only see one filename other than . and .. so * we'll just use the last value name acquires . . . */ ap->name = strdup(name); snprintf(ap->state_file, MAX_NAME, "/proc/acpi/ac_adapter/%s/state", ap->name); fprintf(stderr, "libacpi: found ac adapter %s\n", ap->name); return 0; } /* see if we have ACPI support and check version */ int power_init(void) { FILE *acpi; char buf[4096]; int acpi_ver = 0; int retval; if (!(acpi = fopen("/proc/acpi/info", "r"))) { fprintf(stderr, "This system does not support ACPI\n"); return 1; } /* okay, now see if we got the right version */ fread(buf, 4096, 1, acpi); acpi_ver = strtol(buf + 25, NULL, 10); eprint(0, "ACPI version detected: %d\n", acpi_ver); if (acpi_ver < 20020214) { fprintf(stderr, "This version requires ACPI subsystem version 20020214\n"); fclose(acpi); return 1; } /* yep, all good */ fclose(acpi); if (!(retval = init_batteries())) retval = init_ac_adapters(); return retval; } char *get_value(char *string) { char *retval; int i; if (string == NULL) return NULL; i = 0; while (string[i] != ':') i++; while (!isalnum(string[i])) i++; retval = (string + i); return retval; } power_state_t get_power_status(void) { FILE *file; char buf[1024]; char *val; adapter_t *ap = &globals->adapter; if ((file = fopen(ap->state_file, "r")) == NULL) { snprintf(buf, 1024, "Could not open state file %s", ap->state_file); perror(buf); return PS_ERR; } fgets(buf, 1024, file); fclose(file); val = get_value(buf); if ((strncmp(val, "on-line", 7)) == 0) return AC; else return BATT; } int get_battery_info(int batt_no) { FILE *file; battery_t *info = &batteries[batt_no]; char buf[1024]; char *entry; int buflen; char *val; if ((file = fopen(info->info_file, "r")) == NULL) { /* this is cheating, but string concatenation should work . . . */ fprintf(stderr, "Could not open %s:", info->info_file ); perror(NULL); return 0; } /* grab the contents of the file */ buflen = fread(buf, sizeof(buf), 1, file); fclose(file); /* check to see if battery is present */ entry = strstr(buf, "present:"); val = get_value(entry); if ((strncmp(val, "yes", 3)) == 0) { info->present = 1; } else { eprint(0, "Battery %s not present\n", info->name); info->present = 0; return 0; } /* get design capacity * note that all these integer values can also contain the * string 'unknown', so we need to check for this. */ entry = strstr(buf, "design capacity:"); val = get_value(entry); if (val[0] == 'u') info->design_cap = -1; else info->design_cap = strtoul(val, NULL, 10); /* get last full capacity */ entry = strstr(buf, "last full capacity:"); val = get_value(entry); if (val[0] == 'u') info->last_full_cap = -1; else info->last_full_cap = strtoul(val, NULL, 10); /* get design voltage */ entry = strstr(buf, "design voltage:"); val = get_value(entry); if (val[0] == 'u') info->design_voltage = -1; else info->design_voltage = strtoul(val, NULL, 10); if ((file = fopen(info->state_file, "r")) == NULL) { fprintf(stderr, "Could not open %s:", info->state_file ); perror(NULL); return 0; } /* grab the file contents */ buflen = fread(buf, sizeof(buf), 1, file); fclose(file); /* check to see if battery is present */ entry = strstr(buf, "present:"); val = get_value(entry); if ((strncmp(val, "yes", 3)) == 0) { info->present = 1; } else { info->present = 0; eprint(1, "Battery %s no longer present\n", info->name); return 0; } /* get capacity state * note that this has only two values (at least, in the 2.4.21-rc2 * source code) - ok and critical. */ entry = strstr(buf, "capacity state:"); val = get_value(entry); if (val[0] == 'u') info->capacity_state = CS_ERR; else if ((strncmp(val, "ok", 2)) == 0) info->capacity_state = OK; else info->capacity_state = CRITICAL; /* get charging state */ entry = strstr(buf, "charging state:"); val = get_value(entry); if (val[0] == 'u') info->charge_state = CH_ERR; else if ((strncmp(val, "discharging", 10)) == 0) info->charge_state = DISCHARGE; else info->charge_state = CHARGE; /* get current rate of burn * note that if it's on AC, this will report 0 */ entry = strstr(buf, "present rate:"); val = get_value(entry); if (val[0] == 'u') { info->present_rate = -1; } else { int rate; rate = strtoul(val, NULL, 10); if (rate != 0) info->present_rate = rate; } /* get remaining capacity */ entry = strstr(buf, "remaining capacity:"); val = get_value(entry); if (val[0] == 'u') info->remaining_cap = -1; else info->remaining_cap = strtoul(val, NULL, 10); /* get current voltage */ entry = strstr(buf, "present voltage:"); val = get_value(entry); if (val[0] == 'u') info->present_voltage = -1; else info->present_voltage = strtoul(val, NULL, 10); return 1; } /* * 2003-7-1. * In order to make this code more convenient for things other than * just plain old wmacpi-ng I'm breaking the basic functionality * up into several chunks: collecting and collating info for a * single battery, calculating the global info (such as rtime), and * some stuff to provide a similar interface to now. */ /* calculate the percentage remaining, using the values of * remaining capacity and last full capacity, as outlined in * the ACPI spec v2.0a, section 3.9.3. */ static int calc_remaining_percentage(int batt) { float rcap, lfcap; battery_t *binfo; int retval; binfo = &batteries[batt]; rcap = (float)binfo->remaining_cap; lfcap = (float)binfo->last_full_cap; /* we use -1 to indicate that the value is unknown . . . */ if (rcap < 0) { eprint(0, "unknown percentage value\n"); retval = -1; } else { if (lfcap <= 0) lfcap = 1; retval = (int)((rcap/lfcap) * 100.0); eprint(0, "percent: %d\n", retval); } return retval; } /* calculate remaining time until the battery is charged. * when charging, the battery state file reports the * current being used to charge the battery. We can use * this and the remaining capacity to work out how long * until it reaches the last full capacity of the battery. * XXX: make sure this is actually portable . . . */ static int calc_charge_time(int batt) { float rcap, lfcap; battery_t *binfo; int charge_time = 0; binfo = &batteries[batt]; if (binfo->charge_state == CHARGE) { if (binfo->present_rate == -1) { eprint(0, "unknown present rate\n"); charge_time = -1; } else { lfcap = (float)binfo->last_full_cap; rcap = (float)binfo->remaining_cap; charge_time = (int)(((lfcap - rcap)/binfo->present_rate) * 60.0); } } else if (binfo->charge_time) charge_time = 0; return charge_time; } void acquire_batt_info(int batt) { battery_t *binfo; adapter_t *ap = &globals->adapter; get_battery_info(batt); binfo = &batteries[batt]; if (!binfo->present) { binfo->percentage = 0; binfo->valid = 0; binfo->charge_time = 0; globals->rtime = 0; return; } binfo->percentage = calc_remaining_percentage(batt); /* set the battery's capacity state, based (at present) on some * guesstimated values: more than 75% == HIGH, 25% to 75% MED, and * less than 25% is LOW. Less than globals->crit_level is CRIT. */ if (binfo->percentage == -1) binfo->state = BS_ERR; if (binfo->percentage < globals->crit_level) binfo->state = CRIT; else if (binfo->percentage > 75) binfo->state = HIGH; else if (binfo->percentage > 25) binfo->state = MED; else binfo->state = LOW; /* we need to /know/ that we've got a valid state for the * globals->power value . . . .*/ ap->power = get_power_status(); if ((ap->power != AC) && (binfo->charge_state == DISCHARGE)) { /* we're not on power, and not charging. So we might as well * check if we're at a critical battery level, and calculate * other interesting stuff . . . */ if (binfo->capacity_state == CRITICAL) { eprint(1, "Received critical battery status"); ap->power = HARD_CRIT; } } binfo->charge_time = calc_charge_time(batt); /* and finally, we tell anyone who wants to use this information * that it's now valid . . .*/ binfo->valid = 1; } void acquire_all_batt_info(void) { int i; for(i = 0; i < batt_count; i++) acquire_batt_info(i); } void acquire_global_info(void) { int i; int rtime; float rcap = 0; float rate = 0; battery_t *binfo; adapter_t *ap = &globals->adapter; static float rate_samples[SAMPLES]; static int j = 0; static int sample_count = 0; static int n = 0; /* calculate the time remaining, using the battery's remaining * capacity and the reported burn rate (3.9.3). * For added accuracy, we average the value over the last * SAMPLES number of calls, or for anything less than this we * simply report the raw number. */ /* XXX: this needs to correctly handle the case where * any of the values used is unknown (which we flag using * -1). */ for (i = 0; i < batt_count; i++) { binfo = &batteries[i]; if (binfo->present && binfo->valid) { rcap += (float)binfo->remaining_cap; rate += (float)binfo->present_rate; } } rate_samples[j] = rate; j++, sample_count++; j = j % SAMPLES; /* for the first SAMPLES number of calls we calculate the * average based on sample_count, then we use SAMPLES to * calculate the rolling average. */ /* when this fails, n should be equal to SAMPLES. */ if (sample_count < SAMPLES) n++; for (i = 0, rate = 0; i < n; i++) { /* if any of our samples are invalid, we drop * straight out, and flag our unknown values. */ if (rate_samples[i] < 0) { rate = -1; rtime = -1; goto out; } rate += rate_samples[i]; } rate = rate/(float)n; if ((rcap < 1) || (rate < 1)) { rtime = 0; goto out; } if (rate <= 0) rate = 1; /* time remaining in minutes */ rtime = (int)((rcap/rate) * 60.0); if(rtime <= 0) rtime = 0; out: eprint(0, "time rem: %d\n", rtime); globals->rtime = rtime; /* get the power status. * note that this is actually reported seperately from the * battery info, under /proc/acpi/ac_adapter/AC/state */ ap->power = get_power_status(); } void acquire_all_info(void) { acquire_all_batt_info(); acquire_global_info(); }