dockapps/wmgtemp/src/wmgtemp.c

1085 lines
28 KiB
C
Raw Normal View History

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/poll.h>
#include <time.h>
#include <X11/Xlib.h>
#include <X11/xpm.h>
#include <X11/extensions/shape.h>
#include <sensors/sensors.h>
#include <sensors/error.h>
#include <libdockapp/wmgeneral.h>
#include <libdockapp/misc.h>
#include "wmgtemp-interface.xpm"
#include "wmgtemp-interface-mask.xbm"
#include <math.h>
#include <signal.h>
#include <getopt.h>
/* Defines */
#define BitOff(a,x) ((void)((a) &= ~(1 << (x))))
#define BitOn(a,x) ((void)((a) |= (1 << (x))))
#define BitFlip(a,x) ((void)((a) ^= (1 << (x))))
#define IsOn(a,x) ((a) & (1 << (x)))
// Display flags.
#define CPU 0
#define SYS 1
#define WARN_NONE 2
#define WARN_WARN 3
#define WARN_HIGH 4
#define TSCALE_CELCIUS 5
#define TSCALE_FAHRENHEIT 6
#define TSCALE_KELVIN 7
#define GRAPH_LINE 8
#define GRAPH_BLOCK 9
#define HIGH_CPU 10
#define HIGH_SYS 11
#define D_MIN 0
#define D_MAX 1
#define CPU_YPOS 3
#define SYS_YPOS 53
#define BLOCK 0
#define LINE 1
#define DEBUG 0 /* 0 disable 1 enable */
#define OPT_STRING "g:sS:hH:w:m:M:a:e:u:1:2:c:tq"
#define TEMPTOFAHRENHEIT(t) ((int)((t * (1.8) + 32)))
#define TEMPTOKELVIN(t) ((int)(t + 273))
#define TEMPTOCELCIUS(t) (t)
#define TEMPTODISPLAYSCALE(temp, display_flags) (IsOn((display_flags), TSCALE_CELCIUS) ? TEMPTOCELCIUS((temp)) : (IsOn((display_flags), TSCALE_KELVIN) ? TEMPTOKELVIN((temp)) : TEMPTOFAHRENHEIT((temp))))
/* Prototypes */
int init_sensors();
int process_config(int argc, char **argv);
int recompute_range(double cpu_high, double cpu_low, double sys_high, double sys_low);
void display_usage();
void process_xevents();
void draw_scale_indicator();
void add_to_graph(double temp, int type, short blank, double range, int pos);
void draw_range_line(double temp, double range, short type);
void update_display();
void update_sensor_data();
void do_sensors(int val);
inline double highest_temp(double *temp_array);
inline double lowest_temp(double *temp_array);
inline void draw_temp(short value, int type);
inline void draw_warning_lights(double current_temp);
inline void draw_max(int type);
inline void blank_max(int type);
inline void draw_type(int type);
inline void blank_type(int type);
inline void cycle_temptype();
/* Globals */
int delay = 1;
const sensors_chip_name *name;
char *exec_app = NULL;
char *rc_config = NULL;
short SENSOR_DISP = 0;
int SUBFEAT_NUM_CPU = 0;
int SUBFEAT_NUM_SYS = 0;
double cpu_history[59];
double sys_history[59];
double display_min = 20;
double display_max = 35;
double range_upper = 35;
double range_lower = 20;
double range_step = 5.0;
double warn_temp = 45;
double high_temp = 50;
double run_cpu_high = 0;
double run_sys_high = 0;
double execat = 0;
short execed = 0;
short swap_types = 0;
char *sensor_feature1 = "temp1";
char *sensor_feature2 = "temp2";
char *sensor_chip = NULL;
short quiet = 0;
int main(int argc, char **argv) {
char *chipname = NULL;
int chip_nr = 0;
int i = 0;
int tmp_swap;
const sensors_feature* feature = NULL;
const sensors_subfeature* subfeature_cpu = NULL;
const sensors_subfeature* subfeature_sys = NULL;
short chip_found = -1;
BitOn(SENSOR_DISP, WARN_NONE);
BitOn(SENSOR_DISP, TSCALE_CELCIUS);
BitOn(SENSOR_DISP, GRAPH_LINE);
/* *conffname = "/etc/sensors3.conf"; */
if(!process_config(argc, argv)) {
exit(-1);
}
if(!init_sensors()) {
exit(-1);
}
/* Get the chip name */
name = sensors_get_detected_chips(NULL, &chip_nr);
while(name != NULL && chip_found == -1) {
if (!sensor_chip || strcmp(name->prefix, (const char *)sensor_chip) == 0) {
i = 0;
while ((feature = sensors_get_features(name, &i))) {
if(strcmp(feature->name, (const char *)sensor_feature1) == 0) {
subfeature_cpu = sensors_get_subfeature(name, feature, SENSORS_SUBFEATURE_TEMP_INPUT);
SUBFEAT_NUM_CPU = subfeature_cpu->number;
BitOn(SENSOR_DISP, CPU);
chip_found = 1;
}
if(strcmp(feature->name, (const char *)sensor_feature2) == 0) {
subfeature_sys = sensors_get_subfeature(name, feature, SENSORS_SUBFEATURE_TEMP_INPUT);
SUBFEAT_NUM_SYS = subfeature_sys->number;
BitOn(SENSOR_DISP, SYS);
chip_found = 1;
}
}
}
if(chip_found == 1) {
chipname = name->prefix;
}
else {
name = sensors_get_detected_chips(NULL, &chip_nr);
}
}
if(chip_found == -1) {
fprintf(stderr,"wmgtemp: Unable to find temperature sensing feature.\n");
exit(0);
}
/* output the name of the sensor if found. */
if(quiet == 0)
printf("wmgtemp: Primary Sensor - %s on %s\n", name->prefix, sensors_get_adapter_name(&name->bus));
if(swap_types) {
if(quiet == 0)
printf("wmgtemp: swapping temps\n");
tmp_swap = SUBFEAT_NUM_SYS;
SUBFEAT_NUM_SYS = SUBFEAT_NUM_CPU;
SUBFEAT_NUM_CPU = tmp_swap;
tmp_swap = SENSOR_DISP;
if(IsOn(tmp_swap, CPU)) {
BitOn(SENSOR_DISP, SYS);
} else {
BitOff(SENSOR_DISP, SYS);
}
if(IsOn(tmp_swap, SYS)) {
BitOn(SENSOR_DISP, CPU);
} else {
BitOff(SENSOR_DISP, CPU);
}
}
chip_nr = 0;
openXwindow(argc, argv, wmgtemp_interface_xpm, wmgtemp_interface_mask_bits,
wmgtemp_interface_mask_width, wmgtemp_interface_mask_height);
AddMouseRegion(0, 2, 12, 61, 51); /* Graph area */
AddMouseRegion(1, 34, 2, 51, 11); /* CPU temp area */
AddMouseRegion(2, 34, 52, 51, 61); /* SYS temp area */
AddMouseRegion(3, 10, CPU_YPOS, 28, CPU_YPOS + 7); /* CPU label area */
AddMouseRegion(4, 10, SYS_YPOS, 28, SYS_YPOS + 7); /* SYS label area */
AddMouseRegion(5, 55, CPU_YPOS, 60, CPU_YPOS + 7); /* CPU C/K/F scale indicator */
AddMouseRegion(6, 55, SYS_YPOS, 60, SYS_YPOS + 7); /* SYS C/K/F scale indicator */
// Add blanking of SYS and CPU for chip type.
// <<==---
if(!IsOn(SENSOR_DISP, CPU)) {
blank_type(CPU);
}
if(!IsOn(SENSOR_DISP, SYS)) {
blank_type(SYS);
}
draw_scale_indicator();
// Initialise the temperature arrays.
for(i = 0; i < 59; i++) {
cpu_history[i] = -1;
sys_history[i] = -1;
}
do_sensors(0);
RedrawWindow();
process_xevents();
return 0;
}
void draw_scale_indicator() {
if(IsOn(SENSOR_DISP, TSCALE_CELCIUS)) {
if(IsOn(SENSOR_DISP, CPU)) {
copyXPMArea(61, 65, 5, 7, 55, CPU_YPOS);
copyXPMArea(70, 2, 2, 2, 52, CPU_YPOS);
}
if(IsOn(SENSOR_DISP, SYS)) {
copyXPMArea(61, 65, 5, 7, 55, SYS_YPOS);
copyXPMArea(70, 2, 2, 2, 52, SYS_YPOS);
}
}
else if(IsOn(SENSOR_DISP, TSCALE_FAHRENHEIT)) {
if(IsOn(SENSOR_DISP, CPU)) {
copyXPMArea(67, 65, 5, 7, 55, CPU_YPOS);
copyXPMArea(70, 2, 2, 2, 52, CPU_YPOS);
}
if(IsOn(SENSOR_DISP, SYS)) {
copyXPMArea(67, 65, 5, 7, 55, SYS_YPOS);
copyXPMArea(70, 2, 2, 2, 52, SYS_YPOS);
}
}
else if(IsOn(SENSOR_DISP, TSCALE_KELVIN)) {
if(IsOn(SENSOR_DISP, CPU)) {
copyXPMArea(73, 65, 5, 7, 55, CPU_YPOS);
copyXPMArea(70, 0, 2, 2, 52, CPU_YPOS);
}
if(IsOn(SENSOR_DISP, SYS)) {
copyXPMArea(73, 65, 5, 7, 55, SYS_YPOS);
copyXPMArea(70, 0, 2, 2, 52, SYS_YPOS);
}
}
}
void process_xevents() {
int button_area = 0;
int* xfds = NULL;
int fdcount = 0;
struct pollfd* pfds = NULL;
XEvent Event;
Status ret;
time_t lastupdate = 0;
ret = XInternalConnectionNumbers(display, &xfds, &fdcount);
if(!ret) {
fdcount = 0;
if(xfds) {
XFree(xfds);
}
xfds = NULL;
}
int i;
pfds = (struct pollfd*)malloc((fdcount+1)*sizeof(struct pollfd));
if(!pfds) {
perror("malloc");
exit(EXIT_FAILURE);
}
for(i=0; i < fdcount; ++i) {
pfds[i].fd = xfds[i];
pfds[i].events = POLLIN | POLLPRI;
}
if(xfds) {
XFree(xfds);
}
pfds[fdcount].fd = ConnectionNumber(display);
pfds[fdcount].events = POLLIN | POLLPRI;
while(1) {
poll(pfds, fdcount + 1, delay * 1000);
if(time(NULL) - lastupdate >= delay) {
lastupdate = time(NULL);
do_sensors(0);
}
while(XPending(display)) {
XNextEvent(display, &Event);
switch(Event.type) {
case Expose:
RedrawWindow();
break;
case DestroyNotify:
XCloseDisplay(display);
exit(0);
break;
case ButtonRelease:
button_area = CheckMouseRegion(Event.xbutton.x, Event.xbutton.y);
switch(button_area) {
case 0:
if(IsOn(SENSOR_DISP, GRAPH_LINE)) {
BitOff(SENSOR_DISP, GRAPH_LINE);
BitOn(SENSOR_DISP, GRAPH_BLOCK);
}
else if(IsOn(SENSOR_DISP, GRAPH_BLOCK)) {
BitOff(SENSOR_DISP, GRAPH_BLOCK);
BitOn(SENSOR_DISP, GRAPH_LINE);
}
update_display();
RedrawWindow();
break;
case 1:
if(IsOn(SENSOR_DISP, HIGH_CPU)) {
BitOff(SENSOR_DISP, HIGH_CPU);
blank_max(CPU);
}
else {
BitOn(SENSOR_DISP, HIGH_CPU);
draw_max(CPU);
}
update_display();
RedrawWindow();
break;
case 2:
if(IsOn(SENSOR_DISP, HIGH_SYS)) {
BitOff(SENSOR_DISP, HIGH_SYS);
blank_max(SYS);
}
else {
BitOn(SENSOR_DISP, HIGH_SYS);
draw_max(SYS);
}
update_display();
RedrawWindow();
break;
case 3:
if(SUBFEAT_NUM_CPU) {
if(IsOn(SENSOR_DISP, CPU)) {
BitOff(SENSOR_DISP, CPU);
blank_type(CPU);
}
else {
BitOn(SENSOR_DISP, CPU);
draw_type(CPU);
draw_scale_indicator();
}
}
update_display();
RedrawWindow();
break;
case 4:
if(SUBFEAT_NUM_SYS) {
if(IsOn(SENSOR_DISP, SYS)) {
BitOff(SENSOR_DISP, SYS);
blank_type(SYS);
}
else {
BitOn(SENSOR_DISP, SYS);
draw_type(SYS);
draw_scale_indicator();
}
}
update_display();
RedrawWindow();
break;
case 5:
case 6:
cycle_temptype();
draw_scale_indicator();
update_display();
RedrawWindow();
break;
}
break;
}
}
}
}
void do_sensors(int val) {
update_sensor_data();
update_display();
RedrawWindow();
if(execat != 0 && cpu_history[58] >= execat && !execed) {
execed = 1;
execCommand(exec_app);
}
if(execat != 0 && cpu_history[58] < execat && execed) {
execed = 0;
}
}
void update_sensor_data() {
int i = 0;
double cpu_high = highest_temp(cpu_history);
double sys_high = highest_temp(sys_history);
/* Shift the arrays */
for(i = 0; i < 58; i++) {
cpu_history[i] = cpu_history[i + 1];
sys_history[i] = sys_history[i + 1];
}
// Read the new values from the sensors into the temperature arrays.
if(IsOn(SENSOR_DISP, SYS)) sensors_get_value(name, SUBFEAT_NUM_SYS, &sys_history[58]);
if(IsOn(SENSOR_DISP, CPU)) sensors_get_value(name, SUBFEAT_NUM_CPU, &cpu_history[58]);
// Update the run high/low values.
if(cpu_high > run_cpu_high)
run_cpu_high = cpu_high;
if(sys_high > run_sys_high)
run_sys_high = sys_high;
}
void update_display() {
int j = 0;
// Rescale the display if needed.
while(recompute_range(highest_temp(cpu_history), lowest_temp(cpu_history),
highest_temp(sys_history), lowest_temp(sys_history)));
// Display warning.
draw_warning_lights(cpu_history[58]);
// ReDraw temperature numbers
if(IsOn(SENSOR_DISP, CPU)) {
copyXPMArea(78, 65, 5, 7, 34, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 40, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 46, CPU_YPOS);
draw_temp(TEMPTODISPLAYSCALE(IsOn(SENSOR_DISP, HIGH_CPU) == 0 ? cpu_history[58] : run_cpu_high, SENSOR_DISP), CPU);
}
if(IsOn(SENSOR_DISP, SYS)) {
copyXPMArea(78, 65, 5, 7, 34, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 40, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 46, SYS_YPOS);
draw_temp(TEMPTODISPLAYSCALE(IsOn(SENSOR_DISP, HIGH_SYS) == 0 ? sys_history[58] : run_sys_high, SENSOR_DISP), SYS);
}
// ReDraw the graph
for(j = 0; j < 59; j++) {
// Clear a line
copyXPMArea(65, 0, 1, 39, j + 2, 12);
if(sys_history[j] < cpu_history[j]) {
// Draw the temperatures on the graph.
if(IsOn(SENSOR_DISP, CPU)) {
add_to_graph(cpu_history[j], CPU, 1, range_upper - range_lower, j + 2);
}
if(IsOn(SENSOR_DISP, SYS)) {
add_to_graph(sys_history[j], SYS, 0, range_upper - range_lower, j + 2);
}
}
else {
if(IsOn(SENSOR_DISP, SYS)) {
add_to_graph(sys_history[j], SYS, 0, range_upper - range_lower, j + 2);
}
if(IsOn(SENSOR_DISP, CPU)) {
add_to_graph(cpu_history[j], CPU, 1, range_upper - range_lower, j + 2);
}
}
}
// Draw range lines if needed
if(range_upper > display_max) {
draw_range_line(display_max, range_upper - range_lower, D_MAX);
}
if(range_lower < display_min) {
draw_range_line(display_min, range_upper - range_lower, D_MIN);
}
}
int recompute_range(double cpu_high, double cpu_low, double sys_high, double sys_low)
{
short modified = 0;
if(IsOn(SENSOR_DISP, CPU)) {
if(cpu_high > range_upper) {
range_upper += range_step;
modified = 1;
}
if(cpu_low < range_lower) {
range_lower -= range_step;
modified = 1;
}
}
if(IsOn(SENSOR_DISP, SYS)) {
if(sys_high > range_upper) {
range_upper += range_step;
modified = 1;
}
if(sys_low < range_lower) {
range_lower -= range_step;
modified = 1;
}
}
// --------
if(IsOn(SENSOR_DISP, CPU) && IsOn(SENSOR_DISP, SYS)) {
if((cpu_high < (range_upper - range_step) &&
sys_high < (range_upper - range_step)) &&
(range_upper - range_step) >= display_max) {
range_upper -= range_step;
modified = 1;
}
if((cpu_low > (range_lower + range_step) &&
sys_low > (range_lower + range_step)) &&
(range_lower + range_step) <= display_min ) {
range_lower += range_step;
modified = 1;
}
}
else if(IsOn(SENSOR_DISP, CPU) && !IsOn(SENSOR_DISP, SYS)) {
if(cpu_high < (range_upper - range_step) &&
(range_upper - range_step) >= display_max) {
range_upper -= range_step;
modified = 1;
}
if(cpu_low > (range_lower + range_step) &&
(range_lower + range_step) <= display_min) {
range_lower += range_step;
modified = 1;
}
}
else if(!IsOn(SENSOR_DISP, CPU) && IsOn(SENSOR_DISP, SYS)) {
if(sys_high < (range_upper - range_step) &&
(range_upper - range_step) >= display_max) {
range_upper -= range_step;
modified = 1;
}
if(sys_low > (range_lower + range_step) &&
(range_lower + range_step) <= display_min) {
range_lower += range_step;
modified = 1;
}
}
return modified;
}
inline double highest_temp(double *temp_array) {
int i = 0;
double high = 0;
for(i = 0; i < 59; i++) {
if(temp_array[i] > high)
high = temp_array[i];
}
return high;
}
inline double lowest_temp(double *temp_array) {
int i = 0;
double low = 500;
for(i = 0; i < 59; i++) {
if((temp_array[i] < low) && (temp_array[i] != -1))
low = temp_array[i];
}
return low;
}
void add_to_graph(double temp, int type, short blank, double range, int pos) {
double each = (double)39 / range;
short length = each * (temp - range_lower);
// Draw the graphs
// if(IsOn(SENSOR_DISP, GRAPH_BLOCK)) {
// copyXPMArea(type == CPU ? 67 : 68, 0, 1, length, pos, 51 - length);
// }
// else if(IsOn(SENSOR_DISP, GRAPH_LINE)) {
// copyXPMArea(type == CPU ? 67 : 68, 0, 1, 1, pos, 51 - length);
// }
// Do not draw the graphs if the temperature data does not make sense
// Orginially used the code above but change supplied to fix issues seen by Ben Spencer.
// Couldn't be arsed to find the real cause as I don't use the app myself anymore.
// Doesn't seem to break anything though
if ((temp >= range_lower) && (temp <= range_upper)) {
// Draw the graphs
if(IsOn(SENSOR_DISP, GRAPH_BLOCK)) {
copyXPMArea(type == CPU ? 67 : 68, 0, 1, length, pos, 51 - length);
}
else if(IsOn(SENSOR_DISP, GRAPH_LINE)) {
copyXPMArea(type == CPU ? 67 : 68, 0, 1, 1, pos, 51 - length);
}
}
}
inline void draw_temp(short value, int type) {
short digit;
if(value > 0) {
digit = value % 10;
copyXPMArea((digit * 6) + 1, 65, 5, 7, 46, type == CPU ? CPU_YPOS : SYS_YPOS);
if(value > 9) {
digit = ((value % 100) - digit) / 10;
copyXPMArea((digit * 6) + 1, 65, 5, 7, 40, type == CPU ? CPU_YPOS : SYS_YPOS);
if(value > 99) {
digit = (value - (value % 100)) / 100;
copyXPMArea((digit * 6) + 1, 65, 5, 7, 34, type == CPU ? CPU_YPOS : SYS_YPOS);
}
}
}
}
inline void draw_clear_temps() {
if(IsOn(SENSOR_DISP, CPU)) {
copyXPMArea(78, 65, 5, 7, 34, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 40, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 46, CPU_YPOS);
}
if(IsOn(SENSOR_DISP, SYS)) {
copyXPMArea(78, 65, 5, 7, 34, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 40, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 46, SYS_YPOS);
}
}
void draw_range_line(double temp, double range, short type) {
double each = (double)39 / range;
short length = each * (temp - range_lower);
copyXPMArea(0, type == D_MAX ? 73 : 74, 59, 1, 2, 51 - length);
}
int init_sensors() {
FILE *config_file;
int res;
if (rc_config) {
config_file = fopen(rc_config, "r");
if(config_file == NULL) {
fprintf(stderr, "Error opening %s\n", rc_config);
return 0;
}
} else {
config_file = NULL; /* Use libsensors default */
}
res = sensors_init(config_file);
if(res != 0) {
fprintf(stderr,"Error initializing sensors: %s\n", sensors_strerror(res));
return 0;
}
if(config_file && fclose(config_file))
perror("Error closing sensors config");
return 1;
}
void display_usage() {
printf("wmgtemp v0.9\n" \
"Usage: wmgtemp [options]\n" \
"Options:\n" \
" -S, --sensorconf=PATH Specify sensors config file PATH\n" \
" [Default: autodetect]\n" \
" -s, --scale=SCALE Display temperatures in SCALE\n" \
" SCALE=kelvin, fahrenheit\n" \
" [Default: celcius]\n" \
" -g, --graph=STYLE Display graph as STYLE\n" \
" STYLE=line, block\n" \
" [Default: line]\n" \
" -H, --high=TEMP Display red warning light at TEMP degrees celcius\n" \
" [Default: 50]\n" \
" -w, --warn=TEMP Display amber warning light at TEMP degrees celcius\n" \
" [Default: 45]\n" \
" -u, --update=SEC Update the display every SEC seconds\n" \
" [Default: 1]\n" \
" -m, --min=TEMP Set lower bound of the graph to TEMP degrees celcius\n" \
" [Default: 20]\n" \
" -M, --max=TEMP Set upper bound of the graph to TEMP degrees celcius\n" \
" [Default: 35]\n" \
" -1, --feature1=F1 Set the feature for CPU\n" \
" [Default: temp1]\n" \
" -2, --feature2=F2 Set the feature for SYS\n" \
" [Default: temp2]\n" \
" -c, --chip=NAME Use sensor chip matching NAME\n" \
" [Default: use any]\n" \
" -a, --execat=TEMP Execute a command at TEMP degrees celcius\n" \
" -e, --exec=COMMAND Execute COMMAND when 'execat' temperature is reached\n" \
" -t, --swap Swap CPU and SYS temps\n" \
" -q, --quiet Don't display any messages\n" \
" -h, --help Displays this help screen\n");
}
void draw_warning_lights(double current_temp) {
if(current_temp >= warn_temp && IsOn(SENSOR_DISP, WARN_NONE)) {
// Switch from ok to warning.
BitOff(SENSOR_DISP, WARN_NONE);
BitOn(SENSOR_DISP, WARN_WARN);
copyXPMArea(10, 75, 5, 5, 4, 4);
}
if(current_temp < warn_temp && IsOn(SENSOR_DISP, WARN_WARN)) {
// Switch from warning to ok.
BitOff(SENSOR_DISP, WARN_WARN);
BitOn(SENSOR_DISP, WARN_NONE);
copyXPMArea(0, 75, 5, 5, 4, 4);
}
if(current_temp >= high_temp && IsOn(SENSOR_DISP, WARN_WARN)) {
// Switch from warning to high.
BitOff(SENSOR_DISP, WARN_WARN);
BitOn(SENSOR_DISP, WARN_HIGH);
copyXPMArea(15, 75, 5, 5, 4, 4);
}
if(current_temp < high_temp && IsOn(SENSOR_DISP, WARN_HIGH)) {
// Switch from high to warning.
BitOff(SENSOR_DISP, WARN_HIGH);
BitOn(SENSOR_DISP, WARN_WARN);
copyXPMArea(10, 75, 5, 5, 4, 4);
}
}
inline void blank_type(int type) {
switch(type) {
case CPU:
copyXPMArea(78, 65, 5, 7, 11, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 17, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 23, CPU_YPOS);
copyXPMArea(70, 0, 2, 2, 52, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 34, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 40, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 46, CPU_YPOS);
copyXPMArea(78, 65, 5, 7, 55, CPU_YPOS);
break;
case SYS:
copyXPMArea(78, 65, 5, 7, 11, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 17, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 23, SYS_YPOS);
copyXPMArea(70, 0, 2, 2, 52, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 34, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 40, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 46, SYS_YPOS);
copyXPMArea(78, 65, 5, 7, 55, SYS_YPOS);
break;
}
}
inline void draw_max(int type) {
// copyXPMArea(1, 81, 17, 7, 11, type == CPU ? CPU_YPOS : SYS_YPOS);
copyXPMArea(24, 75, 4, 3, 29, type == CPU ? CPU_YPOS : SYS_YPOS);
}
inline void blank_max(int type) {
// copyXPMArea(1, 81, 17, 7, 11, type == CPU ? CPU_YPOS : SYS_YPOS);
copyXPMArea(20, 75, 4, 3, 29, type == CPU ? CPU_YPOS : SYS_YPOS);
}
inline void draw_type(int type) {
switch(type) {
case CPU:
copyXPMArea(65, 40, 17, 7, 11, CPU_YPOS);
break;
case SYS:
copyXPMArea(65, 47, 17, 7, 11, SYS_YPOS);
break;
}
}
inline void cycle_temptype() {
if(IsOn(SENSOR_DISP, TSCALE_CELCIUS)) {
BitOff(SENSOR_DISP, TSCALE_CELCIUS);
BitOn(SENSOR_DISP, TSCALE_KELVIN);
}
else if(IsOn(SENSOR_DISP, TSCALE_KELVIN)) {
BitOff(SENSOR_DISP, TSCALE_KELVIN);
BitOn(SENSOR_DISP, TSCALE_FAHRENHEIT);
}
else if(IsOn(SENSOR_DISP, TSCALE_FAHRENHEIT)) {
BitOff(SENSOR_DISP, TSCALE_FAHRENHEIT);
BitOn(SENSOR_DISP, TSCALE_CELCIUS);
}
}
int process_config(int argc, char **argv) {
char *rc_graph = NULL;
char *rc_scale = NULL;
char *rc_high = NULL;
char *rc_warn = NULL;
char *rc_min = NULL;
char *rc_max = NULL;
char *rc_execat = NULL;
char *rc_exec = NULL;
char *rc_delay = NULL;
char *rc_swap = NULL;
char *rc_feature1 = NULL;
char *rc_feature2 = NULL;
char *rc_quiet = NULL;
char *rc_chip = NULL;
short parse_ok = 1;
int opt_index;
int opt;
char *p;
char temp[128];
rckeys wmgtemp_keys[] = {
{ "graph", &rc_graph },
{ "scale", &rc_scale },
{ "high", &rc_high },
{ "warn", &rc_warn },
{ "min", &rc_min },
{ "max", &rc_max },
{ "execat", &rc_execat },
{ "exec", &rc_exec },
{ "update", &rc_delay },
{ "swap", &rc_swap },
{ "quiet", &rc_quiet },
{ "feature1", &rc_feature1 },
{ "feature2", &rc_feature2 },
{ "chip", &rc_chip },
{ "sensorconf", &rc_config },
{ NULL, NULL }
};
static struct option long_options[] = {
{"graph", required_argument, 0, 'g'},
{"scale", required_argument, 0, 's'},
{"high", required_argument, 0, 'H'},
{"warn", required_argument, 0, 'w'},
{"min", required_argument, 0, 'm'},
{"max", required_argument, 0, 'M'},
{"execat", required_argument, 0, 'a'},
{"exec", required_argument, 0, 'e'},
{"update", required_argument, 0, 'u'},
{"feature1", required_argument, 0, '1'},
{"feature2", required_argument, 0, '2'},
{"chip", required_argument, 0, 'c'},
{"sensorconf", required_argument, 0, 'S'},
{"swap", no_argument, 0, 't'},
{"quiet", no_argument, 0, 'q'},
{"help", no_argument, 0, 'h'},
{0, 0, 0, 0}
};
p = getenv("HOME");
strcpy(temp, p);
strcat(temp, "/.wmgtemprc");
parse_rcfile(temp, wmgtemp_keys);
// Do getopt stuff.
while ((opt = getopt_long(argc, argv, OPT_STRING, long_options, &opt_index)) != -1) {
switch(opt) {
case 'g':
rc_graph = strdup(optarg);
break;
case 's':
rc_scale = strdup(optarg);
break;
case 'H':
rc_high = strdup(optarg);
break;
case 'w':
rc_warn = strdup(optarg);
break;
case 'm':
rc_min = strdup(optarg);
break;
case 'M':
rc_max = strdup(optarg);
break;
case 'a':
rc_execat = strdup(optarg);
break;
case 'e':
rc_exec = strdup(optarg);
break;
case 'u':
rc_delay = strdup(optarg);
break;
case '1':
rc_feature1 = strdup(optarg);
break;
case '2':
rc_feature2 = strdup(optarg);
break;
case 'c':
rc_chip = strdup(optarg);
break;
case 'S':
rc_config = strdup(optarg);
break;
case 'q':
rc_quiet = "y";
break;
case 't':
rc_swap = "y";
break;
case 'h':
display_usage();
exit(0);
default:
display_usage();
exit(-1);
}
}
if(rc_quiet != NULL) {
if(!strncmp(rc_quiet, "y", 1)) {
quiet = 1;
}
}
if(rc_feature1 != NULL) {
sensor_feature1 = strdup(rc_feature1);
}
if(rc_feature2 != NULL) {
sensor_feature2 = strdup(rc_feature2);
}
if(rc_chip != NULL) {
sensor_chip = strdup(rc_chip);
}
if(rc_graph != NULL) {
if(!strncmp(rc_graph, "l", 1)) {
BitOff(SENSOR_DISP, GRAPH_BLOCK);
BitOn(SENSOR_DISP, GRAPH_LINE);
}
else if(!strncmp(rc_graph, "b", 1)) {
BitOff(SENSOR_DISP, GRAPH_LINE);
BitOn(SENSOR_DISP, GRAPH_BLOCK);
}
else {
printf("Invalid graph type: %s\n", rc_graph);
parse_ok = 0;
}
}
if(rc_scale != NULL) {
if(!strncmp(rc_scale, "c", 1)) {
}
else if(!strncmp(rc_scale, "f", 1)) {
BitOff(SENSOR_DISP, TSCALE_KELVIN);
BitOff(SENSOR_DISP, TSCALE_CELCIUS);
BitOn(SENSOR_DISP, TSCALE_FAHRENHEIT);
}
else if(!strncmp(rc_scale, "k", 1)) {
BitOff(SENSOR_DISP, TSCALE_CELCIUS);
BitOff(SENSOR_DISP, TSCALE_FAHRENHEIT);
BitOn(SENSOR_DISP, TSCALE_KELVIN);
}
else {
printf("Invalid scale type: %s\n", rc_scale);
parse_ok = 0;
}
}
if(rc_high != NULL) {
high_temp = (double)atoi(rc_high);
if(!high_temp) {
printf("Invalid temperature\n");
parse_ok = 0;
}
else {
if(quiet == 0)
printf("wmgtemp: high temp set to %d degrees celcius.\n", (int)high_temp);
}
}
if(rc_warn != NULL) {
warn_temp = (double)atoi(rc_warn);
if(!warn_temp) {
printf("Invalid temperature\n");
parse_ok = 0;
}
else {
if(quiet == 0)
printf("wmgtemp: warning temp set to %d degrees celcius.\n", (int)warn_temp);
}
}
if(rc_max != NULL) {
display_max = range_upper = (double)atoi(rc_max);
if(!range_upper) {
printf("Invalid temperature\n");
parse_ok = 0;
}
else {
if(quiet == 0)
printf("wmgtemp: Upper range set to %d degrees celcius.\n", (int)range_upper);
}
}
if(rc_min != NULL) {
display_min = range_lower = (double)atoi(rc_min);
if(!range_lower) {
printf("Invalid temperature\n");
parse_ok = 0;
}
else {
if(quiet == 0)
printf("wmgtemp: Lower range set to %d degrees celcius.\n", (int)range_lower);
}
}
if(rc_delay != NULL) {
delay = atoi(rc_delay);
if(!delay) {
printf("Invalid delay\n");
parse_ok = 0;
}
else {
if(quiet == 0)
printf("wmgtemp: update delay set to %d seconds.\n", delay);
}
}
if(rc_execat != NULL) {
execat = (double)atoi(rc_execat);
if(!execat) {
printf("Invalid temperature\n");
parse_ok = 0;
}
else {
if(rc_exec != NULL) {
if(strcmp(rc_exec, "")) {
exec_app = strdup(rc_exec);
printf("wmgtemp: Executing \"%s\" at %d degrees celcius.\n", exec_app, (int)execat);
}
else {
printf("You must supply an command to execute\n");
parse_ok = 0;
}
}
else {
printf("You must supply an command to execute\n");
parse_ok = 0;
}
}
}
if(rc_swap != NULL) {
if(!strncmp(rc_swap, "y", 1)) {
swap_types = 1;
}
else if(!strncmp(rc_swap, "n", 1)) {
swap_types = 0;
}
else {
printf("Supply 'y' or 'n' for swap temps\n");
parse_ok = 0;
}
}
return parse_ok;
}