dockapps/wmMatrix/yarandom.c

113 lines
3.6 KiB
C
Raw Normal View History

2012-08-14 13:04:14 +00:00
#define HAVE_UNISTD_H 1
#define GETTIMEOFDAY_TWO_ARGS 1
/* yarandom.c -- Yet Another Random Number Generator.
The unportable mess that is rand(), random(), drand48() and friends led me
to ask Phil Karlton <karlton@netscape.com> what the Right Thing to Do was.
He responded with this. It is non-cryptographically secure, reasonably
random (more so than anything that is in any C library), and very fast.
I don't understand how it works at all, but he says "look at Knuth,
Vol. 2 (original edition), page 26, Algorithm A. In this case n=55,
k=20 and m=2^32."
So there you have it.
---------------------------
Note: xlockmore 4.03a10 uses this very simple RNG:
if ((seed = seed % 44488 * 48271 - seed / 44488 * 3399) < 0)
seed += 2147483647;
return seed-1;
of which it says
``Dr. Park's algorithm published in the Oct. '88 ACM "Random Number
Generators: Good Ones Are Hard To Find" His version available at
ftp://cs.wm.edu/pub/rngs.tar Present form by many authors.''
Karlton says: ``the usual problem with that kind of RNG turns out to
be unexepected short cycles for some word lengths.''
Karlton's RNG is faster, since it does three adds and two stores, while the
xlockmore RNG does two multiplies, two divides, three adds, and one store.
Compiler optimizations make a big difference here:
gcc -O: difference is 1.2x.
gcc -O2: difference is 1.4x.
gcc -O3: difference is 1.5x.
SGI cc -O: difference is 2.4x.
SGI cc -O2: difference is 2.4x.
SGI cc -O3: difference is 5.1x.
Irix 6.2; Indy r5k; SGI cc version 6; gcc version 2.7.2.1.
*/
#ifdef HAVE_UNISTD_H
# include <unistd.h> /* for getpid() */
#endif
#include <sys/time.h> /* for gettimeofday() */
#include "yarandom.h"
/* The following 'random' numbers are taken from CRC, 18th Edition, page 622.
Each array element was taken from the corresponding line in the table,
except that a[0] was from line 100. 8s and 9s in the table were simply
skipped. The high order digit was taken mod 4.
*/
#define VectorSize 55
static unsigned int a[VectorSize] = {
035340171546, 010401501101, 022364657325, 024130436022, 002167303062, /* 5 */
037570375137, 037210607110, 016272055420, 023011770546, 017143426366, /* 10 */
014753657433, 021657231332, 023553406142, 004236526362, 010365611275, /* 14 */
007117336710, 011051276551, 002362132524, 001011540233, 012162531646, /* 20 */
007056762337, 006631245521, 014164542224, 032633236305, 023342700176, /* 25 */
002433062234, 015257225043, 026762051606, 000742573230, 005366042132, /* 30 */
012126416411, 000520471171, 000725646277, 020116577576, 025765742604, /* 35 */
007633473735, 015674255275, 017555634041, 006503154145, 021576344247, /* 40 */
014577627653, 002707523333, 034146376720, 030060227734, 013765414060, /* 45 */
036072251540, 007255221037, 024364674123, 006200353166, 010126373326, /* 50 */
015664104320, 016401041535, 016215305520, 033115351014, 017411670323 /* 55 */
};
static int i1, i2;
unsigned int
ya_random (void)
{
register int ret = a[i1] + a[i2];
a[i1] = ret;
if (++i1 >= VectorSize) i1 = 0;
if (++i2 >= VectorSize) i2 = 0;
return ret;
}
void
ya_rand_init(unsigned int seed)
{
int i;
if (seed == 0)
{
struct timeval tp;
#ifdef GETTIMEOFDAY_TWO_ARGS
struct timezone tzp;
gettimeofday(&tp, &tzp);
#else
gettimeofday(&tp);
#endif
/* ignore overflow */
seed = (999*tp.tv_sec) + (1001*tp.tv_usec) + (1003 * getpid());
}
a[0] += seed;
for (i = 1; i < VectorSize; i++)
{
seed = a[i-1]*1001 + seed*999;
a[i] += seed;
}
i1 = a[0] % VectorSize;
i2 = (i1 + 024) % VectorSize;
}